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Abstract In this paper, a novel approach is proposed to

formulate and solve the problem of active fault detection

and control for multi-model discrete-time systems. The

main objectives are to design an optimal fixed-order con-

troller for stabilizing the healthy and faulty models by

minimizing a well-defined quadratic performance index,

meanwhile synthesizing a test signal for active fault

detection in the presence of bounded energy uncertainty.

To do this, an optimal solution is proposed to obtain the

trade-off between the optimal fixed-order stabilizing con-

troller signal and optimal test signal for active fault

detection. These objectives could be achieved by solving a

finite-dimensional constrained optimization problem. The

dynamic nonlinear optimization problem is solved by two

constructive recursive solution algorithms which are finally

applied to a numerical example. Simulation results show

the effectiveness of the proposed algorithms.

Keywords Optimization � Sylvester equation � Active fault
detection � Output feedback � Multi-model system

1 Introduction

Preventing the disasters and halts during the system oper-

ation in an unexpected time is a critical and important issue

for engineering. This prompts the interest in the design of

stabilizing controller. Indeed, the robustness property of

the controller, which is clearly desired in safety, tends to

mask the faults. This makes the task of fault detection (FD)

difficult; particularly, if it is desired to detect those faults

which degrade performance. Traditional approach for FD is

known as passive fault detection (PFD) (Chen and Patton

1999; Ding 2013). Robustness issue is a challenging task in

PFD. Recently, various techniques have been developed for

robust PFD for uncertain linear time-delay systems and

Takagi–Sugeno models using unknown input observers

(UIOs) (see for example, Ahmadizadeh et al.

2013, 2014a, b). It is well-known that a major drawback

with the passive approach is that the masked faults cannot

be detected by PFD approaches. An alternative to PFD is

active fault detection (AFD) that was found and has been

extended by Campbell and Nikoukhah (2004), Nikoukhah

et al. (2010), Esna-Ashari et al. (2012a, b), Forouzanfar and

Khosrowjerdi (2014), Niemann (2003, 2006, 2012), Nie-

mann and Poulsen (2015), Simandl and Puncochar (2009)

and Puncochar et al. (2014). In model-based AFD

approach, an exogenous signal called the test signal is

designed and injected into the system in such a way that the

separation of the multi-models of the system corresponding

to healthy and faulty models during the injection time-

period is guaranteed, as shown in Fig. 1. As mentioned

before, using AFD approach, it is possible to detect masked

faults efficiently, but in comparison with PFD, designing

the test signal and injecting it into the system for AFD

requires efficient numerical algorithms with more compu-

tations as reported in Campbell and Nikoukhah (2004).

Recently, the effect of feedback in closed-loop systems for

the optimal generation of the test signal for AFD was

considered. It is worth mentioning that given proper

feedback, a test signal with optimal energy can also be

achieved (Esna-Ashari et al. 2012a, b), but the design of

proper feedback was not discussed.
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Indeed, because of the robustness property of the con-

troller, the effect of all additive signals such as test signal

can be considerably attenuated. Therefore, to detect faults

in a more reliable way, a test signal with considerable

energy is needed. In fact, a large test signal has many

undesirable effects on the system performance. Therefore,

it is necessary to formulate a unified synthesis problem to

consider the trade-off between the controller performance

and the optimal test signal for AFD.

In comparison with the recent literature, this paper

generalizes the proposed approach in Esna-Ashari et al.

(2012b) for the integrated AFD and control, and its

contributions can be summarized as follows: (1) the

candidate controller is a fixed-order dynamic output

feedback controller instead of Luenberger observer-

based controller, (2) the controller parameters are

unknown and should be designed in an efficient way, (3)

the controller is synthesized such that a well-defined

quadratic performance index is optimized, (4) a well-

defined constrained finite-dimensional optimization

problem is formulated for unified synthesis of test signal

for AFD and optimal fixed-order dynamic output feed-

back controller, and (5) two iterative constructive algo-

rithms are proposed to find a sub-optimal solution to the

proposed optimization problem.

The rest of the paper is organized as follows. Section 2

considers a brief review on the approach of optimal AFD

and optimal p-system stabilization. Section 3 provides an

exact mathematical description for optimal unified syn-

thesis of AFD and control problem. Section 4 deals with

two iterative algorithms for finding a sub-optimal solution

to the proposed optimization problem, and in Sect. 5, a

numerical example is presented to show the effectiveness

of the proposed algorithm. Concluding remarks are given

in Sect. 6.

2 Notations and Preliminaries

In this section, the optimal p-system stabilization problem

and the optimal AFD problem are briefly stated. Some

standard notations and the mathematical preliminaries used

in this paper are also summarized.

Let the multi-model discrete-time LTI system be given

by

Rs :
xiðt þ 1Þ ¼ AixiðtÞ þ BivðtÞ þMiliðtÞ
yðtÞ ¼ CixiðtÞ þ DivðtÞ þ NiliðtÞ

; i ¼ 1; 2; . . .; p

�
;

ð1Þ

where ‘‘p’’ represents the number of models, xi 2 Rn is the

state vector, v 2 Rm is the control signal, li 2 Rl is the noise

and system uncertainty vector with the bounded energy and

y 2 Rq is the output vector. The distribution matricesMi and

Ni define the input and output noise and system uncertainties,

respectively. Also, to simplify the illustration of the proce-

dure, without the loss of generality, matrix Di can be

assumed to have the same value, D, for all models. Pair

ðAi;CiÞ is detectable and pair ðAi;BiÞ is stabilizable. The

upper bound for the energy of liðtÞ is given by

Xs

t¼0

liðtÞTliðtÞ\lT0il0i ¼ c0i ; ð2Þ

where s is the upper bound of time which will be described in

the rest of the paper, and c0i [ 0 is the energy of liðtÞ in the

worst case.Normalizing theproblem, c0i couldbeassumedas1.

Remark 1 Without loss of generality, the initial state xið0Þ
is assumed to be zero. Note that in case xið0Þ is non-zero or

unknown, it can be included in the system (1) as uncer-

tainty parameter that is shown by li.

Remark 2 For the sake of simplicity, the problem of

simultaneous synthesis is considered for healthy and faulty

models; therefore, p ¼ 2.

