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Abstract
PID controller has been quite successful when its parameters are tuned properly. However, it fails in varying situations.

This is even more critical where the system is not known. In this paper, after illustrating the capability of fuzzy wavelet

neural network (FWNN) in modeling of nonlinear systems, a self-tuning PID controller based on this model has been

designed. The auto-tuner effectively handles the limitation of PID controller in unpredictable conditions such as envi-

ronmental changes. Chaotic optimization method which is a robust algorithm of escaping from local minimum is applied

for tuning of the controller parameters. This supports finding optimal values of controller parameters in a short time which

enables online implementation. Unlike most of the researches in this area, the tuning rules could be begun without any trial

and error. Since it contains no extra parameters, it has the feature of simplicity in the tuning. The proposed method with

few parameters has the ability to increase the speed of tracking with very little steady-state error. The capability of FWNN

in the modeling of nonlinear systems with a few rules and susceptibility of the proposed controller will be shown by

simulation.

Keywords Fuzzy wavelet neural network � Auto-tuning controller � Chaos optimization

1 Introduction

Nowadays, fuzzy logic system is widely used in control

and modeling applications. The learning ability of the

fuzzy logic system is improved in fuzzy neural networks,

due to the capability of fuzzy reasoning in the management

of uncertain information and the ability of neural networks

in learning from processes (Wai et al. 2015; Tang et al.

2017). Also, combining the wavelets with neural networks

yields quick convergence, high precision and reduced

network size. Hence, for optimizing the number of fuzzy

rules and improving the approximation error and control

precision, fuzzy wavelet neural network (FWNN) has been

constructed. The first FWNN was proposed by Ho et al.

(2001). It was based on multi-resolution analysis of

wavelet transforms and was applied for approximation of

nonlinear functions. Another FWNN structure has been

presented in Abiyev and Kaynak (2008), which is based on

the addition of wavelet functions in consequent parts of

fuzzy rules. Then, it was used to control nonlinear dynamic

plants. There have been many researches in recent years

using FNN (FWNN and ANFIS) in various applications

(Davanipour et al. 2012; Lin et al. 2014; Hung et al. 2015;

Chen et al. 2015; Mai and Wang 2014; Engin et al. 2004;

Kayacan and Kaynak 2006; Loussifi et al. 2016; Wang and

Cao 2015; Tofighi et al. 2015). To control a six-phase

permanent magnet synchronous motor for an electric

power steering system, Lin et al. (2014) proposed an

intelligent second-order sliding mode control using a

FWNN with an asymmetric membership function estima-

tor. For the same system, Hung et al. (2015) used FWNN

based on asymmetric membership function with improved

differential evolution algorithm. A recurrent FWNN has

been adopted to control the rotor position of a thrust

magnetic bearing in Chen et al. (2015). Control of

manipulator robot (Mai and Wang 2014), liquid-level

systems (Engin et al. 2004; Kayacan and Kaynak 2006),

system identification (Loussifi et al. 2016), predicting

power consumption (Wang and Cao 2015) and control of
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chaotic systems (Tofighi et al. 2015) are some of FWNN

applications.

The PID-type controller is most widely used in many

applications, primarily because of its simple structure, clear

functionality and easy implementation (Kansha et al.

2008). However, it suffers from a main drawback. The

precise knowledge of the plant should be available to tune

the PID controller. This requirement is not easily removed

in most industrial cases. In addition, even if there is a

mathematical model of the system, environmental condi-

tions may cause the obtained model to change, so it may be

necessary to design another PID controller to fit the new

changed model.

To overcome the mentioned limitations of the conven-

tional PID controller, researchers have tried to apply self-

tuning PID controller (Al Gizi et al. 2014; Li et al. 2005;

Woo et al. 2000; Dhaouadi et al. 2008; Zheng et al. 2009;

Nguyen et al. 2015). A self-tuning PID controller has the

ability to tune its parameters according to the changes of

the process. A radial basis function neural network has

been used to enhance the PID parameters obtained from

genetic algorithm in order to design Sugeno fuzzy PID

controller (Al Gizi et al. 2014). A self-tuning PID con-

troller based on wavelet neural networks was proposed in

Li et al. (2005). In that work, two wavelet neural networks

were used for identification and online tuning. The

parameters of PID controller were the output of the second

employed wavelet network. So, it was necessary to obtain

suitable amounts of parameters as training data. In other

words, it is not useful in practice when we have no previous

information about the closed-loop system. In Woo et al.

