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Abstract
Smart grid (SG) includes the various communication networks and manages them intelligently and effectively. One of the

important challenges of the SG is routing optimization. In this paper, we propose a routing protocol, namely Genetic-based

Stable Optimization Multi-Constrained Routing (GSOMCR), using the seven parameters that show the Quality of Service

(QoS) guaranteed in the SG. We collect the suggested parameters in one network cost function and optimize the function

by Genetic Algorithm. Appropriate parameterization of GA is very important in convergence of fitness function, used in

GSOMCR. We applied the novelty of Direction-Based Crossover (DBC) operator in proposed GA. DBC uses the values of

fitness function to find the best direction for function to converge. Instead of using random initializing in GA, we use the

GSOMCR to show the initial population in proposed GA. Comparison of the simulation results of the GSOMCR by the

other protocols shows the improvement of the network performance in routing optimization of SG.

Keywords Smart grid � QoS � Performance optimization � Artificial intelligence � Genetic algorithm � Stability factor

1 Introduction

The current electric power systems depend on the nonre-

newable fossil fuels that are being used up quickly (Wang

et al. 2011). One of the important reasons for designing

Smart grid (SG) is collecting the modern technologies in

power Grids to increase the sagacity of the network (Gao

et al. 2011; Hosseini et al. 2015). Intelligent management is

a critical component that determines the effectiveness and

efficiency of the power systems (Wang et al. 2011). The

perspective of the SG is shown in Fig. 1.

Definition of the SG is shown in Fig. 2. Physical

infrastructure that distributes energy lies on the bottom

layer of the figure. On the top of this layer, a communi-

cation infrastructure is defined. For timely decision mak-

ing, computing/information technology is above the

communication infrastructure layer. To create electrical

system/societal values, SG applications lies on the top of

the hierarchy. Security, which covers all the layers, is in

another dimension.

SGs manage and control a great deal of real-time

information that is received from Intelligent Electronic

Devices (IEDs) in the network (Zaballos et al. 2013).

Controlling and monitoring the network status is very

important to provide continuity (Navarro et al. 2012),

Quality of Service (QoS) assessment (Yan et al. 2012; Li

and Zhang 2010) and security (Vallejo et al. 2012; Kim

et al. 2010; Bou-Harb et al. 2013) in the SG. Using the

novel digital communication technologies to show and

control the grid environments status, is one of the valuable

capabilities in the SG (Temel et al. 2014).

SGs have some challenges that must be solved. QoS-

aware routing optimization is one of these challenges that

is an active and remarkable area in the SGs. Most services

in the network require professional QoS-aware require-

ments that cannot be supported by QoS-unaware routing

protocols. Several algorithms exist that address different

routing problems, such as multi-casting routing problem

(Bueno and Oliveira 2010), traffic engineering based on

link weight optimization (Riedl and Schupke 2007) or

shortest path routing problem (Singh and Sundar 2011;

Ann and Ramakrishna 2002). Some of them are applied in
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a non-real time background mode (Singh and Sundar

2011).

Different optimization paradigms can be used to opti-

mize the routing problem in the SG (Zaballos et al. 2013;

Zengin et al. 2013; Ebrahimi et al. 2013; Barbancho et al.

2007). Genetic Algorithm (GA) is a population-based

algorithm that uses the natural principals to find the opti-

mum solutions in large search spaces (Kardani-Moghad-

dam et al. 2014). Some protocols have been studied by

researchers, some of the most important of which are

reviewed in the following. Zaballos et al. (2013) present a

QoS-aware routing protocol that is the combination of a

Genetic Algorithm (GA) and Ticket Based Routing (TBR)

protocol. The performance of TBR improves by reducing

the overhead of routing packets in the network as well as

minimizing the communication latency due to its on-de-

mand behavior. A biologically inspired discrete-event

modeling approach for simulating alternative computer

network protocols is proposed by Zengin et al. (2013).

Ebrahimi et al. (2013) propose two adaptive routing

algorithms to decrease the congestion in the network.

Barbancho et al. (2007) study the performance of two very

well-known routing paradigms, which has the novelty of

being based on the introduction of neural networks. An

optimization model (PC/ISO) is developed by Jahromi and

Rad that uses a GA to solve the optimization problem

(Jahromi and Rad 2012).

