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Abstract
This paper presents the application of oppositional krill herd algorithm (OKHA)-based reinforced learning neural network

(RLNN) controller to study the discrete-mode automatic generation control (AGC) problems in the deregulated envi-

ronment considering superconducting magnetic energy storage (SMES) system for three-area hydrothermal power system.

The dynamic responses using OKHA-based RLNN controller for various loading conditions are compared with the

proportional–integral–derivative (P–I–D) controllers whose gains are also optimized using OKHA. Area control error

(ACE) is used as input to both P–I–D and RLNN controllers, and the weights of neural networks have been adjusted online

for RLNN controllers. Sensitivity analyses have been performed to investigate the robustness of the controllers that are

subject to change in SMES parameters and loading conditions. Investigation reveals that OKHA-based RLNN controllers

give better dynamic performances compared to gains of P–I–D controllers obtained using OKHA considering SMES units

for different loading conditions.

Keywords Automatic generation control � Superconducting magnetic energy storage � Oppositional krill herd algorithm �
Reinforced learning neural network controller

1 Introduction

Traditional power system structure has gone through many

changes after deregulation of power sector, and most of the

countries in the world have power regulating authorities

who have set up restructured rules to improve power sup-

ply, which has resulted in the deregulation of AGC. The

generation companies (GENCOs), distribution companies

(DISCOs), transmission companies (TRANSCOs) and

independent system operator (ISO) autonomously play a

role in the competitive market. So, consumers have the

opportunity to choose the providers of electricity and

GENCOs that sell power to various DISCOs at competitive

prices and each DISCO in an area has the freedom to have

a contract with any GENCO in any other area to buy

power. The total agreement is represented in a matrix

called DISCO participation matrix (DPM) (Donde et al.

2001). More research works on the deregulation system

have been incorporated in the literature (Christie and Bose

2001; Kumar et al. 1997; Tan et al. 2012; Demiroren and

Zeynelgil 2007; Sinha et al. 2012; Arya and Kumar 2016;

Balamurugan and Lekshmi 2016; Sahu et al. 2016; Niza-

muddin and Bhatti 2014). The changes of the tie-line

power flow and frequency deviations have occurred due to

sudden load perturbation of demands from the customer

side in the areas of power system. In this context, fixed gain

controllers are not capable of handling the changes of the

operating points.

Moreover, in case of load disturbances, the oscillations

in the power–frequency and tie-line power flow persist for

a long duration even with the supplementary controller. To

compensate the sudden load changes, an active power

source with first response such as superconducting mag-

netic energy storage (SMES) can take measuring action

most effectively. In the literature Banerjee et al. (1990a, b),
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Tripathy et al. (1991), Tripathy et al. (1994) and Bhatt et al.

(2011), the SMES is located in each area of the two-area

system for AGC. Demroren (2003, 2004) has investigated

the performance of a neural network controller for auto-

matic generation control of a power system including the

SMES unit. Abraham et al. (2007) have incorporated

SMES unit as an active power source with fast response of

frequencies and tie-power responses in an interconnected

hydrothermal power system to compensate the sudden

change of load.

Mostly integral controllers are used for AGC controllers,

these types of controllers are slow acting, and nonlineari-

ties cannot be taken into account to control the generating

units using these controllers. The inherent nonlinearities in

the system have led researchers to consider neural network

techniques, and a nonlinear artificial neural network (ANN)

controller is built with high efficiency of performance

(Djukanovic et al. 1995). Supervised ANN controllers have

been used by the investigators (Djukanovic et al. 1995;

Beaufays et al. 1994) for better dynamic performance in

the AGC system. But a considerable computational time is

required for the database for training of the neural network

controller using supervised learning algorithm. Reinforced

learning algorithms (Ahamed et al. 2002, 2006) have also

been used to get the optimal control output for the AGC

system. The limitations in Djukanovic et al. (1995), Bea-

ufays et al. (1994) and Ahamed et al. (2002, 2006) are the

schemes offline and training sets are generated a priori by

random variations of load and as a result the control action

is discrete in nature. A back propagation through time

algorithm (Zeynelgil et al. 2002) is used as neural network

learning rule, and a multilayer perception neural network

(MLPNN) controller for each area is used to overcome the

limitations. MATLAB/Simulink model (Saikia et al. 2011)

has been used to simulate the AGC system using reinforced

learning neural network (RLNN) controller, and in both

cases, the deregulated environment and SMES unit have

not been considered. The fixed values of parameters have

been considered while designing the RLNN controller

based on trial and error method. Recently developed bio-

inspired optimization techniques such as particle swarm

optimization (Gozde et al. 2011), cuckoo search algorithm

(Dash et al. 2014), firefly algorithm (Padhan et al. 2014;

Sekhar et al. 2016), ant lion optimizer algorithm (Raju

et al. 2016), bacterial foraging algorithm (Dhillon et al.

2016), grey wolf optimization (Guha et al. 2015) have been

successfully applied for designing the controller parame-

ters for load frequency control of interconnected power

system. Also, krill herd algorithm (KHA) (Gandomi and

Alavi 2012; Guha 2015, 2016), biogeography-based opti-

mization (Guha 2014) and oppositional krill herd algorithm

(OKHA) (Tizhoosh 2005; Dutta et al. 2016; Alam 2016)

have been successfully applied in the various fields of

power system including AGC. However, no literature has

investigated the optimization of RLNN parameters for

improving the dynamic responses of AGC system includ-

ing the SMES unit. The present work has incorporated the

physical constraints of SMES unit in the AGC while

designing the RLNN controller, and the parameters of

RLNN controller have been optimized using OKHA to

improve its performance. The discrete-mode power system

model of AGC with SMES unit has been used for designing

the OKHA-based RLNN controller to make it more

realistic.

In view of the above, the present work considers SMES

unit in a discrete-mode AGC of three-area deregulated

hydrothermal power system, and the main contributions of

the present work are:

(i) to optimize the gains of proportional–integral–

derivative (P–I–D) controllers for a discrete-mode

AGC of three-area deregulated hydrothermal

power system using OKHA considering SMES

unit.

(ii) to design OKHA-based RLNN controller for the

same power system and compare its performance

with that obtained in step (i) for different loading

conditions.

(iii) to perform the sensitivity analysis for investigat-

ing the robustness of the OKHA-based RLNN

controller that is subject to change in SMES

parameters and loading conditions.

2 Dynamic Models of Three-Area
Deregulated Power System

In the present work, two reheat thermal units and one

hydrothermal unit with two GENCOs and two DISCOs

have been considered in area 1, area 2 and area 3,

respectively, as shown in Fig. 1.