(2000), a PID-type fuzzy controller with self-tuning scaling

factors has been proposed. They developed a method for

online tuning of the scaling factors of PID controller.

However, they have added four extra parameters which

should be tuned. Determination of these extra parameters is

another limitation, too. In Dhaouadi et al. (2008), a self-

tuning adaptive PID controller was proposed using a

dynamic wavelet network. The control scheme was tested

with a second-order system with input saturation. The

controller finally has tracked the desired signal; however,

as it can be seen from the simulation results, it takes a long

time. To improve the overall performance of servo-hy-

draulic press driven directly by switched reluctance motor,

a fuzzy PID control method has been introduced in Zheng

et al. (2009). The fuzzy rules have been established based

on the error and change in error to adaptive adjustment of

PID parameters. But, a lot of rules are needed for tuning of

the PID coefficients. In Dhaouadi et al. (2008), an auto-

tuning of the PID controller based on the radial basis

function neural network and relay feedback approach has

been introduced. As stated in Nguyen et al. (2015), ulti-

mate gain and ultimate frequency of the control system

have been recognized by the relay feedback approach for

initial conditions of the neural network controller. But, this

method increases the complexity of the control system.

In this paper to solve the mentioned problems concerned

with PID controller, a self-tuning PID controller based on

the FWNN has been proposed. By this way, there is no

need to have an exact or approximation mathematical

model of the plant. Besides, it enables us to benefit the

advantages of FWNN. FWNN has some advantages over

other intelligent networks. Since the consequent parts

contain wavelet functions, it is able to approximate the

details of system with higher precision.

However, as we know, one of the main difficulties with

auto-tuning is having an efficient optimization method

which could be suitable for online applications. One of the

modern optimization algorithms is the chaos-based opti-

mization (Jiaqiang et al. 2015; Farahani et al. 2012; Lv and

Wu 2006; Ganjefar and Alizadeh 2012; Li and Jiang 1998;

Yuan et al. 2012; Yuan et al. 2015). In Farahani et al.

(2012), in order to solve the load frequency control prob-

lem, a PID optimized by Lozi map chaotic algorithm was

proposed. In chaos optimization algorithm, the optimizing

variables are transferred into chaotic variables according to

the index function and the initial value. Then, by consid-

ering the condition of constraint, the optimal values are

originated through the search of chaotic variables. Finally,

to determine the ultimate optimal values of the system, a

fine chaotic search is performed in the neighborhood of the

optimal values (Jiaqiang et al. 2015). Chaos optimization

algorithm finds the optimal values in higher speed than

stochastic ergodic searches. Escape from local minima,

independence from strict mathematical properties of opti-

mization problem, easy implementation and short execu-

tion time are the main advantages of chaos optimization

algorithm (Yuan et al. 2012; Yuan et al. 2015).

In this paper, tent map chaotic optimization has been

applied to find the optimal values of the PID coefficients.

Design of the controller is performed in two steps. In the

first step, the system is modeled using FWNN. This net-

work can identify the unknown model with appropriate

accuracy using a few number of parameters. Then, in the

second step, a self-tuning PID controller is designed based

on the obtained model. The controller’s parameters are

tuned using simple but powerful and robust tent map

chaotic optimization algorithm. The tuning process can be

begun without any trial and error unlike most of the

researches in this area (Lin et al. 2014; Hung et al. 2015;

Chen et al. 2015; Woo et al. 2000). Also, it does not

include any additional parameters to be tuned or to be

selected randomly. As the simulation results will show, the

control performance is suitable, especially, in the steady-

state error and in the speed of setpoint tracking.
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This paper is organized as follows: Sect. 2 gives the

structure of FWNN. Section 3 represents the proposed

controller design. Simulation results are provided in

Sect. 4. Section 5 includes the conclusion remarks.