Consider a fixed-order dynamic output feedback (DOF)

controller as follows:

Rc :
eðt þ 1Þ ¼ PeðtÞ þ KyðtÞ
vðtÞ ¼ GeðtÞ þ wðtÞ ;

�
eð0Þ ¼ 0; ð3Þ

where e 2 Rg is the state vector with the zero initial value

and w is the test signal. In this paper, the synthesis of a full-

order stabilizing controller (g ¼ n) is discussed but the

proposed algorithm can also be used for the case g\n. By

combining (1)–(3), the closed-loop system equations in

Fig. 2 are given by

Rs:cl

�xiðt þ 1Þ ¼ �Ai�xiðtÞ þ �BiwðtÞ þ �MiliðtÞ
yðtÞ ¼ �Ci�xiðtÞ þ �DiwðtÞ þ �NiliðtÞ
vðtÞ ¼ �G�xiðtÞ þ wðtÞ

8<
: ð4Þ

where �xi 2 RðnþgÞ is the state vector of the closed-loop

system,

�xiðtÞ ¼
xiðtÞ
eðtÞ

� �
; �Ai ¼

Ai BiG

KCi Pþ KDiG

� �
;

�Bi ¼
Bi

KDi

� �
; �Mi ¼

Mi

KNi

� �
;

�Ci ¼ ðCi DiGÞ; �G ¼ ð0 GÞ

Fig. 1 Integrated test signal and controller design
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2.1 Active Fault Detection

In the model-based AFD, the main objective is to synthesize

a proper test signal. However, it is mathematically proved

that the proper test signal guarantees the separation of the

healthy and faulty models. Therefore, the focus of this paper

is to synthesize a minimum energy test signal which guar-

antees the separation of the healthy and faulty models.

Separating the system models (4) by generating a proper

test signal wðtÞ that minimizes a quadratic cost function is

known as AFD problem. wðtÞ should be designed such that

the set h ¼ fwðtÞjA1ðwðtÞÞ \ A2ðwðtÞÞg is empty where

AiðwðtÞÞ is the set of outputs of model ‘‘i’’ defined by (4) to

the input wðtÞ. This motivates the following min–max

problem for generating an optimal test signal for the

closed-loop system (4).

Problem 2.1 Given the injection time-period s2 [ 0 and

closed-loop system (4), find wðtÞ in h which minimizes the

quadratic performance index

JD:CL ¼ min
wðtÞ

max
l1ðtÞ;x1ð0Þ

Xs1
t¼0

vðtÞTSvðtÞ þ x1ðtÞTTx1ðtÞ ð5Þ

Subject to

x1ð0ÞTx1ð0Þ þ
Xs2
t¼0

l1ðtÞ
Tl1ðtÞÞ\1:

where matrices S and T are the constant matrices with

appropriate dimensions.

2.2 Simultaneous Stabilization Controller

The problem of simultaneous stabilizing controller designs

a single controller Rc to stabilize a set of p-system

simultaneously and optimize a performance index (Ack-

ermann 1980; Zhang et al. 2011; Ghosh 2013; Das and Dey

2011; Saadatjoo et al. 2013).

The main objective is to formulate a finite-dimensional

constrained optimization problem to synthesize a fixed-

order DOF controller that stabilizes all models and opti-

mizes the performance index of the controlled system in

the presence of the finite energy disturbances. In other

words, given wðtÞ ¼ 0, Rc in (3) is an internally stabilizing

controller for the closed-loop system (4) that minimizes a

quadratic cost as a desired performance index. Internal

stability of (4) is equivalent to the condition that the set

f ¼ fðP;K;GÞj�A is Schurg is nonempty, where a Schur

matrix is a square matrix with real entries and with

eigenvalues of absolute value less than one. This motivates

the following optimal p-system stabilization problem as

follows:

Problem 2.2 Given the closed-loop system (4) and

wðtÞ ¼ 0, find ðP;K;GÞ in f which minimizes the fol-

lowing performance index:

JC:CL ¼ min
P;K;G

Xs2
t¼0

ðx1ðtÞTQ1x1ðtÞ þ x2ðtÞTQ2x2ðtÞ

þ vTðtÞRvðtÞÞ ð6Þ

where Q1 ¼ Q2 ¼ Q ¼ QT � 0 and R ¼ RT [ 0 are the

constant weighting matrices with appropriate dimensions.

Integrating Problems 2.1 and 2.2, leads to trade-off

between the following performance of stabilizing con-

troller and energy of proper test signal for AFD approach.

3 Integrated Formulation of AFD and DOF
Controller

In this section, it is shown that integration of an optimal

proper test signal for AFD and control problem can be

transformed into a finite-dimensional equality constrained

optimization problem. The main objectives are

1. simultaneous stabilization of multi-model system

(healthy and faulty models) using a single controller,

2. optimizing the control performance for healthy model,

3. designing an optimal proper test signal for AFD with

minimum energy.

Regarding Problems 2.1 and 2.2, the integrated problem

of AFD and DOF controller is as follows. By comparing

(5) and (6), it can be easily seen that the performance index

in (6) is related to both models but in (5), it is just related to

the healthy model. Therefore, for the unified synthesis, the

control objective can be limited to optimize the perfor-

mance of healthy model. After selecting the performance

Fig. 2 Closed-loop multi-model system
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index, the following remarks are summarized for formu-

lating a well-defined problem of optimal integrated syn-

thesis of AFD and control.

Remark 3 A fixed-order DOF controller with a proper

test signal can be considered as (3). The controller is

assumed as a full-order controller but it can be opti-

mized by redesigning with lower order, if possible. The

unknown matrices P, K and G are the controller

parameters, and are designed such that the simultaneous

stabilization can be achieved for healthy and faulty

models. With the guarantee of the internal stability

requirement on the closed-loop system in Fig. 1, it can

be concluded that the test signal wðtÞ cannot destabilize

the closed-loop system, it can, however, degrade the

control performance.