In Fig. 1, three areas have been connected through tie-

lines so that any GENCO can supply power to any DISCO
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Fig. 1 Three-area restructured power system
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of any area. In this deregulated environment, DISCOs of

any area can buy power from different GENCOs of any

area at competitive prices and the whole transaction can be

presented using DISCO participation matrix (DPM) as

follows:

DPM =

cpf11 cpf12 cpf13 cpf14 cpf15 cpf16

cpf21 cpf22 cpf23 cpf24 cpf25 cpf26

cpf31 cpf32 cpf33 cpf34 cpf35 cpf36

cpf41 cpf42 cpf43 cpf44 cpf45 cpf46

cpf51 cpf52 cpf53 cpf54 cpf55 cpf56

cpf61 cpf62 cpf63 cpf64 cpf65 cpf66

2
6666666664

3
7777777775

ð1Þ

Here cpf is the contract participation factor and the total

number of entries of column for DISCOj in the DPM isP6
i¼1 cpfij ¼ 1.

For example, in the above DPM matrix, cpf42 is the

fraction of the total load power contracted by DISCO2 from

GENCO4. In the case of more than one GENCO in each

area, area control error (ACE) signal must be shared by the

GENCOs in proportion to their contributions in each area

and it can be represented by the coefficients, called ACE

participation factors (ap) and for each area
Pn

i¼1 api ¼ 1

where n is the number of GENCOs in each area. The

scheduled steady-state power flow through the three tie-

lines, i.e. DPscheduled
tie12 , DPscheduled

tie23 and DPscheduled
tie31 , can be

expressed as follows (Demiroren and Zeynelgil 2007; Arya

and Kumar 2016):

DPscheduled
tie12 ¼

cpf13DPL3 þ cpf14DPL4 þ cpf23DPL3 þ cpf24DPL4ð Þ

� cpf31DPL1 þ cpf32DPL2 þ cpf41DPL1 þ cpf42DPL2ð Þ

" #

ð2Þ

DPscheduled
tie23 ¼

cpf35DPL5 þ cpf36DPL6 þ cpf45DPL4 þ cpf46DPL6ð Þ

� cpf53DPL3 þ cpf54DPL4 þ cpf63DPL3 þ cpf64DPL4ð Þ

" #

ð3Þ

DPscheduled
tie31 ¼

cpf51DPL1 þ cpf52DPL2 þ cpf61DPL1 þ cpf62DPL2ð Þ

� cpf15DPL5 þ cpf16DPL1 þ cpf25DPL5 þ cpf26DPL6ð Þ

" #

ð4Þ

where DPL is the change in load demand. The tie-line

power flow errors are given as (Demiroren and Zeynelgil

2007; Arya and Kumar 2016):

DPerror
tie12 ¼ DPactual

tie12 � DPscheduled
tie12 ð5Þ

DPerror
tie23 ¼ DPactual

tie23 � DPscheduled
tie23 ð6Þ

DPerror
tie31 ¼ DPactual

tie31 � DPscheduled
tie31 ð7Þ

The ACE signals in the three areas can then be

expressed as follows:

ACE1 ¼ B1DF1 þ DPerror
tie12 ð8Þ

ACE2 ¼ B2DF2 þ DPerror
tie23 ð9Þ

ACE3 ¼ B3DF3 þ DPerror
tie31 ð10Þ

where B1, B2 and B3 are the bias factors, DF1, DF2 and DF3

are the frequency deviations for area 1, area 2 and area 3,

respectively, and contracted power supplied by ith GENCO

is given by:

DPi ¼
X6

j¼1

cpfijDPLj ð11Þ

The aforesaid three-area deregulated hydrothermal

power system has been represented in the state space form

for the analysis of the dynamic performance of the system.

Figure 2 shows the block diagram of the above system, and

the SMES blocks have been incorporated in each area. The

system parameters are given in ‘‘Appendix’’.

3 SMES Configuration in the Power System

The thyristor-controlled SMES unit configuration is shown

in Fig. 3. The SMES unit has a DC superconducting coil

and 12-pulse converter which are connected through a

star–delta or star–star transformer to the AC grid through a

power conversion system (PCS). The superconducting coils

have current of hundreds of thousands of amperes, and no

ac power system normally operates at these current levels.

During the normal operation of the power system, the

superconducting coil may be charged to a set value from

the grid and also conducts current with negligible losses

because it is maintained at very low temperatures (Banerjee

et al. 1990a, b; Tripathy et al. 1991; Tripathy et al. 1994;

Bhatt et al. 2011; Demroren 2003; Demiroren and Yesil

2004). The stored energy is almost released through the

PCS to the power system as alternating current during the

sudden rise of load demand. When the governor as well as

other control mechanisms starts working to set the new

equilibrium condition of the power system, the coil current

changes back to its initial value. Similar action also occurs

during the sudden release of loads. The excess energy of

some portion is absorbed as the system returns to its steady

state because the coil immediately gets charged towards its

full value.

So, the DC voltage across the inductor varies continu-

ously within a certain range of positive and negative values

by the control of the converter firing angle. The inductor is

initially charged to its rated current by applying a small

positive voltage, and the coil is superconducting because

the rated value of current is maintained constant by

reducing the voltage across the inductor to zero. Neglecting

the transformer and converter losses, the DC voltage is

given by (Tripathy et al. 1994):