2 Fuzzy Wavelet Neural Network

A fuzzy wavelet neural network integrates wavelet func-

tions with Takagi–Sugeno–Kang fuzzy model. The struc-

ture of FWNN is given in Fig. 1. It is constructed by seven

layers. The fourth layer is the consequent layer which

includes wavelet neural network. In the figure, this subnet

has denoted by WNN block. Each WNN corresponds to a

three-layer structure, using wavelets as activation func-

tions. The relation of (1) describes the FWNN structure

(Abiyev and Kaynak 2008):

Ri : Ifx1isA
i
1; and x2isA

i
2. . . and xq is Ai

q

Then yi ¼ wi

Xq

j¼1

wij xj
� � ð1Þ

where xj 1� j� qð Þ is the jth input and yi 1� i� cð Þ is the
output of the local model for rule Ri. A

i
q is a membership

function for ith rule of the qth input defined as a Gaussian

function. wij is defined later in (3). The output signal of

each WNN will be such as

yi ¼ wi

Xq

j¼1

wij xj
� �

ð2Þ

in which wi shows the weight coefficient between the

inputs and ith output. wij indicates wavelet family defined

in (3):

wij xj
� �

¼ w
xj � bij

aij

� �
; aij 6¼ 0 ð3Þ

In the above relation, wij is made of a mother wavelet

function using dilations and translations parameters (a, b).

Fig. 1 Structure of FWNN

(Davanipour et al. 2012)
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The structure of WNN is given in Fig. 2. Each WNN

corresponds to a three-layer structure, using wavelets as

activation functions.

The defuzzification is made to calculate the output of the

whole network in the sixth and the seventh layers. Con-

sequently, the output of FWNN could be calculated as

by ¼
Pc

i¼1 liyiPc
i¼1 li

where li xð Þ ¼
Yq

j¼1

Ai
j xj
� �

ð4Þ

Here, c is the number of fuzzy rules, q is used as an

indicator for dimension of input vector, and yi are the

output signals of the wavelet neural networks. In this paper,

in order to describe the linguistic terms, the Gaussian

membership functions are used. Gaussian membership

function can approximate triangular and trapezoidal

membership functions (Ho et al. 2001):

Ai
j xj
� �

¼ exp �
xj � cij

� �2

rij
� �2

2
64

3
75 ð5Þ

in which rij and cij indicate the center and the half-width of

membership function, respectively. Also, Mexican Hat

wavelet function which is commonly applied in FWNN is

used here (Ho et al. 2001; Abiyev and Kaynak 2008;

Davanipour et al. 2012):

w xð Þ ¼ 1ffiffiffiffiffiffi
aj j

p 1� 2x2
� �

exp � x2

2

� �
ð6Þ

It is a mother wavelet function, the dilated and translated

versions of which will be used in consequent parts of each

fuzzy rule. The use of wavelets with different dilation and

translation values allows us to capture different behaviors

and essential features of the nonlinear model under fuzzy

rules.

3 Proposed Controller

In the previous section, the FWNN model was described. It

is used for modeling of the unknown plant. In this section,

the proposed controller will be designed. At first, the

structure of the self-tuning controller is designed, and then,

the optimization procedure is explained.

3.1 Auto-Tuning Controller Design

The structure of closed-loop system constructed with

identifier network and auto-tuning PID controller is shown

in Fig. 3. In that figure, eid is the identification error which

is the difference between the actual output and the output

of the model. The unknown plant is identified with FWNN.

Then, the PID controller is designed based on this model.

FWNN has some advantages over other intelligent net-

works. Since the consequent parts contain wavelet func-

tions, it is able to approximate the details of system with

higher precision.