Due to importance and shortage of the suitable routing

protocol in SG, we decided to propose a protocol for SG

that can cope with the different situations in the network. In

the first step, we proposed a routing protocol using the

innovation of the Neuro-Fuzzy approach for optimizing the

network cost. The first proposed protocol, namely Neuro-

Fuzzy-based Optimization Multi-Constrained Routing

(NFOMCR), uses the two parameters that may be insuffi-

cient to cope with the different situations of the SG

(Rastgoo and Sattari-Naeini 2014). In this regard, we

increased the number of the suggested parameters to con-

sider more situation of the network (Rastgoo and Sattari-

Naeini 2016). The parameters of the proposed protocol are

shown in Table 1. Using the parameters such as commu-

nication delay, connection outage probability, routing

delay, routing cost, stability factor and so on has an

effective role on proposing a suitable network cost function

to optimize the routing of the network. The proposed

routing protocol, namely Genetic-based Stable Optimiza-

tion Multi-Constrained Routing (GSOMCR), uses the GA

for optimizing the network cost function. We suggest some

parameters and collect them in one network cost function

to optimize it. Direction-Based Crossover (DBC) operator

is used in GA to optimize the proposed network cost

function. Comparison of the simulation results with the

other protocols shows that the GSOMCR is superior in

improving the delay, decreasing the cost, and increasing

the path finding in the SG. Parameters of GSOMCR are

shown in Table 1.

Fig. 1 The network perspective

of SG

Fig. 2 Definition of the SG (Jahromi and Rad 2012)
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Contribution of the paper is as the following:

• Suggesting seven parameters to show the QoS in SG.

• Combining the suggested parameters in one network

cost function.

• Using the GA for optimizing the network cost function.

• Using the GSOMCR for population initializing in GA

instead of random initializing.

• Applying the novelty of Direction-Based Crossover

(DBC) in the proposed GA.

The rest of this paper is organized as follows. Section 2

describes the system model and the suggested parameters.

In Sect. 3, the details of the GA are mentioned. Experi-

mental results and conclusion are developed in Sect. 4 and

5.

2 System Model

We use the mechanism of power price and load dynamics

to create a reward system for optimizing the network

parameters similar to (Li and Zhang 2010). To show the

QoS requirements in the SG, we suggest seven parameters

as listed in the following:

• Communication delay, d;

• connection outage probability, f;
• routing delay, ds;,

• routing cost, cs;

• total delay, DT;

• total cost, CT; and

• stability factor, S.

The suggested parameters are collected in one network

cost function and optimized using the GA. Appropriate

parametrization of the GA is very important for optimizing

the network behavior. Details of the GA are mentioned in

the following section.

3 GA Model for Optimizing the Network
Performance

GSOMCR is a QoS-aware routing protocol that, using GA,

reduces latency and routing cost, and therefore optimizes

the performance of a SG. The following sub-sections dis-

cuss the details of the GA parameters.

3.1 Chromosome Coding

In our proposed protocol, we define each chromosome as a

path between the source and destination nodes. The size of

the chromosome depends on the number of the nodes in

each path. Each node has an Identification (ID) number that

is used to show the sequence of the nodes in each path of

the network.

3.2 Fitness Function

Weuse seven parameters, mentioned in Sect. 2, in the fitness

function. While communication delay is calculated between

each node and the base station, routing delay is computed

between each two sequential nodes in the best selected path

by the routing algorithm. To evaluate the network in worst

possible delay, total delay is defined as maximum of com-

munication and routing delays. Total delay can be used

Table 1 Parameters of the

GSOMCR
Variable Description Variable Description

d Communication delay d* Optimum value of d parameter

f Connection outage probability f� Optimum value of f parameter

ds Routing delay d�s Optimum value of ds parameter

cs Routing cost c�s Optimum value of cs parameter

DT Total delay D�
T Optimum value of DT parameter

CT Total cost CT� Optimum value of CT parameter

S Stability factor S* Optimum value of S parameter

Cð:Þ Cost function cp Cost of path

Lð:Þ Loss function lði; jÞ Path length from node i to node j

Pð:Þ Price function CPA average path length

Tð:Þ Tax function y Offspring

Dð:Þ Expected delay x 1ð Þ Parent

dði; jÞ Path delay from node i to node j x 2ð Þ Parent

ns Node numbers of A e Random value between 0 and 1

A Set of nodes DðdÞ Average delay
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in situations that the network delay is very important and

critical. In other words, if the network efficiency can be

acceptable with total delay metric, it is acceptable with

communication and routing delay metrics too.