Iran J Sci Technol Trans Electr Eng (2018) 42:309–325 311

123



∑cpf11

cpf21

cpf31

cpf41

∑

∑

∑

cpf12

cpf22

cpf32

cpf42

pu load of
DISCO1

pu load of
DISCO2

Controller

B1 1

1
R

t1

1
1+sT

a12

a12

122πT
s

L1.locΔP

2ΔF

1ΔF

actual
tie,12ΔP

error
tie,12ΔP

error
tie,12ΔP

1ACE

1u

1x

2x

+
+

+
+

−
+

2

1
R

∑A'11

∑A'12
t2

1
1+sT

∑ p1

P1

K
1+sT

uc1ΔP

∑

Controller
2ACE

2u

∑A'21

∑A'22

∑ p2

P2

K
1+sT

uc2ΔP

schedule
tie,12ΔP

L2.locΔP

16x

SMES 1ACE

SMES 2ACE

+

+ +

++

+ +

+

+
+

+

-

+ +

+-

+-

+ -+

- -
+

+

-
+

+
- -

+

+

-

-

+

+

g1

1
1+sT

g2

1
1+sT

10xg3

1
1+sT t3

1
1+sT

g4

1
1+sT t4

1
1+sT

Reheater
Thermal Area

r1 r1

r1

1+sK T
1+sT

r2 r2

r2

1+sK T
1+sT

∑
+ +

cpf51

∑
+ +

cpf61

cpf52

cpf62

cpf13 cpf23 cpf33 cpf43 cpf53 cpf63

+

+

+

+

+

+

pu load of DISCO3

∑cpf14

cpf24

cpf34

cpf44

∑

∑

∑

cpf15

cpf25

cpf35

cpf45

pu load of
DISCO4

pu load of
DISCO5

+

+ +

++

+ +

+
∑

+ +
cpf54

∑
+ +

cpf64

cpf55

cpf65

+

+

+

+

+

+
cpf16 cpf26 cpf36 fpc 64 cpf56 cpf66

pu load of DISCO6

a23

a23

232πT
s

B3

3ΔF

error
tie,23ΔP

3x

−
+

∑

Controller

5

1
R

w1

w1

1-sT
1+0.5sT

3ACE

3u

6

1
R

∑A'31

∑A'32

∑ p3

P3

K
1+sT

uc3ΔP

schedule
tie,23ΔP

L3.locΔP

SMES 3ACE

+-

+-+
+

- -
+

+

-

- ++

19xg5

1
1+sT

r5

t5

1+sT
1+sT

w2

w2

1-sT
1+0.5sT

g6

1
1+sT

r6

t6

1+sT
1+sT

H y d or  Area

3

1
R

4

1
RB2

r3 r3

r3

1+sK T
1+sT

r4 r4

r4

1+sK T
1+sT

Reheater Thermal Area

-

+
+

a31

312πT
s

error
tie,31ΔP

−
+

∑
schedule
tie,31ΔP

+-

a31

+

+

+

+

4x

5x

6x

7x

8x9x

10x
11x12x

13x
14x

15x
0

17x18x

20x

21x

24x
23x 22x

 

312 Iran J Sci Technol Trans Electr Eng (2018) 42:309–325

123



Ed ¼ 2Vdo cos/� 2IdRc ð12Þ

where Ed = inductor dc voltage in kV, / = firing angle in

degrees, Id = inductor current in kA, Rc = equivalent

resistance in kX and Vdo = maximum circuit bridge voltage

in kV. The change of commutation angle / is controlled by

charging and discharging of the SMES. Converter acts in

the converter mode (charging mode) when /\90�, as well

as the converter acts in the inverter mode (discharging

mode) when /[ 90�.

4 Control of SMES Unit

When sudden changes of loading occur in any of the three

areas, the frequency falls, power is to be pumped back, and

the control voltage Ed becomes negative since the current

through the inductor and the thyristors cannot change its

direction. The change of incremental voltage applied to the

inductor is expressed as:

DEd ¼ Ksmes ð= 1 þ sTdcÞ½ �DEr ð13Þ

where DEd = incremental change in converter voltage,

Tdc = converter time delay, Ksmes = gain of control loop,

and DEr = input signal to the SMES control logic. The

inductor current deviation is given by:

DId ¼ DEd=sL ð14Þ

In this work, ACE of ith area is considered as the input

signal to the SMES control logic (i.e. DEdi ¼ ACEi). Thus,

from Eq. (13),

DEdi ¼
Ksmesi

1 þ sTdci

ðBiDFi þ DPerror
tieij Þ ð15Þ

If Eq. (15) is used, the inductor current in the SMES unit

will return to its nominal value very slowly. Figure 4

shows the block diagram representation of SMES incor-

porating the negative inductor current deviation, and the

dynamic equations for both the inductor voltage and cur-

rent deviation of the SMES unit area are given below:

DEdi ¼
1

1 þ sTdci

KsmesiðBiDFi þ DPerror
tieij Þ � KidiDIdi

h i

ð16Þ

5 State Space Representation of the System

For the present analysis, the dynamic model in state space

form can be written as:

X
�
¼ AX þ BU þ CP1 þ �P2 ð17Þ

where X, U, P1 and P2 are the state, control, load distur-

bance vectors and un-contracted power demand vectors,

respectively, and A, B, C and � are the real constant

matrices depending on the system parameters and operat-

ing points.

The discrete time analysis of the above continuous time

system is modelled by the first-order linear difference

equation (Kothari et al. 1989):

Xðk þ 1Þ ¼ UXðkÞ þWUðkÞ þ KP1ðkÞ þ kP2ðkÞ ð18Þ

where U ¼ eAT ; W ¼ ðeAT � IÞA�1B; K ¼ ðeAT � IÞA�1C;

k ¼ ðeAT � IÞA�1� ; T = sampling period; t = KT, K = 0,

1, 2….

In the present work, the value of T has been considered

as 0.01 s.

6 Oppositional Krill Herd Algorithm (OKHA)

Gandomi and Alavi (2012) have proposed the krill herd

algorithm (KHA) based on the herding behaviour of krill

individuals where in the search process, an individual krill

bFig. 2 Three-area deregulated hydrothermal power system with the

SMES
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always tries to move towards the highest density of food.

The position of the individual krill is updated towards the

value of objective function, i.e. the distance of the food

from the highest density of the krill swarm by the process

of induced movement foraging and random diffusion

(Guha 2015, 2016).

6.1 Induced Movement

The movement of the ith krill can be defined as (Gandomi

and Alavi 2012):

Mnew
i ¼ Mmax

i ni þ xnM
old
i ð19Þ

and

ni ¼ nnew
i þ ntarget

i ð20Þ

where Mmax = maximum induced speed and it is taken

0.01 m/s, xn = inertia weight of motion induced in the

range [0, 1]. Mold
i = last motion induced, nnew

i = local

effect provided by the neighbours, ntarget
i = effect of target

direction provided by the best krill individual.

The effect of the neighbours in a krill movement indi-

vidual can be expressed as follows (Gandomi and Alavi

2012):

nnew
i ¼

Xp

z¼1

QizGiz ð21Þ

Giz ¼ ðGz � GiÞ=ð Gz � Gik k þ sÞ ð22Þ

Qiz ¼ ðQi � QzÞ
�
ðQw � QbÞ ð23Þ

where Qb = best fitness values of the krill individuals,

Qw = worst fitness values of the krill individuals,

Qi = fitness value of the ith krill individual, Qz = fitness

value of the zth neighbour, p = total number of neighbours,

G = relative position of the krill, s = small positive

number.