The adjustment of control parameters (P, I, D) to reach

optimum values is the duty of the control loop tuning. The

auto-tuner calculates the optimum control parameters by

minimizing the following cost function:

E ¼ 1

2

XT

k¼1

yd kð Þ � ŷ kð Þð Þ2 ð7Þ

where yd(k) is the desired output and y(k) is the actual

output of the system in sample time k. T is integrating

horizon. Here, it is equal to 20. The structure of PID

controller is as follows:

u kð Þ ¼ u k � 1ð Þ þ P e kð Þ � e k � 1ð Þ½ � þ Ie kð Þ
þ D e kð Þ � 2e k � 1ð Þ þ e k � 2ð Þ½ �

ð8Þ

where e(k) is the difference between the desired output and

the actual output. According to (7) and (8), the cost func-

tion contains P, I and D called control parameters. So, by

finding the optimum values of these parameters the cost

function in (7) will be minimized. The next section is

allocated to finding these optimum parameters.

3.2 Optimization Procedure

After designing the structure of model-based controller, it

is necessary to apply an efficient optimization algorithm to

tune the controller parameters. By comparison with the

next section, one can conclude that the gradient method

Fig. 2 Structure of WNN (Davanipour et al. 2012) Fig. 3 Structure of the proposed controller
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described at Appendix needs more computations and han-

dling with formula and derivation calculations. To reduce

the computations, increase the robustness in noisy condi-

tions and get faster and confident tracking, it is appropriate

to apply chaos-based optimization.

As it was discussed in the Introduction section, chaos-

based optimization can escape from local minima. The full

description of this group of algorithms can be found in Li

and Jiang (1998). In this context, tent map chaos opti-

mization has been used. The equation of tent map to gen-

erate chaotic time series is:

xiþ1 ¼
2xi xi 2 0; 0:5½ �
2 1� xið Þ xi 2 0:5; 1½ �

	
ð9Þ

where xi is the chaotic variable.

Here, the main problem is finding the parameters

P; I;D½ � via tent map chaos optimization. Since three

parameters are needed to be optimized, three initial chaotic

variables 0� x1;0; x2;0; x3;0 � 1 are selected randomly.

Then, for each variable the lower bound and upper bound

are defined and indicated by lbd and ubd. After that, the

initial value for P; I;D½ � and E (cost function) should be

selected and denoted as P�; I�;D�½ � and E*. Here, zero and

infinite have been considered, respectively. The major

steps of the FWNN-PID-based tent map chaos optimization

are described as follows:

Step 1. At first sample time, compute the cost function

and determine E P; I;D½ �ð Þ.
Step 2. Apply the tent map chaos optimization to find

new parameters which minimize the cost function:

• Substitute x1;k; x2;k; x3;k in (9) to generate three new

chaotic variables via tent map in sample time k.

• Using the following formula, namely first carrier

wave, compute the (k ? 1)th parameters:

Pkþ1

Ikþ1

Dkþ1

2
4

3
5 ¼

lbd�P

lbd�I

lbd�D

2
4

3
5

þ
uub�P

uub�I

uub�D

2
4

3
5�

lld�P

lld�I

lld�D

2
4

3
5

0
@

1
A:

x1;kþ1

x2;kþ1

x3;kþ1

2
4

3
5:

ð10Þ

• Compute the cost function in (7) and assign the new

optima as follows: If Ekþ1 �E�, then

E� ¼ Ekþ1; P
�; I�;D�½ � ¼ Pkþ1; Ikþ1;Dkþ1½ �; other-

wise, do nothing. Repeat the above steps until there

is no improvement for cost function during certain

steps. Then, go to the next step as follows:

• Again, use the tent map equation in (9) to generate

new chaotic variables. Then, start to search utilizing

the second carrier wave.

Pkþ1

Ikþ1

Dkþ1

2
4

3
5 ¼

P�

I�

D�

2
4

3
5þ b

x1;kþ1

x2;kþ1

x3;kþ1

2
4

3
5 ð11Þ

in which b is a chaos variable with small ergodic

interval. It is normally chosen as a small positive

constant, here, b = 0.001.

• Again, compute the cost function in (7), and assign

the new optima such as follows:

If Ekþ1 �E�, then E� ¼ Ekþ1; P
�; I�;D�½ � ¼ Pkþ1;½

Ikþ1;Dkþ1�; otherwise, do nothing.

Repeat the above steps until there is no improve-

ment for cost function during certain steps.

Step 3. Fit the obtained optimum parameters to the

controller and send the controller output to the process.