While the connection outage probability cost is computed

between each node and the base station, the routing cost is

calculated between each two sequential nodes in the best

selected path by the routing algorithm. To evaluate the net-

work performance in the worst possible cost, total cost is

defined as the maximum between connection outage prob-

ability and routing costs. In other words, if the network

efficiency can be acceptable with total cost metric, it is

acceptable with connection outage probability and routing

cost metrics too.

Minimizing the fitness function has been concluded

from the tradeoff among the seven parameters. In the point

that this function is minimized, tradeoff among the seven

parameters is maximized and the best fitness value is

achieved. This function is computed by:

ðd�; f�; ds�; cs�;DT
�;CT

�; S�Þ ¼ argmin ð1� fÞCðdÞð
þfLðfÞ þ PðdÞ þ TðfÞ þ SCðdsÞ þ ð1� SÞLðcsÞÞ:

ð1Þ

Details of the parameters and functions, used in Eq. (1),

are described in the following.

First parameter, d�, is the optimal communication delay

requirement, given by:

d� ¼ argmin CðdÞ þ PðdÞð Þ; ð2Þ

where PðdÞ and CðdÞ are the functions of delay parameter

that show the delay dependent price and cost. Details of the

PðdÞ and CðdÞ functions can be found in (Li and Zhang

2010).

Second parameter, f�, is the optimal requirement of

outage probability, calculated by:

f� ¼ argmin fLðfÞ þ TðfÞð Þ; ð3Þ

Where L fð Þ and T fð Þ are the expected loss and tax

incurred by the outage parameter. More details can be

found in (Li and Zhang 2010).

Third parameter, d�s , is the optimal requirement of the

routing delay, and is computed by:

d�s ¼ argmin CðdsÞ þ PðdsÞð Þ; ð4Þ

Fourth parameter, c�s , is the optimal requirement of

network routing cost, denoted by:

c�s ¼ argmin CsLðcsÞ þ TðcsÞð Þ: ð5Þ

Fifth parameter, S�, the stability factor, is a determinant

factor for the performance of QoS routing protocols. The

expected delay incurred by the stability is calculated by:

DðdÞ ¼
X

i;j2A dði; jÞ; ð6Þ

where A is a set of nodes achieved by routing algorithm;

dði; jÞ is path delay from node i to node j in the routing

algorithm. Average delay in optimum path is given by:

DðdÞ ¼ DðdÞ=ns; ð7Þ

where ns is the number of members in A. The total delay of

routing is computed by:

ds ¼ DðdÞ � DðdÞ: ð8Þ

The cost of the path is given by:

Cp ¼
X

i;j2A lði; jÞ; ð9Þ

where lði; jÞ is the path length from node i to node j. The

average path length is calculated by:

CPA ¼ CP=ns ð10Þ

The total cost of routing is given by:

cs ¼ Cp � CPA: ð11Þ

Sixth parameter, D�
T, is the total delay of the network

and is computed by:

D�
T ¼ maxðd�; d�s Þ: ð12Þ

The routing delay is calculated between each two

sequential nodes in the selected path by the routing algo-

rithm, while the communication delay is calculated

between each node and the base station in the network.

Total delay of the network in each node is defined as a

maximum value between the communication delay of the

network and the delay of the routing.

Seventh parameter, C�
T, is the total cost given by:

C�
T ¼ maxðf�; c�s Þ: ð13Þ

while the cost from outage probability is computed

between each node and the base station, the cost of the

routing is calculated between each two nodes in the

selected path by the routing algorithm. Total cost param-

eter is a maximum value between the cost obtained by
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outage probability and the cost derived from the routing in

the network.

3.3 Stopping Condition of the Algorithm

The end condition is used for deciding when to stop the

search for a better solution. Application of the GA is run

either for a fixed number of iterations or till the search is

not able to find better solutions for a number of iterations,

typically. We use several end conditions in the parame-

terization of GA algorithm. Finding the best feasible suc-

cessor from the source node to the destination one, which

satisfies a set of constraints, is pursued in the QoS-aware

routing problem. This is a suitable end condition for real

operation; since a QoS-aware routing protocol must search

for routes that satisfy the QoS requirements.

3.4 Initial Population

While a chromosome provides a possible routing solution,

the population is formed by individuals representing all the

found paths. The initial population should be equipped with

sufficient variety of individuals, so that the GA could lead

the population toward better individuals. Instead of a ran-

dom generation, GSOMCR protocol relies on the under-

lying QoS routing protocol to obtain suitable paths for the

initial population.