The sensing distance for each krill individual is deter-

mined as follows (Gandomi and Alavi 2012):

di ¼
1

5N

XN
z¼1

Gi � Gzk k ð24Þ

where di = sensing distance for the ith krill individual,

N = no of krill individual.

The lowest fitness of an individual krill is known target

vector and the effect of the individual krill with the best

fitness on the ith individual krill have been incorporated in

the following formula which leads to global optima and is

expressed as (Gandomi and Alavi 2012):

ntarget
i ¼ CbQibGib ð25Þ

where Cb = coefficient with the best fitness to the ith krill

individual and is expressed as:

Cb ¼ 2 Rþ ðI=ImaxÞð Þ ð26Þ

where R = random values between 0 and 1, I = no of

actual iteration, Imax = maximum no of iterations.

6.2 Foraging Motion

The food location and previous experience about food

locations are the main effective parameters of foraging

motion, and it can be expressed for the ith krill individual

as follows (Gandomi and Alavi 2012):

Fi ¼ Vfci þ xfF
old
i ð27Þ

and

ci ¼ cf
i þ cb

i ð28Þ

where Vf = foraging speed and it is taken 0.02 m/s,

xf = inertia weight of foraging motion in the range [0, 1],

cf
i = attractive of food, cb

i = effect of the best fitness of the

ith krill.

The iteration of food centre is expressed as (Gandomi

and Alavi 2012):

Gf
XN
i¼1

ðGi=QiÞ
,XN

i¼1

ð1=QiÞ ð29Þ

The food attraction for the ith krill individual is

expressed as:

cf
i ¼ CfQifGif ð30Þ

where food coefficient, Cf ¼ 2 1 � ðI=ImaxÞð Þ.
The best fitness effect of the ith krill individual is

defined as:

cb
i ¼ QibGib ð31Þ

where Qib = previously best position of the ith krill

individual.

6.3 Physical Diffusion

It can be expressed as:

Di ¼ Dmaxd ð32Þ

where Dmax = maximum diffusion speed in the range

[0.002, 0.010] m/s, d = random directional vector and its

arrays are random values between - 1 and 1.

Equation (32) has decreased the random speed linearly

with the time and works on the basis of a geometrical

annealing schedule as follows (Gandomi and Alavi 2012):
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Di ¼ Dmax 1 � ðI=ImaxÞð Þd ð33Þ

6.4 Motion Process of the KHA

The foraging motion and motion induced by other krill

individuals work together to make KHA a powerful algo-

rithm (Gandomi and Alavi 2012). The position vector of a

krill individual during the interval t to (t þ Dt) is given by,

Giðt þ DtÞ ¼ GiðtÞ þ Dt
dGi

dt
ð34Þ

Dt completely depends on the search space and it seems it

can be expressed as (Gandomi and Alavi 2012):

Dt ¼ Ct

Xn
j¼1

ðUbj � LbjÞ ð35Þ

where n = total number of variables, Ubj = upper bounds

of the jth variables, Lbj = lower bounds of the jth variables,

Ct = constant number between [0, 2].

6.5 Application of the Genetic Operators

The genetic reproduction mechanisms such as crossover

and mutation are incorporated into KHA for improving the

performance of the algorithm (Gandomi and Alavi 2012).

The jth components of the ith krill may be updated by,

Mij ¼
Mrj Rij\Cr

Mij else

�
ð36Þ

where r ¼ 1; 2; . . .; i� 1; iþ 1; . . .;N and crossover

probability, Cr ¼ 0:2Qib.

The adaptive mutation operation is expressed as:

Mij ¼
Mgj þ lðMpj �MqjÞ Rij\Mu

Mij else

�
ð37Þ

where p; q ¼ 1; 2; . . .; i� 1; iþ 1; . . .;K and mutation

probability, Mu ¼ 0:05=Qib, l ¼ 0 to 1.

6.6 Opposition-Based Learning

Tizhoosh (2005) has incorporated the opposition-based

learning (OBL) in computational intelligence which

enhances the search abilities of the conventional popula-

tion-based optimization techniques for solving nonlinear

optimization problem. The main idea behind OBL is to

consider the opposite of an assumption or a guess and

compare it with the original assumption, thereby improving

the chances to find a solution faster. The OBL concepts

have been developed depending on two factors, opposite

number and opposite point. Let x 2 ½a; b� be the real

number and P x1; x2; . . .xnð Þ be a point in n-dimensional

coordinate system with xi 2 ½ai; bi�, then,

The opposition number is, x̂ ¼ aþ b� x ð38Þ
And the opposite point is; x̂i ¼ ai þ bi � xi ð39Þ

For fitness function f(x), if x 2 ½a; b� is an initial (ran-

dom) guess and x̂ is its opposite value, then in every iter-

ation we calculate f(x) and f ðx̂Þ. If f ðx̂Þ[ f ðxÞ, then update

the value of x with x̂; otherwise keep it the same. There-

fore, the population proceeds towards the best solution

through simultaneous computation and evaluation of the

current point.

7 Optimization of Gains of P–I–D Controllers
Using OKHA

In the present work, the following objective function is

proposed for optimizing the P–I–D gains using OKHA

(Gandomi and Alavi 2012; Tizhoosh 2005; Alam 2016):

J ¼
X/
k¼0

Df1ðkÞð Þ2þ Df2ðkÞð Þ2þ Df3ðkÞð Þ2
h

þ DPerror
tie12ðkÞ

� �2þ DPerror
tie23ðkÞ

� �2þ DPerror
tie31ðkÞ

� �2
i ð40Þ

In this case, inertia weight of motion induced (xn) and

inertia weights of foraging motion (xf ) have been con-

sidered 0.9 and 0.8, respectively, at the beginning of search

process. The value of maximum induced speed (Mmax),

foraging speed (Vf ) and maximum diffusion speed (Dmax)

are 0.01, 0.02 and 0.004 m/s, respectively. Also, the pop-

ulation size is taken as 50 and the number of iterations has

been considered as 100. The optimal set of P–I–D con-

troller gains has been investigated by OKHA to reduce the

value of the above objective function, and the ranges of KP,

KI and KD have been considered 0�KP � 1, 0�KI � 1 and

0�KD � 1, respectively.

8 Design of OKHA-Based RLNN Controller

In the present work, there are three control areas and each

area has one OKHA-based RLNN controller. Figure 5

shows the OKHA-based RLNN controller structure with

associated signals as well as the plant which represents

state space blocks of a particular control area, and this

figure also shows the error signals in the tie-lines that are

used to bring up the RLNN controller weights. In this case,

one neuron in the input layer, four numbers of neurons in

the hidden layer and one neuron in the output layer have

been considered and the tie-line error signals given by

Eqs. (5, 6, 7) are used as error signals and the learning

rates, a and r, control the convergence speed and stability

of the weights during learning. Similarly, the momentum
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constant b is also used to improve the convergence. DW1old
ij

and DW2old
ij are the one step previous updates for the

weights.