Step 4. For the next sample time, go to the step 1.

4 Simulation Results

In this section, two examples have been considered to

investigate the proposed controller. The first example is a

nonlinear dynamic system, and the second example is a

nonlinear liquid-level system.

Example 1 Consider the nonlinear dynamic plant as

below:

y kð Þ ¼ f y k � 1ð Þ; y k � 2ð Þ; y k � 3ð Þ; u kð Þ; u k � 1ð Þð Þ
ð12Þ

in which

f x1; x2; x3; x4; x5ð Þ ¼ x1x2x3x5 x3 � 1ð Þ þ x4

1þ x22 þ x23
ð13Þ

The identification process of the above system is done

using the FWNN described in Sect. 2. Here, FWNN is

constructed with only two rules. Then, it is trained using

the algorithm proposed in Davanipour et al. (2012). Details

of the separate parts of this algorithm such as clustering,

recursive least square and back propagation algorithms can

be found in many reports (Shi et al. 2010; Nells 2001; Jang

et al. 1997). After training, an input such as what is shown

below has been applied to the FWNN as the test input.

u kð Þ ¼

sin
pk
25

� �
k\250

1:0 250� k\500

�1:0 500� k\750

0:3 sin
pk
25

� �
þ 0:1 sin

pk
32

� �
þ 0:6 sin

pk
10

� �
750� k\1000

8
>>>>>><

>>>>>>:

ð14Þ
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The result of system identification is shown in Fig. 4.

The capability of FWNN in nonlinear dynamic system

identification can be seen in that figure. After the identifi-

cation stage, the proposed controller has been applied to

the plant and its performance has been verified in both

normal and noisy conditions. The reference signal is unit

step, and the final values of the PID parameters are

P ¼ 1:4; I ¼ 2;D ¼ 1:2. Figure 5 shows the performance

of the controller when there is no noise in the measure-

ment. Tracking error and the control input are illustrated in

Figs. 6 and 7, respectively. The performance of the con-

troller has been also tested when the output is contaminated

with a 3 db white noise. Figure 8 illustrates that the chaos-

based FWNN-PID controller can be robust in this condi-

tion. In order to have a comparison, the gradient-based

controller is also tested in noisy condition and Fig. 9 shows

that the output has become unstable. Therefore, it cannot

track the desired output. Table 1 represents a brief sum-

mary of this example in normal condition and compares the

proposed controller with the other approaches reported in

the literature. In Table 1, MAE points to mean absolute of

the tracking error. As can be seen, no overshoot, less set-

tling time and less MAE value in chaos-based FWNN-PID

controller have been achieved, despite the considerably

smaller number of parameters and rules.

Example 2 The plant considered in this example is a

nonlinear model of a liquid-level system because it is dif-

ficult to be controlled optimally using only a conventional

PID controller as the parameters of the plant are changing

continuously. The plant has a relation as shown below:

h tð Þ ¼ h 0ð Þ þ 1

A

Z t

0

qin sð Þ � qout sð Þð Þds ð15Þ

in which

0 200 400 600 800 1000

-1

-0.5

0

0.5

1

Time (Sec.)

O
ut

pu
t

Actual Output
FWNN Output

Fig. 4 The comparison between the actual output and the output of

FWNN in the identification of system (Example 1)
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Fig. 5 Performance of the proposed controller (Example 1)
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Fig. 6 Tracking error (Example 1)

Fig. 7 Control Input
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qin ¼ Qin sin h tð Þð Þ; h tð Þ 2 0;
p
2

h i

qout ¼ aout
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2gh tð Þ

p ð16Þ

In the above relation, h is the output variable in m

which is the level of the liquid, aout ¼ 0:01m2 is the

surface area of the outlet, A is the surface of the tank

(1 m2), h is the control valve’s flap angle in rad, and

g ¼ 9:81m=s2. The details of this example can be found

in Engin et al. (2004).

As the previous example, here, the plant is also first

identified by a FWNN constructed with two rules; then, the

proposed controller has been applied. Here, the reference

signal is unit step and the final values of the PID param-

eters are P ¼ 0:95; I ¼ 0:15; D ¼ 0:03. The results are

shown in Figs. 10, 11, 12 and 13.

