
RESEARCH PAPER

An Online Subspace Denoising Algorithm for Maternal ECG
Removal from Fetal ECG Signals

Marzieh Fatemi1 • Reza Sameni1

Received: 30 April 2015 / Accepted: 19 February 2017 / Published online: 27 April 2017

� Shiraz University 2017

Abstract Noninvasive extraction of the fetal electrocar-

diogram (fECG) from multichannel maternal abdomen

recordings is an emerging technology used for fetal cardiac

monitoring and diagnosis. The strongest interference for

the fECG is the maternal ECG (mECG), which is not

always removed through conventional methods, including

blind source separation, especially for low-rank abdominal

recordings. In this work, we address the problem of

maternal cardiac signal removal and introduce an online

subspace denoising procedure customized for mECG can-

cellation. The proposed method is a general online

denoising framework, which can be used for the extraction

of a signal subspace from noisy multichannel observations

in low signal-to-noise ratios, using suitable prior informa-

tion of the signal and/or noise. The method is fairly generic

and may also be useful for the separation of other signals

and noises. The performance of the proposed technique is

evaluated on both real and synthetic data and benchmarked

versus state-of-the-art methods.

Keywords Online subspace denoising � Semi-blind source

separation �Maternal ECG cancellation � Noninvasive fetal
ECG extraction � Online generalized eigenvalue

decomposition

1 Introduction

The fetal electrocardiogram (fECG) provides vital infor-

mation about the fetal cardiac status. Recent measurement

and processing technologies have enabled the noninvasive

extraction of the fECG, from an array of sensors placed on

the maternal abdomen (Sameni and Clifford 2010). One of

the most challenging issues in this context is to remove

maternal cardiac (mECG) interferences, without affecting

the fECG. The mECG can be up to two orders of magni-

tude stronger than the fECG (Sameni and Clifford 2010).

To date, various methods have been developed for

mECG removal, including spatial filtering (Bergveld and

Meijer 1981), adaptive filtering (Widrow et al. 1975;

Strobach et al. 1994; Swarnalath and Prasad 2010), tem-

plate subtraction techniques (Ungureanu and Wolf 2006;

Martens et al. 2007) and Kalman filtering (Sameni 2008;

Sameni et al. 2007b, 2008b).

Although adaptive and Kalman filters have been very

effective for single channel ECG denoising, they have two

major limitations for fECG extraction: (1) the inter-channel

correlation of the ECG is not used, (2) the fECG is

removed with the mECG during periods of mECG and

fECG temporal overlap (Sameni 2008). Both issues can be

avoided by using multiple channels.

A well-known multichannel technique for extraction of

fECG is blind source separation (BSS) using independent

component analysis (ICA), which has been shown to be

more accurate and robust as compared to similar approa-

ches (Zarzoso and Nandi 2001). However, a basic limita-

tion in conventional ICA is that the performance highly

degrades in presence of full-rank Gaussian noise (Graupe

et al. 2007), resulting in residual mECG within the fECG.

It is therefore more effective to remove the mECG before

applying ICA techniques (Sameni et al. 2010a).
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More recently, a deflation subspace decomposition

procedure, which we call denoising by deflation (DEFL),

was proposed for signal subspace separation from full-rank

noisy multichannel observations (Sameni et al. 2010a, b;

Sameni 2008; Fatemi et al. 2013). An interesting applica-

tion of this framework is for mECG removal from maternal

abdominal recordings (Sameni et al. 2010a). The method

has resulted in very good fECG separation, especially in

low signal-to-noise ratios (SNR). Yet, a limiting factor of

DEFL is the offline block-wise procedure required for

generalized eigenvalue decomposition (GEVD), as the core

of this algorithm. This issue has been the major obstacle in

using DEFL for real-time online fECG extraction.

In this work, using recent developments in online GEVD

(Zhao et al. 2008), an online extension of DEFL—called

online denoising by deflation (ODEFL)—is introduced for

eliminating the mECG from noninvasive maternal

abdominal recordings. As with the offline version, the

proposed method is fairly general and applicable to various

scenarios depending on the prior knowledge regarding the

signal and noise subspaces.