The initial values of all the weights in this AGC problem

are considered as ‘0’, and a, r and b have been optimized

using OKHA by optimized the objective function given by

Eq. (40). The ranges of a, r and b have been considered

0� a� 0:02, �1� b� 0 and 0� r� 1, respectively. The

log-sigmoidal activation functions have been used at the

hidden layer.

The RLNN controllers input in the ith area are given by:

Yi ¼ ACEi; i ¼ 1; 2; 3: ð41Þ

The hidden layers input neurons for ith area are given

by:

uij ¼ Yi �Wij; j ¼ 1; . . .;Nh: ð42Þ

where Nh = hidden number of neuron (here, Nh = 4), Wij-

= hidden layers input weight vector.

The output from the hidden layer after passing through

the log-sigmoid activation function is given by:

hij ¼ 1
�

1 þ exp �uij
� �� �

; j ¼ 1; . . .; 4: ð43Þ

The control signal generated from the output layer is

calculated as:

z ¼
X4

j¼1

hijW2ij ð44Þ

where W2ij = hidden layers output weight vector.

The weights of the output layer are then updated through

the least mean square rule as given below:

DW2ij ¼ �a� DPerror
tieij þ b� DW1old

ij ; j ¼ 1; . . .; 4:

ð45Þ

The back propagated error to the hidden layer from the

output layer is as follows:

EB2ij ¼ DPerror
tieij � DW2ij; j ¼ 1; . . .; 4: ð46Þ

The derivative of output of log-sigmoid function with

respect to its associated input weights is given by:

EB1ij ¼ h1ij � 1 � h1ij

� �
� EB2ij; j ¼ 1; . . .; 4: ð47Þ

Therefore, the weights of hidden layer are updated using

the following equation,

DW1ij ¼ �r� EB1ij � Yi þ b� DW1old
ij ; j ¼ 1; . . .; 4:

ð48Þ

The MATLAB functions have been developed using the

above equations, and the algorithm is given below:

Step-1: Read Nh and initialize a; b and r parameters for

RLNN controller.

Step-2: Initialize W1ij ¼ 0; W2ij ¼ 0; DW1 ¼
0 and DW2 ¼ 0.

Step-3: Set iteration count j ¼ 1.

Step-4: Obtain ACE, Yi from the system, j ¼ 1.

Step-5: If j ¼ Nh, go to Step-7,

Else calculate uij; hij and z from Eqs. (42, 43) and

(44), respectively.

Step-6: Advance j ¼ jþ 1.

Step-7: Out control signal ‘z’ to the system and j ¼ 1.

Step-8: If j ¼ Nh, go to Step-10,

Else calculate EB2ij; EB1ij and DW1ij from

Eqs. (46), (47) and (48), respectively.

Step-9: Advance j ¼ jþ 1.

Step-10: Initialize j ¼ 1.

Step-11: If j ¼ Nh, go to Step-4,

Else calculate EB2ij and DW1ij from Eqs. (46) and

(48), respectively.

Step-12: Advance j ¼ jþ 1 and go to Step-11.

Step-13: Simulate Eq. (18) and calculate J using

Eq. (40).

Step-14: Calculate induced motion using Eq. (19),

foraging motion using Eq. (27) and physical diffusion

using Eq. (32).

Step-15: Implement the genetic operation using

Eqs. (36) and (37).

Step-16: Implement the opposition-based learning using

Eqs. (38) and (39).

Step-17: Update krill position, i.e. the value of

a; b and r using Eq. (34).

Step-18: If stop criterion is not reached, go to Step-13.

Step-19: Find the optimal value of a; b and r:

The flow chart for finding out the a; b and r parameters

of RLNN controller using OKHA is shown in Fig. 6.

∑ Plant

i iY  = ACE

Control signal

Output layer
Input layer

11W

12W

13W

14W
24W

23W

22W

21W

error
tieijΔP

error
tieijΔP ×W

Fig. 5 Construction of OKHA-based RLNN controller with plant

(Reproduced with permission from Saikia et al. 2011)
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9 Results and Discussion

Three different cases for analysing the performance of

AGC system using both RLNN controller and P–I–D

controller have been considered as follows:

Case 1:

In this case, the load has been changed in area 1 and

ACE participation factors are taken as ap11 = 0.65, ap12-

= 0.35, ap21 = 0.65, ap22 = 0.35, ap31 = 0.5, ap32 = 0.5.

The load demand value is considered in this case as

DPL1 = 0.05 pu MW, DPL2 = 0.05 pu MW, DPL3 = 0.0,

DPL4 = 0.0, DPL5 = 0.0, DPL6 = 0.0. The DISCO partic-

ipation matrix (DPM) is considered as follows:

DPM =

0:3 0:4 0:5 0:0 0:0 0:0
0:3 0:3 0:1 0:0 0:0 0:0
0:2 0:1 0:2 0:0 0:0 0:0
0:1 0:0 0:1 0:0 0:0 0:0
0:1 0:1 0:0 0:0 0:0 0:0
0:0 0:1 0:1 0:0 0:0 0:0

2
6666664

3
7777775

Case 2:

For the second case, the ACE participation factors are

considered as ap11 = 0.75, ap12 = 0.25, ap21 = 0.55, ap22-

= 0.45, ap31 = 0.35, ap32 = 0.65 and the load demands are

considered as DPL1 = 0.05 pu MW, DPL2 = 0.05 pu MW,

DPL3 = 0.05 pu MW, DPL4 = 0.05 pu MW, DPL5 = 0.05

pu MW, DPL6 = 0.05 pu MW. The DISCO participation

matrix (DPM) values are assumed as follows:

DPM =

0:5 0:4 0:4 0:1 0:0 0:0
0:3 0:0 0:3 0:4 0:0 0:0
0:2 0:4 0:0 0:1 0:0 0:0
0:0 0:2 0:3 0:4 0:0 0:0
0:0 0:0 0:0 0:0 0:0 0:0
0:0 0:0 0:0 0:0 0:0 0:0

2
6666664

3
7777775

Case 3:

In this case, the DISCO infringes an agreement by

demanding additional power than the pre-specified value.

