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Abstract
In this paper, we propose a novel algorithm for primary user emulation attack detection and removal in cognitive radio

networks, which are driven by chaotic tag-based sequencing for communication. Our proposed approach demonstrates the

use of the look-up table-based challenge sequences which are monitored by the cognitive base station and act as the first

line of defense against any primary user emulation attacker. This ensures that almost all of the attackers are suppressed,

and for the remaining attackers if any, we use a tag-based chaotic communication system, wherein each of the requests

from secondary users is sent like a chaotic noise sequence on the channel, and the receiving entity decodes this sequence in

order to get the signal communicated by an authorized transmitter. If there is any communication by an attacker, then it is

detected immediately, as none of the receiving entities can decode the signals sent by these unwanted attacker nodes. This

ensures that our system guarantees greater than 99% detection and identification of attackers in primary user emulation

attacks.

Keywords Primary user emulation � Challenge system � Chaotic communication � Tag identification � Primary user �
Secondary user

1 Introduction

Cognitive radios are prone to many types of attacks; these

can be primary user emulation, selfish channel negotiation,

control channel negotiation and many more. These net-

works are prone to such kind of attacks because they have

the inherent entities of primary users, secondary users and

channel sensing. Once the network is under attack, the

basic properties of cognitive radio network are deterio-

rated, and the network behaves erratically.

In primary user emulation attack, the attacker emulates

the functionality of a primary user and blocks the spectrum

so that all the genuine secondary users are denied service

(Haghighat and Sadough 2012), because the primary

property of a cognitive radio is that it assigns a channel to

one secondary user and keeps it assigned until the com-

munication of the secondary user is completed or until the

primary user returns back. This ensures high quality of

service to the primary users, and the channel bandwidth is

assigned to other secondary users once the current primary

communication is completed. Owing to this property, the

network communication is optimized, and the channel

utilization is evenly managed.

Primary user emulation attackers tend to be present in

all cognitive radio environments. These can be present in

the form of software-defined radios or virtual trans-re-

ceivers in cognitively capable devices. These attackers

monitor the network traffic and perform primary user em-

ulation attack when the network usage is maximum. The

impact of this is huge, and communications, mainly high

priority communications, get disrupted due to it.

In our proposed approach, we introduce a trust-based

mechanism for detecting and locating the source of primary

user emulation attacks. Once the attacker nodes are iden-

tified, they are blocked and removed from the network
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communication process. Genuine secondary nodes have an

individual and unique trusted look-up table-based request-

challenge mechanism. The main strength of the algorithm

is in the fact that each genuine secondary node is pre-

configured and has some unique parts when compared with

other genuine secondary nodes.

Primary user emulation attackers have a less to no

chance of getting through this trust-based system, but in

case they do, then we have applied a second layer of attack

detection, in which a chaotic communication system is

implemented. This chaotic communication system encodes

a test sequence from the genuine transmitters; this test

sequence appears as noise on the channel; thus, it cannot be

detected by any primary emulation attacker node. The

testing receivers detect this signal, and if it is received

within a proper BER range, then the node is marked to be

safe. Otherwise, the node is marked to be unsafe or attacker

node and is removed from the network.

This two-layered approach helps us to detect and

remove primary user emulation attackers from the network

in a very effective and optimized way. Our results

demonstrate that the primary user emulation attackers are

detected and removed at a rate of 99%, and the network

communication is restored with minimum delay. This

property allows us to use the two-layered approach in

practical real-time scenarios, without compromising the

quality of service (QoS) of the network for primary and

secondary nodes. Most of the work on mitigating primary

user emulation attack has been done over past few years by

the research community. We summarize a few selected

contributions referred by us in Table 1.