Remark 4 It is worth noting that s1 and s2 in (5) and (6)

are the time-upper bounds for optimal AFD and optimal

simultaneous synthesis of stabilizing controller, respec-

tively. For the optimal test signal, it is better to minimize

the value of s1 and for the optimal stabilizing controller

design, it is better to maximize the value of s2. However,
for integrated synthesis, both of them should have similar

value considered as s. Indeed, it is another trade-off

between AFD and the control.

Remark 5 Another point that should be considered for

integrated formulation is the assumption on the value of

uncertain parameters l1ðtÞ and x1ð0Þ. For AFD this is given

by (3) but for controller synthesis, it is assumed that

l1ðtÞ ¼ l0dðtÞ and x1ð0Þ ¼ 0, where dðtÞ is the Kronecker

delta function. To overcome this difficulty, non-similarity

in the assumption of uncertain parameters, the unified

synthesis can be performed on the worst case recursively.

In other words, for the first step, regarding Eq. (10), set

x1ð0Þ ¼ 0 and l1ðtÞ ¼ l0dðtÞ, then the controller parame-

ters can be determined. In the next step, using these con-

troller parameters, the test signal wðtÞ is designed and then

the new values of x1ð0Þ and l1ðtÞ are computed. To achieve

the optimal test signal and optimal performance, this step

should be conducted recursively.

Regarding the three mentioned points, the optimal uni-

fied synthesis problem can be illustrated based on Problems

2.1 and 2.2. By considering the system (1) and the con-

troller (3), the closed-loop system is described as (4). To

achieve the internal stability for closed-loop system (4), the

discrete Lyapunov equation should be satisfied. Therefore,

the set of stabilizing controllers is given by (6). Moreover,

the proper set of l1ðtÞ and x1ð0Þ is considered as (2).

Based on above mentioned remarks, the integrated for-

mulation for AFD and DOF controller is defined as the

following problem.

Problem 3.1 Given the closed-loop system (4), find

ðP;G;KÞ in u;wðtÞ in h, and the worst case of (l1ðtÞ; x1ð0Þ
in q, to minimize the performance index.

JD:C:sim:dyn ¼ min
wðtÞ

max
l1ðtÞ;x1ð0Þ

min
P;G;K

Xs

t¼0

ðvðtÞTSvðtÞ

þ x1ðtÞTCx1ðtÞÞ ð7Þ

where the matrices S and T are the constant weighting

matrices. ðP;G;KÞ 2 u; wðtÞ 2 h; and ðl1ðtÞ; x1ð0ÞÞ 2 q
are the proper controller parameters, proper test signal, and

the worst case of uncertainties. The mentioned sets are

defined as follows:

u ¼ fðP;G;KÞj�AT
i Pi

�Ai � Pi\0;Pi � 0g ð8Þ

where Pi is the symmetric positive definite matrix.

h ¼ fwðtÞjA1ðwðtÞÞ \A2wðtÞ ¼ ;g ð9Þ

q ¼ ðl1ðtÞ; x1ð0ÞÞ x1ð0Þ
T
x1ð0Þ þ

Xs

t¼0

ðl1ðtÞ
Tl1ðtÞÞ\1

�����
( )

ð10Þ

The Problem 3.1 is a min–max–min problem and the

cost function is indirectly related to the test signal,

uncertainty terms and controller parameters. Obviously, it

is a multi-objective optimization problem with three

nonlinear coupled constraints which satisfy the Lyapunov

equation, the constraint on uncertainties and properness of

test signal. Therefore, the solution of Problem 3.1 is not

straightforward and could not be completely solved ana-

lytically. Two solution algorithms are discussed in the

next section.

4 Solution Algorithms

Two solutions of Problem 3.1 based on sub-optimal

method are the static-based algorithm and SME1-based

algorithm. In the proposed solution algorithms, at first

level, the DOF controller parameters are computed and in

the second level, based on the calculated controller

parameters, the test signal is designed. These two levels are

recursively repeated until the results are acceptable.

4.1 Static-Based Algorithm

A common technique to solve dynamic optimization problem

with nonlinear coupled constraints is converting the dynamic

problem to static one (Esna-Ashari et al. 2012b; Skaf and

Boyd 2010). To convert Problem 3.1 into a static form, some

new variables in a time period ½0; s� are defined as follows:

1 Sylvester matrix equation.
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x̂i ¼ B̂iŵþ M̂il̂i ð11Þ

ŷ ¼ D̂iŵþ N̂il̂i ð12Þ

v̂ ¼ Ĝiŵþ Ĥil̂i ð13Þ

where

x̂i ¼

xi 0ð Þ
xi 1ð Þ
..
.

xi sð Þ

0
BBBB@

1
CCCCA; ŷ ¼

y 0ð Þ
y 1ð Þ
..
.

y sð Þ

0
BBBB@

1
CCCCA; v̂ ¼

v 0ð Þ
v 1ð Þ
..
.

v sð Þ

0
BBBB@

1
CCCCA;

ŵ ¼

w 0ð Þ
w 1ð Þ
..
.

w sð Þ

0
BBBB@

1
CCCCA; l̂i ¼

xi 0ð Þ
li 0ð Þ
lið1Þ
..
.

li sð Þ

0
BBBBBB@

1
CCCCCCA

Î ¼
I

0

� �
;

I ¼

1 0 � � � 0

0 1 � � � 0

..

.

0

..

.

0

. .
.

� � �

..

.

1

0
BBBB@

1
CCCCA;

B̂i ¼

0 0 � � � 0

�Bi 0 � � � 0

..

. ..
. . .

. ..
.

�As�1
i

�Bi
�As�1
i

�Bi � � � 0

0
BBBB@

1
CCCCA;

M̂i ¼

Î 0 0 � � � 0

�AiÎ �Mi 0 � � � 0

..

. ..
. ..

. . .
. ..

.

�AiÎ �As�1
i

�Mi
�As�2
i

�Mi � � � �Mi

0
BBBB@

1
CCCCA

D̂i ¼

Di 0 � � � 0

�Ci
�Bi Di � � � 0

..

. ..
. . .

. ..
.

�Ci
�As�2
i

�Bi
�Ci
�As�2
i

�Bi � � � Di

0
BBBB@

1
CCCCA;

N̂i ¼

�CiÎ Ni 0 � � � 0

�Ci
�AiÎ �Ci

�Mi Ni � � � 0

..