Then, the GENCOs must supply the extra load demand in

Start

Read no of input layer, hidden layer and
output layer neuron, initialize                  and

initializeKHA parameters

Fitness evaluation

Generate control signal of the system
usingRLNN algorithm and evaluate
fitness function as mention in Eq. (40)

Update the position of individual krill

Optimal solution is reached

Is stop criteria
reached?

End

No

Yes
α,  β σ

Calculate
1. Induced motion
2. Foraging motion

3. Physical diffusion

Apply genetic operators like mutation
and crossover operation to update the

position of individual particle

Create oppositional based population
using Eq. (38,39)

and 

Fig. 6 Flow chart for finding optimized value of a; b and r for RLNN controller using OKHA
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the same area to that DISCO. So, the agreement violation

occurs under second operation case and in this case it is

considered that DISCO1 stipulates 0.05 p.u MW extra

power. So, the full amount of local load for the area-1 is

0.15 p.u MW, i.e. [(DISCO1 load ? DISCO2 load) =

(0.05 ? 0.05) ? 0.05 = 0.15 p.u MW]. Similarly, the full

amount of load for area-2 is 0.1 p.u MW, i.e. (DISCO3

load ? DISCO4 load = 0.1 p.u MW). The full amount of

load for area-3 is the same as that area-2. The loads without

agreement of DISCO1 are reproduced in generations both

of GENCO1 and GENCO2, for the same area.

In this work, the gains of P–I–D controllers in deregu-

lated operation are optimized using OKHA for each area in

the three-area power system. For AGC after deregulation,

for case-2, OKHA is used for both optimizing the gains of

P–I–D controllers and the parameters of RLNN controller,

and the values of gains of P–I–D controllers and the

parameters of RLNN controller are given in Table 1. The

P–I–D controller for each area designed using OKHA is

substituted by RLNN controller, and the values of objective

function J are given in Table 2 for case-2. The convergent

characteristics of objective functions using OKHA for P–I–

D and RLNN controllers are shown in Fig. 7. From Fig. 7,

it is seen that the smooth curve for change of the value of

objective function for both P–I–D and RLNN controller

using OKHA ensures consistency in the convergence.

Figure 8 shows the comparison of dynamic responses

with and without SMES considering P–I–D controllers for

case-1. It is clearly seen that SMES has great effect in

Table 1 Optimum values of gains of P–I–D controllers and RLNN

controller parameters using OKHA for case-2

System area P–I–D controller gains RLNN controller parameters

KP KI KD a r b

Area 1 0.874 0.328 0.768 0.0124 0.645 - 0.535

Area 2 0.857 0.452 0.841 0.0145 0.714 - 0.526

Area 2 0.475 0.768 0.834 0.0141 0.681 - 0.592

Table 2 Values of objective function considering OKHA-based P–I–

D and RLNN controllers

Controller Value of objective function (J)

P–I–D 10.3105

RLNN 8.2914

P-I-D controller

RLNN controller

18
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12

10

8
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O
bj

ec
tiv
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fu

nc
tio

n

No of iterations

Fig. 7 Convergent characteristics of objective functions using OKHA
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Fig. 8 Dynamic response of frequency deviation for area-1, P–I–D

controller with and without considering SMES unit
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Fig. 9 Dynamic response of frequency deviation for the first case for

area-1 with SMES
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Fig. 10 Dynamic response of frequency deviation for the first case for

area-1 with SMES
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terms of peak deviation and settling time. So SMES should

be incorporated while analysing the dynamic performance

of the system. Figure 9 shows the comparison of dynamic

responses of frequency deviation for the first case for area-

1 with RLNN controller and ANN controller using back

propagation through time algorithm, and from this figure, it

is seen that RLNN controller gives better dynamic response

in terms of peak deviation and settling time. A transport

time delay of feedback signal, i.e. area control error (ACE)

of 50 ms has been incorporated into the system to find out

its impact in the dynamic performance of the system.

Figure 10 shows the comparison of responses with and

without time delay in the feedback control for the OKHA-

based RLNN controller for case-1. It is seen that the effect

of time delay on the dynamic responses of the system is

negligible.

The comparison of frequency deviations in each area

(DF1; DF2 and DF3) and the deviations of three tie-line
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Fig. 11 Dynamic responses of DF1; DF2; DF3; DPerror
tie12; DP

error
tie23 and DPerror

tie31 for case-1 considering SMES with P–I–D and RLNN controller
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powers (DPerror
tie12; DP

error
tie23 and DPerror

tie31) for the first case

considering SMES with P–I–D and RLNN controller are

shown in Fig. 11, and Fig. 12 shows the comparison of the

same variables for the second case. For the case of

agreement violation, extra load occurs in area-1 and

Fig. 13 shows the comparison of the same variables for

case-3. From Figs. 11, 12 and 13, it is seen that the per-

formance of OKHA-based RLNN controller gives better

responses in terms of peak overshoot and settling time as

compared to P–I–D controller designed using OKHA for

frequency deviations in each area and the deviations of

three tie-line powers.

The effect of variations of system parameters of SMES

(L, Tdc, Ksmes, Ido and Kid) and loading conditions on the

dynamic responses have been observed for sensitivity

analysis of the considered SMES-based deregulated three-

area hydrothermal power system. The loading conditions

for case-2 and system parameters of SMES are changed by
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Fig. 12 Dynamic responses of DF1; DF2; DF3; DPerror
tie12; DP

error
tie23 and Derror

tie31 for case-2 considering SMES with P–I–D and RLNN controller
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± 40% from their nominal values taking one at a time and

the peak overshoot, settling time (2%) and the values of

objective function J are calculated, and the results are given

in Table 3. From Table 3, it is clear that the effects of

variations on system parameters and loading conditions are

negligible on the performances of the system.

10 Conclusions

In the present work, RLNN controllers and P–I–D con-

trollers have been analysed in discrete-mode AGC of a

three-area deregulated hydrothermal power system con-

sidering SMES unit in each area. The gains of P–I–D

controllers and the parameters of RLNN controllers for the

considered power system have been optimized using

OKHA. The results reveal that the OKHA-based RLNN
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controllers give better dynamic responses than P–I–D

controllers in terms of peak deviations and settling times

for different loading conditions. Sensitivity analyses have

also been performed to investigate the robustness of the

RLNN controllers by changing loading conditions and

parameters of SMES units. From the sensitivity analysis, it

is seen that OKHA-based RLNN controllers are quite

robust. Discrete-mode analyses have been performed for

the practical realization of the RLNN controllers.