2 System Model: Two-Layered Approach
for Attack Detection and Removal

Our research is to detect and locate the nodes which take

part in primary user emulation attack. The proposed two-

layered approach can be depicted using Fig. 1. In the fig-

ure, we can observe that the genuine nodes have two layers

of security embedded into them: the first layer deals with a

trust-based look-up table (LUT) which stores key value or

key expression pairs, while the second layer is a chaotic

communication layer which ensures a second-level check

on primary user emulation nodes.

A sample LUT stored in two of the nodes is shown in

Table 2. The same LUT for each of the nodes is present

with the router/home node/base station node.

The process of trust-based attack removal is depicted in

Fig. 2.

The procedure for identifying the attacker node can be

illustrated as follows:

1. The secondary user (SU) node sends a communication

request to the router or base station or home node (R).

2. The router (R) identifies the node number of SU from

the request and responds with a random challenge (C).

3. The SU gets this challenge and may respond in the

following two ways:

(a) If the SU is genuine, then it will check the LUT

and solve the challenge (C) to get the solved

value (Sv) and then send Sv back to the router.

(b) If the SU is an attacker, then it will respond with

a random solution (Sr) to the router.

4. The router will solve the challenge (C) locally by the

LUT of the requesting SU node and keep the

correction solution (Sc) ready for comparison.

5. If the SU is genuine, then Sv will match Sc, and the

communication will proceed.

6. If SU is an attacker, then Sr will not match Sc, and the

node will be identified as an attacker node. The router

will block all communications from this node, and the

attacker will be removed from the cognitive radio

environment.

This algorithm can be defeated only under two

scenarios:

1. If the attacker knows about the trusted LUT of the

node (which is always kept private).

2. If the attacker responds with the correct challenge

answer (random distribution).

From the above 2 cases, it is found from our simulations

that case 1 is invalid, as the attacker is usually ad hoc and

will never have the private LUT information. But, the

second case can happen. In our simulations, we found that

in 1 out of 1,000,000 times, the attacker can correctly

answer the challenge and get access to the communication

system. While this issue can be resolved by increasing the

complexity of the LUT key values or key expression pairs,

but it also adds exponentially to the complexity of the

overall system, which adds a delay in subsequent

communications.

To tackle this condition, we have designed a second

attack detection layer which is a combination of chaotic

communication, tag-based system and a BER analyzer. The

second layer scans for pre-decided patterns which are

stored at the non-attacking secondary user nodes and

continuously monitors the channel. These patterns are

unique for different secondary users, and they are known to

the network router in advance.

In the second layer, the secondary user will send out its

test signal pattern; this test signal is encrypted using a

3-level Lorenz’s chaotic attractor encoder for security. The
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Table 1 Review of the literature on primary user emulation attack

Serial

no.

Contributions Method/model contributions Key features/description

1. Chen and

Park (2006)

Used two methods, distance difference test and

distance ratio test, finds distances from CR to PU

and malicious user

Using the distance information, it is determined whether the

transmission is from genuine PU or a malicious attacker

2. Chen et al.

(2008)

Location-based method (LocDef), location estimation,

RSS, TDOA

Uses both signal characteristics and primary transmitter’s

location to detect PUEA

3. Haghighat

and

Sadough

(2014)

Energy detection method-based spectrum sensing New spectrum sensing method using energy detection is

proposed, and the results are compared with an always

present attacker

4. Liu et al.

(2010)

Placing helper node close to the primary users and

replicate the characteristics of PU, the secondary

users can detect PUEA

Confirms the FCC requirement infrastructure is quite

expensive as helper nodes are required

5. Nguyen-

Thanh et al.