3.5 Mutation Operator

Mutation operator is used to maintain the diversity in

population of the GA (Deb and Deb 2014). There are dif-

ferent mutation types for GA such as Polynomial and

Gaussian. We use the Gaussian mutation in GSOMCR.

3.6 Crossover Operator

The crossover operator starts with the individuals of the

initial population, and then selects the individuals with the

crossover probability. There are different cross-over oper-

ators such as single point, two point, uniform, arithmetic,

and so on (Peltokangas and Sorsa 2008). We try to use the

knowledge of the proposed protocol in our optimization

manner. In this regard, we use the novelty of Direction-

Based Crossover (DBC) operator to utilize the values of the

fitness function in determining the direction of GA search

for finding the best solution. DBC generates one offspring y

from two parents x 1ð Þ, x 2ð Þ as following:

y ¼ e x 2ð Þ � x 1ð Þ
� �

þ x 2ð Þ;

where e is a random number between 0 and 1.

4 Experimental Results

As the network parameters are changed, the network cost is

changed too. In the following figures, the optimal

requirements of the seven parameters are shown. To rep-

resent and simulate the SG, a generated network topology

is used and 5000 source–destination pairs are considered.

We use four test cases for to compare the results of path

finding. Figures 2, 3, 4, 5, 6, 7, 8 and 9, have approxi-

mately similar appearances, and one important point,

namely break point, has an important role in the network

behavior. Details of the changes in the network behavior
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Fig. 4 Curve of cost versus outage probability
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with 200 iterations are shown in the figures. Parameters of

these figures are scaled for simplicity. Delay and cost

parameters are measured in the time and energy slots. The

network behavior is considered in two modes:

First mode is the piece of the curve that is between the

point in which the network starts the evaluation, and the

first break point. First break point is the point after the

slope of the curve is changed for the first time. This mode

is named increasing mode; because the network cost

increases monotonically with respect to the special

parameter that is one of the seven parameters considered in

the network.

Second mode is the piece of the curve started from the

break point to the end of the curve. This mode is named

decreasing mode; because the network cost decreases

monotonically with respect to the one of the seven network

parameters. This mode is remarkable from the point that

shows the efficiency of the routing mechanism as well as

the parameters proposed for the network. Optimizing the

network cost is an important objective achieved in this

mode.
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Fig. 5 Curve of network cost versus routing cost
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Fig. 6 Curve of network cost versus routing delay in the network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

Stability Factor

C
os

t o
f t

he
 N

et
w

or
k

Fig. 7 Curve of network cost versus stability factor
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Fig. 8 Curve of network cost versus total delay
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4.1 QoS Requirements

We propose seven parameters to consider the QoS

requirements in the SG. Figures 3 and 4 show the network

cost versus different communication delays and outage

probabilities in the network. In the increasing mode, the

cost is increased so that it approaches the point that has a

maximum cost in this mode. Decreasing mode in this curve

includes the increase in the delay and outage probability.

The optimum point for GSOMCR is the point that has a

minimum delay, outage probability, and cost. Since having

the decreasing behavior for all of the parameters at the

same time is very hard and may be unreachable, we try to

have a tradeoff among the parameters to optimize the

network cost. Increasing mode in these figures has an

interval smaller than the one for decreasing mode. This

shows that, most of the time, the network operates in the

appropriate mode, a proper result for the network.

Figures 5, 6 and 7 show the network cost versus dif-

ferent routing cost, routing delay, and stability factor val-

ues in the network. While the best path of the network is

selected by the routing algorithm, the routing cost and

delay between each two sequential nodes are calculated on

this path. In Fig. 5, the slope of the curve in the increasing

mode is steep; interval of this mode is much smaller than

the decreasing mode. This is an appropriate network

behavior, which shows that most of the time, the network

operates in the second mode to achieve the tradeoff among

the parameters. While the slope of the curve in the

increasing mode is approximately high in Fig. 7, the net-

work cost decreases in the decreasing mode.

Figures 8 and 9 show the network cost versus total delay

and total cost of the network. In Fig. 8, the slope of the

curve in the two modes is approximately similar. The

interval of the increasing mode is smaller than the

decreasing one in Fig. 9.

4.2 Fitness Function

Minimizing the fitness function of GSOMCR protocol is an

important goal in optimizing the network cost. The network

cost in different generations is shown in Fig. 10. It is very

hard to have a tradeoff among all the parameters defined

for the network. Suitable behavior of the network is one in

which the network does not have high oscillations and

changes in the parameters as well as the fitness function.