In order to consider some practical points of PID

controllers, in this example disturbance attenuation,

control signal amplitude limitations and windup problem

have also been included. It is assumed that there is a

constraint on the control input such that the input cannot

be larger than 1.4, in amplitude. So, the control input is

saturated, even though the output has not tracked the

desired output correctly. The result of this situation is

shown in Fig. 14. As the figure shows, the response is

still satisfactory, although there is a larger overshoot and

settling time in comparison with the previous status. In

Fig. 15, the output tracking has been depicted when

there is a 30 percent step signal as an input disturbance.

As the figure shows, the disturbance is attenuated after a

short time.

In Table 2, a brief comparison of the proposed method

with gradient-based FWNN-PID, ANFIS-based PID and

ANFIS-based fuzzy (Engin et al. 2004) is presented.

Improvements in settling time, overshoot and MAE are

clear, in spite of the smaller number of parameters and

rules, based on the results of Table 2.

5 Conclusion

Using the capability of FWNN in modeling of nonlinear

dynamic systems, an auto-tuning controller was designed.

Tent map chaotic optimization algorithm made the con-

troller powerful in finding the optimal amounts of

parameters. The proposed controller obviated the famous

drawback of PID controller which is still an open prob-

lem, especially when the system has an unknown struc-

ture. The simulation part demonstrated the good

performance of the controller in both transient and steady-

state response.
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Fig. 8 Performance of the proposed controller in noisy condition

(Example 1)
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Fig. 9 Performance of the gradient-based controller in noisy condi-

tion (Example 1)

Table 1 The results of Example 1

Controller Number of rules Number of parameters Settling time (s) Overshoot (percentage) MAE

Chaos-based FWNN-PID 2 18 50 – 0.02

Gradient-based FWNN-PID 2 18 60 20 0.06

ANFIS-based PID 25 175 90 40 0.1
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Fig. 10 The comparison between the actual output and the output of

FWNN in the identification of system (Example 2)
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Fig. 11 Performance of the proposed controller (Example 2)
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Fig. 12 Tracking error (Example 2)

Fig. 13 Control input (Example 2)

Fig. 14 Performance of the proposed controller with input saturation

(Example 2)

Fig. 15 Performance of the proposed controller in front of distur-

bance (Example 2)
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Appendix: Gradient-Based Optimization

According to the gradient descent algorithm and the cost

function in (7), the optimization formulas are such as

follows:

DP kð Þ ¼ �gP
oE

oP

DI kð Þ ¼ �gI
oE

oI

DD kð Þ ¼ �gD
oE

oD

ð17Þ

in which, for instance, gP indicates the learning rate for P

parameter and oE
oP

is:

oE

oP
¼ �

XT

k¼1

e kð Þ oŷ
oP

ð18Þ

In above relation, e is control error and ŷ is the output of

the model.

Using chain rule in derivation:

oE

oP
¼ �

XT

k¼1

e kð Þ oŷ

ou

ou

oP

� �
ð19Þ

In above equation, oŷ
ou
will be obtained according to (1–4)

and ou
oP

according to (8).

The combination of (1–4) results in:

ŷ ¼
Pc

i¼1

Qq
j¼1 A

i
j xj
� �� �

wi

Pq
j¼1 wij xj

� �

Pc
i¼1

Qq
j¼1 A

i
j xj
� �� � ð20Þ

in which x is the network’s input (u). Therefore, the

derivation is such as

oŷ

ou
¼

om
ou
n� on

ou
m

n2
ð21Þ

in which

m ¼
Xc

i¼1

Yq

j¼1

Ai
j xj
� �

 !
wi

Xq

j¼1

wij xj
� �

n ¼
Xc

i¼1

Yq

j¼1

Ai
j xj
� �

 ! ð22Þ

ou
oP

is such as:

ou

oP
kð Þ ¼ ou

oP
k � 1ð Þ þ e kð Þ � e k � 1ð Þ ð23Þ

The other optimization principles can be obtained in the

same way.
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