. ..
. ..

. . .
. ..

.

�Ci
�As
i Î

�Ci
�As�1
i

�Mi
�Ci
�As�2
i

�Mi � � � Ni

0
BBBB@

1
CCCCA

Ĝi ¼

I 0 � � � 0

�G�Bi I � � � 0

..

. ..
. . .

. ..
.

�G�As�1
i

�Bi
�G�As�2

i
�Bi � � � I

0
BBBB@

1
CCCCA;

Ĥi ¼

�GÎ 0 0 � � � 0

�G�AiÎ �G �Mi 0 � � � 0

..

. ..
. ..

. . .
.

0

�G�As
i Î

�G�As�1
i

�Mi
�G�As�2

i
�Mi � � � �G �Mi

0
BBBB@

1
CCCCA

Using (7) and (11)–(13), the performance index in Problem

3.1 is rewritten as the following static form:

JD:C:sim:St ¼ min
proper ŵ

max
proper l̂1

min
properðP;G;KÞ

ðv̂TŜv̂þ x̂T1 T̂ x̂1Þ ð14Þ

where

Ŝ ¼

S 0 � � � 0

0 S . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 S

0
BBB@

1
CCCA; T̂ ¼

T 0 � � � 0

0 T . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 T

0
BBB@

1
CCCA:

Now, to define the concept of properness for

ðP;G;KÞ and l̂1 in a mathematical form and using the

new variables definition, Problem 3.1 can be trans-

formed into the following static form with two

inequality constraints which are the Lyapunov equation

and uncertainty bound.

Problem 4.1 Given the closed-loop system (4), find ŵ; l̂1
and ðP;G;KÞ which minimizes the performance index.

JD:C:sim ¼ min
ŵ proper

max
l̂1

min
P;G;K

~Aŵþ ~Bl̂1
��� ���2 ð15Þ

Subject to

1. �AT
i Pi

�Ai � Pi\0;Pi � 0; for i ¼ 1; 2

2. kl̂21\1k

where ~A ¼
~T 0

0 ~S

� �
B̂

Ĝ

� �
; ~B ¼

~T 0

0 ~S

� �
M̂

Ĥ

� �
;

T̂ 0

0 Ŝ

� �
¼

~T 0

0 ~S

� �T ~T 0

0 ~S

� �

The constraint of properness of ŵ can be converted to a

mathematical condition as an inequality constraint, and finally

the Problem 4.1 can be rewritten as the following problem.

Problem 4.2 Given the closed-loop system (4), find ŵ; l̂1
and (P, G, K), which optimizes the performance index:

JD:C:sim ¼ min
0� b� 1

min
ŵ

max
l̂1

min
P;G;K

~Aŵþ ~Bl̂1
��� ���2 ð16Þ

Subject to

1. �AT
i Pi

�Ai � Pi\0;Pi � 0; for i ¼ 1; 2kl̂1k
2

2. l̂21\1

3.
ŵTQbŵ� 1
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where Qb ¼ GTðHJ�1
b HTÞ�1G, q ¼ l̂1

l̂2

� �
,

Jb ¼ bI 0

0 ð1� bÞI

� �
, Gŵ ¼ Hq, G ¼ Y1 � Y2;H ¼

�H1 H2ð Þ as illustrated in Nikoukhah et al. (2010).

Problem 4.2 is a finite-dimensional inequality con-

strained optimization problem with a nonlinear cost and

three nonlinear constraints which can be solved using a

recursive algorithm as a sub-optimal method. For this

purpose, the appropriate initial conditions should be con-

sidered. Here, the sub-optimal solution can be obtained

using the following algorithm.

Algorithm 1

Step 0 Choosing the value of parameter s, between
[s1; s2], practically.

Step 1 Let the initial values for l̂1 be in such a way

that satisfy the constraint on uncertainty

energy-bound as follows:

For example, it can be considered as

l̂T1 ¼ ½x1ð0Þ ¼ 0 l1ð0Þ ¼ 0:99 l1ð1Þ ¼ 0

� � � l1ðsÞ ¼ 0�T

Step 2 Let the initial values for ŵ be as follows:

kl̂21\1k

ŵT ¼ ½wð0Þ ¼ 0 wð1Þ ¼ 0 � � � wðsÞ ¼ 0�T

Step 3 Compute the controller parameters by solving

the following optimization problem:

J1:sim ¼ min
P;G;K

~Aŵþ ~Bl̂1
��� ���2 ð17Þ

Subject to

�AT
i Pi

�Ai � Pi\0; Pi � 0; for i ¼ 1; 2

Step 4 Solving the following optimization problem

and computing the worst case of l̂1

J2:sim ¼ min
l̂1

~Aŵþ ~Bl̂1
��� ���2 ð18Þ

Subject to

l̂1k k2\1

Step 5 Compute the optimal test signal by applying

some modification

J3:sim ¼ min
0� b� 1

min
ŵ

k ~Aŵþ ~Bl̂21k ð19Þ

Subject to

ŵTQbŵ� 1

where

Qb ¼ GTðHJ�1
b HTÞ�1G; q ¼

l̂1
l̂2

� �
;

Jb ¼
bI 0

0 ð1� bÞI

� �
; Gŵ ¼ Hq;

G ¼ Y1 � Y2; H ¼ ð�H1 H2Þ

(Nikoukhah et al. 2010).

Step 6 Compare the new and previous values of J3.sim

1. if the new one is higher than the previous one, then the

algorithm should be stopped and new initial values

should be chosen.

2. if the new one is equal to the previous one, then the

algorithm should be stopped and J(optimal) is equal to

J3.sim
3. if the new one is less than the previous one, then go to

Step 3 and update the values of ŵ l̂1.

Remark 6 Choose the initial value for the time period

of test signal from the proposed method in Campbell and

Nikoukhah (2004) and Esna-Ashari et al. (2012a, b). A

method has been presented to find the optimal value of

injection time-period in Campbell and Nikoukhah

(2004).