(2015)

Game theory-based approach to combat PUEA and

exhibition using Nash equilibrium (NE)

Channel surveillance process is implemented for determining

the active user and attacker; an extra sensing process is also

proposed for spotting new opportunities to access the

channel

6. Tan et al.

(2011)

Cryptography-based method, channel impulse

response (link signatures) embedded in modulation

or coding

Adding authentication tags, to channel impulse response (link

signatures) embedded in modulation and coding, modifies

legacy user signal, not recommended by FCC

7. Anand et al.

(2008)

First analytical model to study PUEA, based on

Fenton’s Approximation Technique and Markov

inequality

Various parameters affecting PUEA have been studied in a

fading wireless environment; it is shown that as the distance

between the primary transmitter and secondary user

increases the probability of a successful PUEA also

increases

8. Thanu (2012) Location estimation technique using Hidden Markov

Model

The incumbent signal is authenticated at CR receiver by

comparing the received signal by a priori estimates of the

link signatures of PU learned from the environment

9. Alahmadi

et al. (2014)

Advanced encryption standard (AES) and secured

hash algorithm (SHA)-based approach

No change in hardware, uses a plug-in AES chip, accurate

identification of PU, also detects the malicious user in the

presence or absence of PU

10. Chen et al.

(2016)

Probability density function (PDF) and belief

propagation (BP)-based algorithm is proposed

Based on PDF each CR calculates its belief value and

exchanges this information with other users, then compares

this value with a threshold for a decision on PUEA, no

location information of PU is required; however, hardware

cost is increased

11. Ghaznavi and

Jamshidi

(2017)

Received power characteristics of cognitive users are

used to detect PUEA

Each CR has energy detector and performs spectrum sensing,

sends a report to FC, three scenarios: ‘Always ON’ attack,

‘Probabilistic’ attack and ‘Adverse’ attack are studied; a

decision metric is compared with a threshold; and FC makes

a final decision about ongoing transmission about PUEA

12. Li et al.

(2016)

Doppler spread and variance of received signal power

is used for detection

The variance of received signal power is used as a signature

of the transmitter so that the detection performance is not

affected because of the relative positions of SU and PUE

13. Liu et al.

(2016)

Proposes an expectation maximization-based

algorithm, estimates channel parameters

Malicious user estimates the transmission power and channel

parameters of PU and learns them and then emulates; the

difference in parameters of PU channel and attack channel

are then used to detect PUEA

14. Chakravarthy

et al. (2017)

Underlay RF fingerprint in PU signal is introduced,

based on cyclostationary feature detection of a

signal

A novel solution to mitigate PUEA, however, modifies PU

signal, which is not allowed by FCC; a priori knowledge of

PU signal required; and uses cyclostationary feature method

and hence involves computational complexity

15. Ghaznavi and

Jamshidi

(2015)

Cluster-based model is used, makes use of ML

algorithm

The FC detects the trusted sensors, instead of searching for

malicious sensors; exchange of raw data between Fc and

sensors is reduced significantly
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Lorenz’s chaotic attractor is represented by the following

three equations (Kuo et al 2009):

dx

dt
¼ r y� xð Þ

dy

dt
¼ x q� zð Þ � y

dz

dt
¼ xy� bz

here r, q and b are the nonzero constants, and x, y and

z are the dynamic states. The encoded test signal pattern

behaves like a random noise sequence, is unique and does

not interfere with other secondary user patterns as they

are orthogonal and have different values for the chaotic

constants used in the encryption and decryption process.

The non-attacking secondary user transmits a chaotic

sequence and is decoded by the receiver/router. As the

receiver/router already knows the encryption constants,

the sequence is decoded properly, with almost no to

minimum errors so that the BER on the receiver side is

either 0 or a minimal value. But, if an attacking node

transmits any random sequence to gain access over the

channel, then improper decoding of the sequence will take

place at the receiver/router, and the BER value between

the unknown received signal and the known transmitted

signal will be very high. In this way, the attacker would

be identified. In our simulation process, we have kept the

BER threshold at 0.7, which ensures that even if the

channel has multiple non-attacking users, then too there

are minimal false positives detected by the system. Our

proposed results show an accuracy of more than 99% in

detection of the primary user emulation attackers and thus

are very effective in ad hoc and non-ad hoc cognitive

networking environment. A combination of these two

layers ensures a detection rate of about 99% which is

suited for real-time applications. The delay analysis

shows that the system can detect the attacker node in at

most two communication sequences, which take less than

1 ms of communication delay per node. Our overall

system is very lightweight as there are no complicated,

compute-intensive calculations in the system, which will

overload the system with preprocessing operations.