Appendix

State space model matrices:

For the considered three-area deregulated hydrothermal

power system, the system matrix [A] is of the order of

24 � 24 and its nonzero elements are given below:

A1;1 ¼ � 1

Tp1

; A1;4 ¼ �Kp1

Tp1

; A1;6 ¼ �a31

Kp1

Tp1

;

A1;7 ¼ Kp1

Tp1

; A1;10 ¼ Kp1

Tp1

;

A2;2 ¼ � 1

Tp2

; A2;4 ¼ �a12

Kp2

Tp2

;

A2;5 ¼ Kp2

Tp2

;A2;10 ¼ Kp2

Tp2

; A2;13 ¼ Kp2

Tp2

;

A3;3 ¼ � 1

Tp3

; A3;5 ¼ �a23

Kp3

Tp3

; A3;6 ¼ �Kp2

Tp2

;

A3;19 ¼ Kp3

Tp3

; A3;22 ¼ Kp3

Tp3

;A4;1 ¼ 2pT12;

A4;2 ¼ � 2pT12;A5;2 ¼ 2pT23;
A5;3 ¼ � 2pT23;A6;1 ¼ � 2pT31;
A6;3 ¼ 2pT31;A7;7 ¼ �1=Tr1;

A7;8 ¼ 1

Tr1
� Kr1

Tt1Tr1

� 	
;A7;9 ¼ Kr1

Tt1Tr1
;A8;8 ¼ � 1

Tt1
;

A8;9 ¼ 1

Tt1
;A9;1 ¼ � 1

R1Tg1

;

A9;9 ¼ � 1

Tg1

;A10;10 ¼ �1=Tr2;

A10;11 ¼ 1

Tr2
� Kr2

Tt2Tr2

� 	
;

A10;12 ¼ Kr2

Tt2Tr2
;A11;11 ¼ � 1

Tt2
;

A11;12 ¼ 1

Tt2
;A12;1 ¼ � 1

R2Tg2

;

A12;12 ¼ � 1

Tg2

;A13;13 ¼ � 1

Tr3
;

A13;14 ¼ 1

Tr3
� Kr3

Tr3Tt3

� 	
;

A13;15 ¼ Kr3

Tr3Tt3
;A14;14 ¼ � 1

Tt3
;

A14;15 ¼ 1

Tt3
;A15;2 ¼ � 1

R3Tg3

;

A15;15 ¼ � 1

Tg3

;A16;16 ¼ � 1

Tr4
;

A16;17 ¼ 1

Tr4
� Kr4

Tr4Tt4

� 	
;

A16;18 ¼ Kr4

Tr4Tt4
;A17;17 ¼ � 1

Tg4

; A17;18 ¼ 1

Tr4
;

Table 3 Sensitivity analysis of deregulated hydrothermal power system with SMES

Parameter

variation

%

change

Overshoot (Mp) in p.u Settling time (Ts) in sec Objective

function, J
DF1 DF2 DF3 DPerror

tie12 DPerror
tie23 DPerror

tie31 DF1 DF2 DF3 DPerror
tie12 DPerror

tie23 DPerror
tie31

Nominal 0 0.0382 0.0037 0.0032 0.0002 0.0001 0.0001 8.7391 8.7243 5.2162 12.246 11.848 10.642 8.2914

L ? 40% 0.0375 0.0036 0.0032 0.0005 0.0003 0.0004 8.8112 8.7372 5.2653 12.265 11.064 10.263 8.3213

- 40% 0.0384 0.0037 0.0032 0.0006 0.0004 0.0003 8.9123 8.8884 5.3244 12.233 11.633 10.131 8.3365

Tdc ? 40% 0.0378 0.0036 0.0032 0.0003 0.0005 0.0004 8.7864 8.8015 5.2975 12.192 11.092 10.295 8.3278

- 40% 0.0379 0.0035 0.0036 0.0004 0.0002 0.0005 8.7735 8.7996 5.3186 12.261 11.867 10.366 8.3271

Ksmes ? 40% 0.0381 0.0036 0.0032 0.0005 0.0003 0.0002 8.7581 8.8021 5.2411 12.258 11.961 10.451 8.2949

- 40% 0.0377 0.0036 0.0032 0.0003 0.0004 0.0003 8.7092 8.7282 5.2323 12.239 11.733 10.538 8.3613

Ido ? 40% 0.0383 0.0036 0.0032 0.0004 0.0003 0.0004 8.6133 8.5934 5.2882 12.251 11.066 10.659 8.2936

- 40% 0.0376 0.0035 0.0032 0.0005 0.0002 0.0002 8.8372 8.7973 5.2334 12.252 11.637 10.652 8.3618

Kid ? 40% 0.0387 0.0036 0.0032 0.0006 0.0005 0.0004 8.6784 8.6545 5.2263 12.263 11.093 10.762 8.3343

- 40% 0.0388 0.0036 0.0032 0.0003 0.0004 0.0003 8.7115 8.7466 5.1955 12.225 11.862 10.126 8.3209

Loading

condition

? 40% 0.0355 0.0038 0.0033 0.0004 0.0003 0.0004 8.8696 8.7872 5.2653 12.164 11.294 10.610 8.4347

- 40% 0.0348 0.0035 0.0032 0.0003 0.0002 0.0003 8.8721 8.7331 5.1915 12.195 11.967 10.113 8.2205
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A185;2 ¼ � 1

R4Tg4

; A18;18 ¼ � 1

Tg4

;A19;3 ¼ � 2Tr5

R5Tg5Tt5
;

A19;19 ¼ � 2

Tw1

; A19;20 ¼ 2

Tw1

� 2

Tt5

� 	
;

A19;21 ¼ 2

Tt5
� 2Tr5

Tt5Tg5

� 	
;A20;3 ¼ � Tr5

R5Tg5Tt5
;

A20;20 ¼ � 1

Tt5
;

A20;21 ¼ 1

Tt5
� Tr5

Tt5Tg5

� 	
;A21;3 ¼ � 1

R5Tg5

;

A21;21 ¼ � 1

Tg5

;A22;3 ¼ � 2Tr6

R6Tg6Tt6
; A22;22 ¼ � 2

Tw2

;

A22;23 ¼ 2

Tw2

� 2

Tt6

� 	
;

A22;24 ¼ 2

Tt6
� 2Tr6

Tt6Tg6

� 	
;A23;3 ¼ � Tr6

R6Tg6Tt6
;

A23;23 ¼ � 1

Tt6
;

A23;24 ¼ 1

Tt6
� Tr6

Tt6Tg6

� 	
;A24;3 ¼ � 1

R6Tg6

;