Remark 7 Static-based algorithm depends on initial val-

ues which are assumed in Steps 1 and 2. Therefore, to

achieve a better result, the algorithm can be repeated with

different initial values. Choosing different initial values

will result in the three following cases;

1. If it is not appropriate, you will fall in an infinity loop

while executing the algorithm between Step 6 and Step

3.

2. If it is fully appropriate, in a finite number of iterations,

the optimal value of J will be obtained.

3. If it is almost appropriate, in a large number of

iterations, the optimal value of J will be obtained.
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It is worth mentioning that the controller parameters in

Step 3 could not be computed analytically, therefore, the

numerical algorithms should be applied. Moreover, these

numerical solutions are usually time-consuming and may

not be optimal. To overcome these difficulties, a con-

structive algorithm is suggested in the next section.

4.2 SME-Based Algorithm

To find an analytical solution for computing the controller

parameters the following theorem is given.

Theorem 4.3 Given wðtÞ ¼ 0, constant matrices

c0i;Q; R[ 0 and the discrete-time system (1), there exists

an optimal fixed-order DOF controller in the form of (3)

which solves Problem 3.1 if there exist the matrices Ci [ 0

and Wi [ 0 and ðP;K;GÞ in f for the following nonlinear

coupled equations:

1: Zi þ ð�AiÞCið�AT
i Þ � Ci ¼ 0; i ¼ 1; 2

2: Sþ ð�AT
i ÞWið�AiÞ �Wi ¼ 0; i ¼ 1; 2

3:
P2
i¼1

ð~BT
�Ai
Wi

�Mic0 ~C
T
�Mi
þ ~BT

�Mi
Wi

�AiCi
~CT
�Ai
þ R̂ETTCiT

TÞ ¼ 0

8>><
>>:

ð20Þ

where

Zi ¼ �Mic0i �M
T
i ;Ci ¼

C11 C12

C21 C22

� �
i

; Wi ¼
W11 W12

W21 W22

� �
i

;

E ¼ 0 G

K Pþ KDG

� �
;

Q̂ ¼ Q 0

0 0

� �
; R̂ ¼ R 0

0 0

� �
; T ¼ 0q�n 0

0 Ig�g

� �
;

S ¼ Q̂þ TTETR̂ET

~A �Ai
¼ Ai 0

0 0

� �
; ~B �Ai

¼ Bi 0

0 I

� �
;

~C �Ai
¼ Ci 0

0 I

� �
; ~A �Mi

¼ Mi

0

� �
; ~B �Mi

¼ Bi 0

0 I

� �
;

~C �Mi
¼

�Ni

0

� �
:

Proof of Theorem 4.3 is illustrated in Appendix 1.

Theorem 4.4 Given the known positive definite matrices

Wi and Ci, the controller parameters that are represented

as unknown matrix E in (20), can be computed by simul-

taneous solution of two coupled SME as the following

forms:

AXBþ CYF ¼ S1

EXBþ FYI ¼ S2

(
ð21Þ

GXMþ CZI ¼ S3

EXMþ FZI ¼ S4

(
ð22Þ

where

�S1 ¼
X2
i¼1

½BT
i W11iMic0N

T
i þ BT

i W11iAiC11iC
T
i �;

�S2 ¼
X2
i¼1

½W21iMic0N
T
i þW21iAiC11iC

T
i �;

�S3 ¼
X2
i¼1

½BT
i W11iAiC12i �; �S4 ¼

X2
i¼1

½W21iAiC12i �:

�A ¼ ½�a1�a2�; ½�ai� ¼ ½BT
i W11iBi�; �B ¼ ½�bT1 �bT2 �

T;

½�bi� ¼ ½C21iC
T
i �; �C ¼ ½�c1�c2�;

½�ci� ¼ ½BT
i W12i �; �D ¼ ½�d1�d2�;

½�di� ¼ ½Nic0N
T
i þ CiC11iC

T
i �; �E ¼ ½�e1�e2�;

½�ei� ¼ ½W21iBi�; �F ¼ ½�f1�f2�; ½�fi� ¼ ½W22i �; �G ¼ ½�g1�g2�;
½�gi� ¼ ½Rþ BT

i W11iBi�;

�M ¼ ½ �mT
1 �m

T
2 �

T; ½ �mi� ¼ ½C22i �; �H ¼ ½�h1�h2�;
½�hi� ¼ ½CiC12i �;

�I ¼ ½�IT1 �IT2 �
T; ½�Ii� ¼ ½Ii�; �X ¼

G 0

0 G

� �
;

�Y ¼ K �di þ ðPþ KDGÞ�bi 0

0 K �di þ ðPþ KDGÞ�bi

" #
;

�Z ¼ K�hi þ ðPþ KDGÞ �mi 0

0 K�hi þ ðPþ KDGÞ �mi

" #

Proof of Theorem 4.4 is illustrated in Appendix 2.

It is worth mentioning that many numerical solution

algorithms have been proposed for coupled SMEs in the

literature; but in this paper, the coupled SMEs have been

decoupled and a constructive algorithm has been suggested

to calculate the unknown controller parameters.

Theorem 4.5 Given symmetric positive definite matrices,

W11i ;W22i ;C11i and C22i , the controller parameters are

calculated as follows:

A�ZB� �Z ¼ W
�X ¼ ð �GT �GÞ�1 �GTð�S3 � �C �Z�IÞ �MTð �M �MTÞ�1

�Y ¼ ð �FT �FÞ�1 �FT�S2�I
Tð�I�ITÞ�1 � ð �FT �FÞ�1 �FT �E �X �B�ITð�I�ITÞ�1

8<
:

ð23Þ

where
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A ¼ ð �FT �FÞ�1 �FT �Eð �GT �GÞ�1 �GT �G;B ¼ �I1;W

¼ ð �FT �FÞ�1 �FT½�Eð �GT �CÞ�1 �GT�S3 � �S4��ITð�I�ITÞ�1:

Proof of Theorem 4.5 is illustrated as Appendix 3.

Now, using Theorems 4.3–4.5, the controller parameters

can be calculated analytically.

Algorithm 2

Step 0 Choosing the value of parameter s, between
[s1; s2], practically.