After the maximum point, the network cost decreases with

a steep slope until it approaches the stable behavior. The

fitness function with one maximum point is shown in

Fig. 10. In some cases, the number of the maximum points

is more than one. Decreasing changes in the cost shows that

the network approaches the optimum point. It is an

appropriate and acceptable behavior of the network with

GSOMCR protocol.

4.3 Comparison with Other Protocols

In this sub-section, we compare GSOMCR, GATAS (Za-

ballos et al. 2013), a Genetic QoS-aware routing protocol

for the smart electricity networks protocols, OMCR (Li and

Zhang 2010), and FPTAS (Xue et al. 2007) protocols based

on the following metrics:

• Path length,

• cost, and

• delay.
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Details of these comparisons are expressed in the fol-

lowing sub-sections.

4.3.1 Comparison Based on Path Length Metric

In the first step, GSOMCR is compared to other protocols,

namely GATAS (Zaballos et al. 2013), OMCR (Li and

Zhang 2010), and FPTAS; the latter one is the best

approximate solution for OMCR problems (Li and Zhang

2010). Qualitative comparison of the performance of

GSOMCR, GATAS, OMCR, and FPTAS, using path

length, is shown in Fig. 11, which shows that the number

of the best paths in GSOMCR is more than the other

protocols. This means that the effectiveness of this proto-

col, in finding the best paths, is considerable. To represent

the SG, a generated network topology is used and 5000

source–destination pairs are considered in every test case.

Results achieved from four test cases of the network

routing are shown in this figure.

4.3.2 Comparison Based on the Cost

In the second step, we compare GSOMCR with GATAS,

OMCR, and FPTAS protocols based on cost of the proto-

cols as shown in Fig. 12. As this figure shows, the cost of

OMCR and FPTAS protocols are increased monotonically

until they approach the first break point. In OMCR curve,

while the cost is approximately fixed between the first

break point and the second one, this cost is increased in the

latest iterations. Cost of GSOMCR and GATAS protocols

are decreased in the first piece of the curve, but they are

nearly fixed in the second half of the curves. The network

behavior approaches the stable behavior, with GSOMCR

and GATAS protocols, which is efficient for the network.

Comparison of the cost of these protocols shows that the

effectiveness of GSOMCR protocol is higher than the other

ones in which the network behavior, under GSOMCR

protocol, is more suitable and acceptable, because of the

decreasing changes in the network cost as well as reaching

to the stable behavior. Therefore, the network performance

is improved with GSOMCR protocol.

4.3.3 Comparison Based on Delay Metric

Figure 13 shows the routing delays comparison of the best

selected paths obtained by GSOMCR, GATAS, OMCR,

and FPTAS protocols. To compare these protocols, for

each ticket used in GATAS protocol, one individual in

population of the GA in GSOMCR protocol is considered.

This figure shows that the routing delay of GATAS is

decreased until it reaches a break point. While after this

point the routing delay is increased a little, it is approxi-

mately fixed in the next values of tickets. In the latest

values of the tickets, routing delay is decreased a little.
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Decreasing changes in routing delay is an appropriate

behavior in GATAS protocol. Additionally, different

routing delays achieved by GSOMCR protocol are shown

in this figure. While the routing delay is nearly fixed in the

first piece of the curve, it is decreased in the next values of

the population sizes. The routing delay of OMCR and

FPTAS protocols are approximately similar. While they

have the decreasing mode in the first half of the curve, the

slope of these curves is nearly fixed in the latest piece of

the figures. Decreasing changes in the routing delay

observed by the GSOMCR protocol is more than that of

GATAS one. Comparison of these protocols shows that the

capability of GSOMCR in finding the best path with lowest

routing delay is higher than that of the other protocols.

Consequently, the network performance and routing delay

are improved with GSOMCR as well as GATAS, but

improvement achieved with GSOMCR is more than

GATAS.

4.4 Parameterization of the Proposed Genetic
Algorithm

Appropriate parameterization of the GA is very important

in convergence of the algorithm to the optimum point.

Coding of the chromosome is shown in Fig. 14. In this

figure, one source node, three intermediate nodes, and one

destination node are shown. In this case, the numbers of the

chromosome genes are five, because of the five nodes in

this path.

The network performance is proportional to the inverse

of the network cost. It is shown in Fig. 15 versus different

population sizes. Best population size is one that gives the

best performance in the network, and closes the network to

the appropriate behavior. Values of the performance are

scaled for simplicity. The appropriate size of the initial

population is chosen for the proposed routing algorithm.