A24;24 ¼ � 1

Tg6

The control matrix [B] is of the order of 24 � 3 and its

nonzero elements are given below:

B9;1 ¼ A0
11

Tg1

; B12;1 ¼ A0
12

Tg2

; B15;2 ¼ A0
21

Tg3

;

B18;2 ¼ A0
22

Tg4

; B19;3 ¼ 2Tr5A
0
31

Tg5

; B20;3 ¼ Tr5A
0
31

Tg5

;

B21;3 ¼ A0
31

Tg5

;

B22;3 ¼ 2Tr6A
0
32

Tg6

; B23;3 ¼ Tr6A
0
32

Tg6

; B24;3 ¼ A0
32

Tg6

The disturbance matrix [C] is of the order of 24 � 6, and

its nonzero elements are given below:

C1;1 ¼ �Kp1

Tp1

; C1;2 ¼ �Kp1

Tp1

; C2;3 ¼ �Kp2

Tp2

;

C2;4 ¼ �Kp2

Tp2

; C3;5 ¼ �Kp3

Tp3

; C3;6 ¼ �Kp3

Tp3

;

C9;1 ¼ cpf11

Tg1

; C9;2 ¼ cpf12

Tg1

;

C9;3 ¼ cpf13

Tg1

; C9;4 ¼ cpf14

Tg1

; C9;5 ¼ cpf15

Tg1

;

C9;6 ¼ cpf16

Tg1

; C12;1 ¼ cpf21

Tg2

; C12;2 ¼ cpf22

Tg2

;

C12;3 ¼ cpf23

Tg2

;C12;4 ¼ cpf24

Tg2

; C12;5 ¼ cpf25

Tg2

;

C12;6 ¼ cpf26

Tg2

; C15;1 ¼ cpf31

Tg3

; C15;2 ¼ cpf32

Tg3

;

C15;3 ¼ cpf33

Tg3

; C15;4 ¼ cpf34

Tg3

;C15;5 ¼ cpf35

Tg3

;

C15;6 ¼ cpf36

Tg3

; C18;1 ¼ cpf41

Tg4

; C18;2 ¼ cpf42

Tg4

;

C18;3 ¼ cpf43

Tg4

; C18;4 ¼ cpf44

Tg4

;

C18;5 ¼ cpf45

Tg4

;C18;6 ¼ cpf46

Tg4

; C19;1 ¼ 2Tr5cpf51

Tt5Tg5

;

C19;2 ¼ 2Tr5cpf52

T5Tg5

; C19;3 ¼ 2Tr5cpf53

Tt5Tg5

;

C19;4 ¼ 2Tr5cpf54

Tt5Tg5

;C19;5 ¼ 2Tr5cpf55

Tt5Tg5

;

C19;6 ¼ 2Tr5cpf56

Tt5Tg5

; C20;1 ¼ Tr5cpf51

Tt5Tg5

;

C20;2 ¼ Tr5cpf52

T5Tg5

; C20;3 ¼ Tr5cpf53

Tt5Tg5

;C20;4 ¼ Tr5cpf54

Tt5Tg5

;

C20;5 ¼ Tr5cpf55

Tt5Tg5

; C20;6 ¼ Tr5cpf56

Tt5Tg5

; C21;1 ¼ cpf51

Tg5

;

C21;2 ¼ cpf52

Tg5

; C21;2 ¼ cpf52

Tg5

;

C21;3 ¼ cpf53

Tg5

;C21;4 ¼ cpf54

Tg5

; C21;5 ¼ cpf55

Tg5

;

C21;6 ¼ cpf56

Tg5

; C22;1 ¼ 2Tr6cpf61

Tt6Tg6

;

C22;2 ¼ 2Tr6cpf62

T6Tg6

;

C22;3 ¼ 2Tr6cpf63

Tt6Tg6

;C22;4 ¼ 2Tr6cpf64

Tt6Tg6

;

C22;5 ¼ 2Tr6cpf65

Tt6Tg6

; C22;6 ¼ 2Tr6cpf66

Tt6Tg6

;

C23;1 ¼ Tr6cpf61

Tt6Tg6

;

C23;2 ¼ Tr6cpf62

T6Tg6

;C23;3 ¼ Tr6cpf63

Tt6Tg6

;C23;4 ¼ Tr6cpf64

Tt6Tg6

;

C23;5 ¼ Tr6cpf65

Tt6Tg6

;C23;6 ¼ Tr6cpf66

Tt6Tg6

; C24;1 ¼ cpf61

Tg6

;

C24;2 ¼ cpf62

Tg6

;C24;3 ¼ cpf63

Tg6

; C24;4 ¼ cpf64

Tg6

;

C24;5 ¼ cpf65

Tg6

; C24;6 ¼ cpf6

Tg6

;

The matrix [c] is of the order of 24 � 3, and its nonzero

elements are given below:

c1;1 ¼ �ðKp1=Tp1Þ; c2;2 ¼ �ðKp2=Tp2Þ;
c3;3 ¼ �ðKp3=Tp3Þ:

The parameters values of the power system (Arya and

Kumar 2016):
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R1 ¼ R2 ¼ R3 ¼ R4 ¼ R5 ¼ R6 ¼ 2:40 Hz/pu MW;

Kp1 ¼ Kp2 ¼ Kp3 ¼ Kp4 ¼ Kp5 ¼ Kp6 ¼ 120 Hz/pu MW;

Tp1 ¼ Tp2 ¼ Tp3 ¼ Tp4 ¼ Tp5 ¼ Tp6 ¼ 20 s;

Tg1 ¼ Tg2 ¼ Tg3 ¼ Tg4 ¼ Tg5 ¼ Tg6 ¼ 0:08 s;

Tt1 ¼ Tt2 ¼ Tt3 ¼ Tt4 ¼ Tt5 ¼ Tt6 ¼ 0:30 s

Kr1 ¼ Kr2 ¼ Kr3 ¼ Kr4 ¼ 0:5;

Tr1 ¼ Tr2 ¼ Tr3 ¼ Tr4 ¼ Tr5 ¼ Tr6 ¼ 5 s;

Tw1 ¼ Tw2 ¼ 1 s

T12 ¼ 0:086630 s;

B1 ¼ 0:66; B2 ¼ 0:61; B3 ¼ 0:60;

a12 ¼ �1; a23 ¼ �1; a31 ¼ �1:

SMES unit data (Abraham et al. 2007): L = 13.65 H,

Tdc = 0.03 s, Ksmes = 100 kV/unit MW, Kid = 0.2 kV/kA,

Id0 = 0.45 kA.
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