Step 1 Let the initial values for l̂1 in such a way

that satisfy the constraint on uncertainty

energy-bound

l̂1k k2\1

For example, it can be considered as

l̂T1 ¼ ½x1ð0Þ ¼ 0 l1ð0Þ ¼ 0:99

l1ð1Þ ¼ 0 � � � l1ðsÞ ¼ 0�T

Step 2 Let the initial values for ŵ be as follows

ŵT ¼ ½wð0Þ ¼ 0 wð1Þ ¼ 0 � � � wðsÞ ¼ 0�T

Step 3 Computing the controller parameters based on

(23)

( �ZB� �Z ¼ ð �FT �FÞ�1 �FT ½�Eð �GT �GÞ�1 �GT �S3 � �S4��ITð�I�ITÞ�1

�X ¼ ð �GT �GÞ�1 �GTð�S3 � �C �Z�IÞ �MTð �M �MTÞ�1

�Y ¼ ð �FT �FÞ�1 �FT �S2�I
Tð�I�ITÞ�1 � ð �FT �FÞ�1 �FT �E �X �B�ITð�I�ITÞ�1

Step 4 Solving min–max Problem 4.4 by considering

the results of Step 3 and computing the new

values for uncertainties and exogenous test

signal [2],

JD:CL ¼ min
wðtÞ

max
l1ðtÞ;x1ð0Þ

Xs

t¼0

vðtÞTSvðtÞ þ x1ðtÞTTx1ðtÞ

Subject to

x1ð0ÞTx1ð0Þ þ
Xs

t¼0

l1ðtÞTl1ðtÞÞ\1

Step 5 Updating the values of Wi and Ci

Wi ¼
Xs

k¼0

ð�AT
i Þ

k
Sð�Ak

i Þ and Ci ¼
Xs

k¼0

ð�Ak
i ÞZið�AT

i Þ
k

Step 6 Checking the stop criterion, if the results are

converged to a constant value, the algorithm

should be stopped, else go to Step 3 and update

the computed values.

In comparison with static algorithm, the SME algorithm

is an analytical algorithm and it converges to the optimal

result in less iteration for systems with a smaller number of

models. Actually, the analytical solution of equations in the

SME algorithm is complicate and time-consuming.

5 Numerical Example

To evaluate the synthesis approach, Problem 3.1 is solved

using both solution algorithms in three different scenarios.

In the first scenario, test signal and controller are designed

for a MIMO system using Algorithm 1. In the second one,

to solve the synthesis problem, algorithm II is considered.

In scenario III, to show the effect of weighting matrices in

(7) on the synthesis results, scenario II is resolved with

different values of weighting matrices.

Consider the following MIMO system with healthy and

faulty models known as models-1 and -2, correspondingly.

The order of system is two, two inputs and two outputs and

both models are considered to be unstable. The proposed

models are as follows:

A1 ¼
�0:28 �0:8
2:4 �0:4

� �
; B1 ¼

3 0:5
1 �2

� �
; M1

¼ 1 2

0 1

� �
; C1 ¼

0 �2

1 3

� �
; D1 ¼

0:5 3

1 1

� �
; N1

¼ 1 0:5
3 1

� �
;

Fig. 3 Scaled optimal test signal for Scenario-1
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A2 ¼
�1:1 0:55
0:57 1:14

� �
; B2 ¼

1:8 0:5
�1 1:8

� �
;M2

¼ 0 �1

2 3

� �
; C2 ¼

�2:1 0

1 �1

� �
; D2

¼ 0:5 3

1 1

� �
; N2 ¼

3 1

�1 1

� �
:

For the scenarios I and II, all constant weighting

matrices are selected as a unitary matrix with appropriate

dimension. The injection period time of test signal is 18(s)

and the scaled optimal test signal wðtÞ is achieved for first

scenario in 23 iterations as shown in Fig. 3. In this way, the

minimum value of cost function for the first scenario is

30.1249. The optimal DOF controller is calculated as:

P ¼
�2:5090 0:6181

�3:3922 0:5411

� �
; G ¼

0:0190 0:3262

0:6781 �0:0872

� �
;

K ¼
1:1789 0:4678

1:4612 0:8281

� �
:

Regarding the designed controller, the closed-loop poles

for healthy and faulty models are placed in p1;2 ¼ 0:7180	
0:4533i; p3 ¼ �0:6681	 0:5443i and p1 ¼ �0:4313; p2;3
¼ 0:6324	 0:8773i; p4 ¼ �0:0136 respectively.

In scenario II, the controller and the test signal are

designed using algorithm II in 14th iteration. The test

signal for this case is depicted in Fig. 4 and the minimum

value of cost function is calculated as 27.9311 which is 7%

lower than the first scenario. Note that, it does not mean

that the energy of test signal in the second case is surely

lower than the first case. In fact, the optimal test signal

minimizing the quadratic cost in (7) enables the optimal

controller-performance to be achieved. It is a trade-off

between controller-performance and energy of the test

signal. Moreover, the optimal controller parameters are

calculated as:

P ¼
�2:7090 0:6183

�3:2922 0:6402

� �
; G ¼

0:0090 0:1762

0:6676 �0:0972

� �
;

K ¼
1:0795 0:4678

1:4610 0:8281

� �
:

Regarding the mentioned controller, the closed-loop

poles for healthy and faulty models are placed in p1;2 ¼
�0:3530	 0:4809i; p3;4 ¼ 0:1043	 0:3203i and p1 ¼
�0:8942; p2;3 ¼ 0:4694	 0:6082i; p4 ¼ 0:1783

respectively.

It is expected to find the proper test signal with lower

energy by varying the weighting matrices S and T in (7).