To check the system performance, we performed tests

with a different number of attacker nodes and under

varying channel conditions such as the AWGN, Rayleigh,

Rician and Nakagami.

3 Results and Analysis

In our experiments, we used the following setup as shown

in Table 3.

Table 4 shows the performance regarding delay and

accuracy of attacker node detection for our system. The

Fig. 1 System model

SU solves challenge (C) and sends a response back to the router  

checks the response by referring the LUT and blocks the node or  

Request for communication

sends a random challenge (C)

accepts the communication request

Router 

Genuine 
SU/ 

Attacker 

Fig. 2 Trust-based attack

removal

Table 2 LUT stored at any two of the nodes

Node no. Input data range (x) Output value (y)

1 \ 10 x 9 2

1 \ 30 x/2

1 \ 50 (x ? 2)

1 \ 250 1/x

1 \ 500
ffiffiffi

x3
p

1 \ 1000 (x ? 1)/(x2 - x - 1)

1 C 1000 (x2 ? 1)/(x3 þ x2 þ xþ 1)

2 \ 15 (x ? 2)

2 \ 40 (x - 2)

2 \ 65 x 9 2

2 \ 125 (x/2)

2 \ 450 (x ? 5)

2 \ 1200 (x - 1)/(x2 - x - 1)

2 C 1200 (x2 - x - 1)/(x3 þ x2 þ xþ 1)
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two-layered approach performs very well under various

channel conditions; the detection rate is fairly impressive

with the system detecting about 99% of the attacks, with a

delay of fewer than 1 ms for each of the AWGN, Rayleigh,

Rician and Nakagami channels as shown in Table 4. We

used the MATLAB platform to perform all our tests.

The overall system performance can be depicted by the

graphs shown in Fig. 3. Figure 3a shows plot of the

detection rate versus the number of nodes in AWGN,

Rayleigh, Rician and Nakagami channels. Figure 3b shows

the plot of delay in detection versus the number of nodes in

Table 4 Detection rate and

delay under various channels

and attackers

Channel type Number of nodes Number of attackers Detection rate (%) Mean delay (ms)

AWGN 10 2 99.95 0.1

AWGN 20 6 99.96 0.3

AWGN 30 10 99.96 0.4

AWGN 40 18 99.97 0.45

AWGN 50 22 99.97 0.55

AWGN 100 35 99.97 0.65

AWGN 500 200 99.98 0.75

AWGN 1000 350 99.98 0.88

AWGN 10,000 2500 99.99 0.95

Rayleigh 10 3 99.94 0.15

Rayleigh 20 8 99.95 0.25

Rayleigh 30 12 99.96 0.35

Rayleigh 40 20 99.96 0.5

Rayleigh 50 21 99.97 0.6

Rayleigh 100 30 99.97 0.7

Rayleigh 500 180 99.98 0.76

Rayleigh 1000 320 99.98 0.9

Rayleigh 10,000 2300 99.99 0.94

Rician 10 2 99.92 0.18

Rician 20 6 99.93 0.28

Rician 30 9 99.95 0.37

Rician 40 18 99.95 0.49

Rician 50 22 99.96 0.56

Rician 100 25 99.96 0.67

Rician 500 160 99.97 0.71

Rician 1000 280 99.97 0.82

Rician 10,000 2400 99.98 0.91

Nakagami 10 2 99.91 0.24

Nakagami 20 6 99.92 0.31

Nakagami 30 9 99.92 0.38

Nakagami 40 18 99.92 0.52

Nakagami 50 22 99.93 0.59

Nakagami 100 25 99.93 0.72

Nakagami 500 160 99.93 0.83

Nakagami 1000 280 99.94 0.89

Nakagami 10,000 2400 99.94 0.94

Table 3 Parameters and values used in simulation

Parameter Value

Number of nodes 10–10,000

Number of attackers 10–40%

FFT size 64

Carriers 4

Modulation type QAM

Chaotic system 3 level

BER threshold 0.7
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AWGN, Rayleigh, Rician and Nakagami channels,

respectively.