5 Conclusions

SG is an intelligent network that uses the mutual ways of

flows between data and electricity in the network. Having

an efficient relation among the components is one of the

important merits of SG. In this paper, we propose a routing

protocol, GSOMCR, and optimize it using the GA. We

apply a different crossover operator, Direction-Based

Crossover (DBC), as well as the population initialization in

GA. To show the QoS requirements, we suggest seven

parameters and collect them in one function. The proposed

function is considered as a fitness function of the GA to

optimize. Minimizing this function has been concluded

from the tradeoff among the seven parameters. Appropriate

parameterization of the GA, in GSOMCR protocol, is very

important and effective in convergence of the fitness

function. The comparison results of GSOMCR with the

other protocols, based on different metrics such as path

length, energy consumption, and delay, show the

improvement in the network performance. In theory, there

are some differences between ES and GA, but sometimes it

is hard to distinguish between them in practice. Indeed, we

use the hybrid of ES and GA in this work as the following:

1. We use the real-coded individuals, which is a feature

of ES.

2. We select the parents proportional to their fitness

function values, which is a feature of GA.

We will continue our study on routing optimization of

SG to optimize the routing and network cost using the other

evolutionary algorithms such as honey-bee mating, ant

colony optimization, particle swarm optimization, and so

on.

Fig. 14 Coding of chromosome

50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

2.5

3

3.5

4

size of the Initial Population

P
er

fo
rm

an
ce

 o
f t

he
 N

et
w

or
k

Fig. 15 Performance of the network versus the size of the initial

population

Iran J Sci Technol Trans Electr Eng (2018) 42:185–194 193

123



References

Ahn CW, Ramakrishna RS (2002) A genetic algorithm for shortest

path routing problem and the sizing of populations. IEEE Trans

Evol Comput 6:566–579

Barbancho J, Leon C, Molina FJ, Barbancho A (2007a) Using

artificial intelligence in routing schemes for wireless networks.

Comput Commun 30:2802–2811. https://doi.org/10.1016/j.com

com.2007.05.023

Barbancho J, Leon C, Molina FJ, Barbancho A (2007b) Using

artificial intelligence in routing schemes for wireless networks.

Comput Commun 30:2802–2811. https://doi.org/10.1016/j.com

com.2007.05.023

Bou-Harb E, Fachkha C, Pourzandi M, Debbabi M, Assi C (2013)

Communication security for Smart Grid distribution networks.

IEEE Commun Mag 51:42–49

Bueno MLP, Oliveira GMB (2010) Multi-cast flow routing: Evalu-

ation of heuristics and multi-objective evolutionary algorithms.

In: IEEE Congress on Evolutionary Computation (CEC),

Barcelona 2010

Deb K, Deb D (2014) Analyzing mutation schemes for real-parameter

genetic algorithms. Int J Artif Intell Soft Comput 4:1–28

Ebrahimi M, Tenhunen H, Dehyadegari M (2013a) Fuzzy-based

ADAPTIVE ROUTING ALGORITHM FOR NETWORKS-ON-

CHIP. J Syst Architect 59:516–527

Ebrahimi M, Tenhunen H, Dehyadegari M (2013b) Fuzzy-based

adaptive routing algorithm for networks-on-chip. J Syst Archi-

tect 59:516–527

Gao J, Xiao Y, Liu J, Liang W, Chen CLP (2011) A survey of

communication/networking in Smart Grids. Future Gen Comput

Syst 28:391–404. https://doi.org/10.1016/j.future.2011.04.014

Hosseini SA, Abyaneh HA, Sadeghi SHH, Razavi F, Karami M

(2015) Presenting a new method for identifying fault location in

micro-grids, using harmonic impedance. IJST Trans Electr Eng

39:167–182

Jahromi AE, Rad ZB (2012) Optimal topological design of power

communication networks using genetic algorithm. Sci Iran

20(3):945–957

Kardani-Moghaddam S, Entezari-maleki R, Movaghar A (2014) A

cost efficient two-level market model for task scheduling

problem in grid environment. IJST Trans Electr Eng 38:73–90

Kim Y, Thottan M, Kolesnikov V, Wonsuck L (2010) A secure

decentralized data-centric information infrastructure for Smart

Grid. IEEE Commun Mag 48:58–65

Li H, Zhang W (2010) QoS Routing in Smart Grid. In: IEEE Global

Telecommunications Conference, Miami, FL, 2010 (GLOBE-

COM 2010)

Navarro J, Zaballos A, Sancho-Asensio A, Ravera G, Armendariz-
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