As noted before, if the weighting matrices are chosen

properly, the cost function in (7) could be reduced. To

prove this claim, the Problem 3.1 is resolved for S ¼
diag(0:6Þ and T ¼ diagð1:4Þ as scenario III. The injection

time-period is assumed to be 18 s, and the scaled optimal

exogenous test signal wðtÞ is depicted in Fig. 5. In this

way, the minimum value of cost function is reduced to

27.0318 after the 17th iteration and the optimal controller

parameters are calculated as:

Fig. 4 Scaled optimal test signal for Scenario-2

Fig. 5 Scaled optimal test signal for Scenario-3

Table 1 Simulation results of scenarios 1, 2 and 3

Scenario Solution algorithm Weighting matrices Scaled test signal energy Minimum of cost Number of iterations

S T

1 I diagð1Þ diagð1Þ 6.8801 30.1249 23

2 II diag(1) diagð1Þ 7.8587 27.9311 14

3 II diag(0:6Þ diagð1:4Þ 6.7599 27.0318 17
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P ¼ �2:6211 0:5183
�3:7922 0:8402

� �
; G

¼ 0:0295 0:2962
0:6576 �0:0872

� �
; K ¼ 1:2795 0:4678

1:3110 0:7281

� �
:

The closed-loop poles for healthy and faulty models for

this controller are placed in p1;2 ¼ 0:1907	 0:7395i; p3 ¼
�0:9157; p4 ¼ 0:9414 and p1;2 ¼ �0:5882	
0:7760i; p3;4 ¼ �0:0247	 0:4033i respectively. The men-

tioned scenario results are summarized in Table 1.

6 Conclusion

In this paper, the optimal integrated synthesis of AFD

and control problem has been formulated in a discrete-

time setting. The optimal fixed-order dynamic output

feedback controller is designed which guarantees the

stability of healthy and faulty models and optimizes the

control performance for healthy model. From an optimal

AFD point of view, an optimal test signal is generated

such that the system models are guaranteed separation

with minimum energy. In this way, the optimal inte-

grated AFD and control problem is formulated as a

constrained finite-dimensional optimization problem with

a general quadratic performance index. Two recursive

constructive algorithms have been suggested for finding

sub-optimal solution of the proposed optimization

problem. Finally, to illustrate the effectiveness of the

theoretical results, the algorithms were applied to a

MIMO system with two unstable models. The test signal

was generated for three interesting scenarios. By varying

the constant weighting matrices, the trade-off between

control and detection has been shown. Further research

works include two aspects. The first one is that the

proposed AFD approach could be extended to a large

class of uncertain nonlinear systems. Implementation on

an experimental set-up such as electrical machines could

be another interesting subject for future research.
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Appendices

Appendix 1: Proof 4.3

Let L ¼
P2
i¼1

Tr½WiZi� þ
P2
i¼1

Tr½Cið�AT
i Wi

�Ai �Wi þ SÞ�, where

the positive definite matrix i is ith Lagrangian multiplayer.

The following sufficient conditions for existence of optimal

fixed-order DOF controller are given by:

1:
oL
oWi

¼ Zi þ ð�AiÞCið�AT
i Þ�i ¼ 0; i ¼ 1; 2

2:
oL
oi

¼ Sþ ð�AT
i ÞWið�AiÞ �Wi ¼ 0; i ¼ 1; 2

3:
oL
oE

¼
X2
i¼1

ð~B �MT
i
Wi

�Mic0 ~C �MT
i
þ ~B �AT

i
Wi

�AiCi
~C �AT

i
þ R̂ETTCiT

TÞ ¼ 0

ð24Þ

Now, by solving the set of coupled nonlinear equations

(24) simultaneously, the optimal DOF controller can be

obtained. According to Lagrange’s theorem, to achieve the

minimum point, the unknown matrices Wi and Ci

should be positive definite. To complete the optimal DOF

controller synthesis, the following theorem is discussed.

Appendix 2: Proof 4.4

By extracting (6.3), we have

With regard to (25.1)–(25.4) for i ¼ 1; 2; the new vari-

ables are rewritten as follow:

1:
P2
i¼1

BT
i W11iMic0N

T
i þ BT

i W11iAiC11iC
T
i þ BT

i W11iBiGC21iC
T
i

þBT
i W12iKNic0N

T
i þ BT

i W12iKCiC11iC
T
i þ BT

i W12iðPþ KDGÞC21iC
T
i

" #
¼ 0

2:
P2
i¼1

RGC22i þ BT
i W11iAiC12i þ BT

i W11iBiGC22i

þBT
i W12iKCiC12i þ BT

i W12iðPþ KDGÞC22i

" #
¼ 0

3:
P2
i¼1

W21iMic0N
T
i þW21iAiC11iC

T
i þW21iBiGC21iC

T
i þW22iKNic0N

T
i

þW22iKCiC11iC
T
i þW22iðPþ KDGÞC21iC

T
i

� �
¼ 0

4:
P2
i¼1

W21iAiC12i þW22iðPþ KDGÞC21iC
T
i

	 

¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð25Þ
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1:�S1 þ
P2
i¼1

�aiG�bi þ �ciK �di þ �ciðPþ KDGÞ�bi ¼ 0

2:�S3 þ
P2
i¼1

�giG �mi þ �ciK�hi þ �ciðPþ KDGÞ �mi ¼ 0

3:�S2 þ
P2
i¼1

�eiG�bi þ �fiK �di þ �fiðPþ KDGÞ�bi ¼ 0

4:�S4 þ
P2
i¼1

�eiG �mi þ �fiK�hi þ �fiðPþ KDGÞ �mi ¼ 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð26Þ

where

�S1 ¼ �
X2
i¼1

½BT
i W11iMic0N

T
i þ BT

i W11iAiC11iC
T
i �;

�S2 ¼ �
X2
i¼1

½W21iMic0N
T
i þW21iAiC11iC

T
i �;

�S3 ¼ �
X2
i¼1

½BT
i W11iAiC12i �; �S4 ¼ �

X2
i¼1

½W21iAiC12i �:

½�ai� ¼ ½BT
i W11iBi�; ½�bi� ¼ ½C21iC

T
i �; ½�ci� ¼ ½BT

i W12i �;
½�di� ¼ ½Nic0N

T
i þ CiC11iC

T
i �

½�ei� ¼ ½W21iBi�; ½�fi� ¼ ½W22i �; ½�gi� ¼ ½Rþ BT
i W11iBi�;

½ �mi� ¼ ½C22i �; ½�hi� ¼ ½CiC12i �;
½�Ii� ¼ ½Ii�:

Here, the compact form of (26) can be assumed as

follows:

Now, by introducing some new variables, (27) is

rewritten as

1: �A �X �Bþ �C �Y�I ¼ �S1
2: �G �X �M þ �C �Z�I ¼ �S3
3: �E �X �Bþ �F �Y�I ¼ �S2
4: �E �X �M þ �F �ZI ¼ �S4

8>><
>>:

ð28Þ

where �A ¼ ½�a1�a2�; �B ¼ ½�bT1 �bT2 �
T; �C ¼ ½�c1�c2�; �D ¼ ½�d1�d2�;

�E ¼ ½�e1�e2�; �F ¼ ½�f1�f2�; �G ¼ ½�g1�g2�; �M ¼ ½ �mT
1 �m

T
2 �

T; �H ¼

½�h1�h2�; �I ¼ ½�IT1 �IT2 �
T; �X ¼ diagonal(GÞ; �Y ¼ diagonal(K �di

þðPþ KDGÞ�biÞ; �Z ¼ diagonal(K�hi þ ðPþ KDGÞ �miÞ and
�Ii is a unitary matrix with the proper dimension for i ¼ 1; 2.

Obviously, four equations in (28) can be considered as

two sets of coupled SME as

SME:1 :
�A �X �Bþ �C �Y�I ¼ �S1
�E �X �Bþ �F �Y�I ¼ �S2

�
and SME:2

:
�G �X �M þ �C �Z�I ¼ �S3
�E �X �M þ �F �ZI ¼ �S4

�

Appendix 3: Proof 4.5

If matrices R;Ci ¼
C11 C12

C21 C22

� �
i

and Wi ¼

W11 W12

W21 W22

� �
i

are symmetric positive definite, then

obviously, sub-matrices W11i , W22i , C11i and C22i will be

symmetric positive definite. Hence, regarding (25) the

following relations are achieved:

�gi � 0 ! �GT �G � 0
�fi � 0 ! �FT �F � 0

�mi � 0 ! �M �MT � 0
�Ii � 0 ! �I�IT � 0

8>><
>>:

ð29Þ

Now, regarding (29) and using pseudo-inverse defini-

tion, the unknown matrix �X in (28.2) is calculated as

ð �GT �GÞ�1 �GT �G �X �M �MTð �M �MTÞ�1 þ ð �GT �GÞ�1 �GT �C �Z�I �MTð �M �MTÞ�1

¼ ð �GT �GÞ�1 �GT�S3 �M
Tð �M �MTÞ�1 !

�X ¼ ð �GT �GÞ�1 �GTð�S3 � �C �Z�IÞ �MTð �M �MTÞ�1

ð30Þ

By replacing (30) in (28.4), the unknown matrix �X is

calculated as

1: ½�a1�a2�
G 0

0 G

� � �b1
�b2

" #
þ ½�c1�c2�

K �d1 þ ðPþ KDGÞ�b1 0

0 K �d2 þ ðPþ KDGÞ�b2

" #
�I1
�I2

" #
¼ �S1

2: ½�g1�g2�
G 0

0 G

� �
�m1

�m2

� �
þ ½�c1�c2�

K�h1 þ ðPþ KDGÞ �m1 0

0 K�h2 þ ðPþ KDGÞ �m2

" #
�I1
�I2

" #
¼ �S3

3: ½�e1�e2�
G 0

0 G

� � �b1
�b2

" #
þ ½�f1�f2�

K �d1 þ ðPþ KDGÞ�b1 0

0 K �d2 þ ðPþ KDGÞ�b2

" #
�I1
�I2

" #
¼ �S2

4: ½�e1�e2�
G 0

0 G

� �
�m1

�m2

� �
þ ½�f1�f2�

K�h1 þ ðPþ KDGÞ �m1 0

0 K�h2 þ ðPþ KDGÞ �m2

" #
�I1
�I2

" #
¼ �S4

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð27Þ
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ð �FT �FÞ�1 �FT �Eð �GT �GÞ�1 �GTð�S3 � �C �Z�IÞ �MTð �M �MTÞ�1 �M�ITð�I�ITÞ�1

þ ð �FT �FÞ�1 �FT �F �Z�I�ITð�I�ITÞ�1 ¼ ð �FT �FÞ�1 �FT�S4�I
Tð�I�ITÞ�1

! ð �FT �FÞ�1 �FT �Eð �GT �GÞ�1 �GTð�S3 � �C �Z�IÞ�ITð�I�ITÞ�1

þ �Z ¼ ð �FT �FÞ�1 �FT�S4�I
Tð�I�ITÞ�1

! ��Z þ ½ð �FT �FÞ�1 �FT �Eð �GT �GÞ�1 �GT �C��Z½�I�ITð�I�ITÞ�1�
¼ �ð �FT �FÞ�1 �FT�S4�I

Tð�I�ITÞ�1 þ ð �FT �FÞ�1 �FT �Eð �GT �GÞ�1

�GT�S3�I
Tð�I�ITÞ�1

! ½ð �FT �FÞ�1 �FT �Eð �GT �GÞ�1 �GT �C��Z � �Z ¼ ð �FT �FÞ�1 �FT

½�Eð �GT �GÞ�1 �GT�S3 � �S4��ITð�I�ITÞ�1

ð31Þ

Indeed (31) is assumed as a discrete Sylvester equation

in the form of A�ZB� �Z ¼ W , where

A ¼ ½ð �FT �FÞ�1 �FT �Eð �GT �GÞ�1 �GT �C�; B ¼ I;

W ¼ ð �FT �FÞ�1 �FT½ �Eð �GT �GÞ�1 �GT�S3 � �S4��ITð�I�ITÞ�1

The Sylvester equation in (31) can be solved and �Z can

be computed using MATLAB�/command ‘‘dlya-

p(A,B,W)’’. Hence, by replacing the computed value of �Z

in (30), �X can be calculated. In the next step, the calculated

parameter �X is replaced in (28.3). In the same way, �Y is

calculated as follows:

�Y ¼ ð �FT �FÞ�1 �FT�S2�I
Tð�I�ITÞ�1 � ð �FT �FÞ�1 �FT �E �X �B�ITð�I�ITÞ�1

ð32Þ

Using the value of �X and replacing it in (32), �Y will be

obtained.
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