The delay performance of the system starts increasing

linearly as the number of nodes is increased, but it saturates

around 0.85–0.95 ms. The delay for detection is almost

independent of the wireless channel, however, there is a

marginal change in detection rate because chaotic com-

munication will result in a change in BER whenever there

is a change in wireless channel. Detection rate accuracy is

found to be in the 99.9% level due to the two-layered

communication system, but the system performance under

AWGN channel is slightly better than Rayleigh. However,

the performance of the system in Rician channel falls

behind when compared to AWGN channel performance.

This is because signal gets distorted in the Rician channel

to a level higher than in the AWGN channel. However, the

detection rate under LUT and chaotic communication is in

the 99% range bracket which is much higher than the

conventional primary emulation attack detection tech-

niques. The newest and most accurate firefly-based tech-

nique (Ghanem et al. 2016) gives a detection accuracy of

95%, while physical network coding-based techniques (Xie

and Wang 2013) give a maximum accuracy of 90–95%

depending on the number of attackers used for simulating

the networks. The proposed system’s accuracy is about
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Fig. 3 a Detection rate (%) v/s number of nodes. b Delay in detection

v/s number of nodes

Table 5 Spectrum sensing

techniques (advantages/

disadvantages)

Spectrum sensing technique Advantages/disadvantages

Energy detection method Sensing time is high

No prior knowledge of primary user signal is required

Cannot distinguish between noise and primary user signal

The most popular method

Matched filter detection Requires short sensing time

Requires dedicated sensing receiver for all primary user signal types

Requires prior knowledge of primary signal

Cyclostationary feature detection Perhaps the most efficient method

High computational complexity

Sensing time is high

Increase in cost

Table 6 Proposed method’s advantages and disadvantages

Technique Advantages

Proposed test signal method of mitigating PUEA Use of look-up table (LUT) provides more security

No prior knowledge of primary user signal is required by SU

Chaotic test signal provides more security

No complex computations involved

Chaotic signals are low-power signals

Confirms to FCC solution to mitigate PUEA

Economic approach, no extra cost involved
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99% under different channel scenarios and under varying

node numbers outperforming the methods proposed in

Ghanem et al. (2016) and Xie and Wang (2013).

Moreover, in our proposed method we have not used any

traditional spectrum sensing methods and thus wish to state

the advantages of our proposed method over traditional

spectrum sensing methods. Table 5 below shows the

advantages and disadvantages of traditional spectrum

sensing methods, and then, we have listed the advantages

of our proposed method in Table 6.

4 Conclusion

This research work has demonstrated a very successful

detection rate while maintaining a low delay rate for attack

detection. More number of attack detection algorithms can

be implemented with the proposed two-layered approach.

The system architecture is such that almost all of the net-

work primary emulators are detected and removed from the

network to ensure a healthy cognitive radio network

environment. The overall detection rate of the primary user

emulation attack is about 99% under different

wirelss channels and varying attacker nodes. In the end,

we conclude that as the delay of detection is very less, the

proposed method can be used in real-time cognitive radio

environment.

5 Future Work

To augment further this research work, we can add more

attacks to the system for example, Byzantine attack and

check the performance of the two-layer model. We can also

add attack-removal strategies for various other attacks

because our implementation can detect the attackers in a

very short span of time. In future we will work towards the

FPGA and IoT level implementation of the proposed

approach to test the performance in real time scenario.
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