2 Problem Definition

Electrical signals recorded from the abdomen of a pregnant

woman consist of mixtures of various signals including the

mECG, fECG, baseline wanders and muscle contractions

considered as noise. Bio-potentials recorded at the body

surface are low frequency signals compared with the high

propagation velocity of the electrical signals and the sensor

distances (Geselowitz 1989). Therefore, the following lin-

ear instantaneous data model has been shown to be rather

realistic for modeling multichannel maternal abdominal

signals (Sameni et al. 2010a):

xðtÞ ¼ HmðtÞsmðtÞ þHf ðtÞsf ðtÞ þHgðtÞvðtÞ þ nðtÞ

¼D xmðtÞ þ xf ðtÞ þ gðtÞ þ nðtÞ
ð1Þ

where smðtÞ is the maternal ECG source, sf ðtÞ is the fetal

ECG source and vðtÞ represents structured noises, such as

electrode movements and muscle contractions. nðtÞ is full-
rank measurement noise and HmðtÞ; Hf ðtÞ and HgðtÞ are the
transfer functions that model the propagation media from

the corresponding source signals onto the body surface

(Sameni et al. 2007a). In a realistic model, the cardium (of

the mother and fetus) should be considered as a distributed

source. Therefore, smðtÞ and sf ðtÞ are generally full-rank

(Sameni 2008); but the effective number of dimensions can

be relatively small (typically below six Sameni et al.

2006), depending on the sensor positioning and SNR.

The overall objective of noninvasive fECG extraction is

to extract xf ðtÞ from this mixture. Among the different

interferences and noises, the mECG is the dominant

interference, which cannot be fully separated from the

fECG through conventional ICA, due to its full-rank nat-

ure, high amplitude, and background noise. This results in

residual components within the extracted fECG. The DEFL

algorithm was proposed to overcome this issue (Sameni

et al. 2010a). Before introducing its online version, DEFL

is reviewed in the following section.

3 Background

3.1 Denoising by Deflation

The DEFL algorithm is a subspace denoising method,

which removes the undesired parts of a multichannel noisy

data using a sequence of linear decomposition, denoising

and linear re-composition, in a block-wise manner. As

shown in Fig. 1, a block of multichannel noisy data X ¼
½xð1Þ; . . .; xðTÞ� 2 RN�T is given as input to the DEFL

algorithm and a denoised block of the same dimension,

namely Y ¼ ½yð1Þ; . . .; yðTÞ� 2 RN�T is obtained.

The first stage of DEFL consists of finding a suit-

able invertible spatial filter W 2 RN�N ; which works as a

feature enhancer for transforming X to a space in which

the data is ranked from the most to least resemblance to the

‘‘desired property’’. In other words, in the transformed

space, the SNR is improved within the first few channels,

allowing better signal/noise separability for the first few

channels. At the second stage, the signal and noise contents

of the first L channels are separated using a suitable de-

noising method, which is customized per-application,

according to the nature of the signals and noises. In the last

stage, the residual signals and the N � L unchanged

channels are back-projected to the original space. These

three stages make the first iteration of the DEFL algorithm.

This procedure is repeated in multiple iterations, each time

over the output of the previous iteration, until all the

undesired components within the data are eliminated. The

number of iterations can be selected using a termination

criterion that is application-dependent and measures the

quality of the signal according to a desired characteristics.

For instance, the periodicity measure (PM) defined in Sect.

Fig. 1 Block-wise deflation scheme. Adapted from Sameni et al.

(2010a)
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6.2 can be used to indicate the portion of the maternal ECG

that is removed (or retained) after each iteration, in each

channel.

Each iteration of DEFL can be summarized as follows:

Y ¼W�TGðWTX; LÞ ð2Þ

where X is the input data block, Y is output data block,

Gð�; �Þ is the denoising operator applied to the first L

channels of the input, and W is the spatial filter, as defined

above.

The matrix W is application-dependent. As proposed in

Sameni et al. (2010a), it can be obtained by maximizing a

Rayleigh quotient in a GEVD procedure. For the applica-

tion of interest, periodic component analysis (pCA) (Sa-

meni et al. 2008a) is used for estimating W:

For multichannel ECG observations xðtÞ 2 RN ; pCA
consists of finding w 2 RN in sðtÞ ¼ wTxðtÞ; such that the

following objective function is maximized.

w� ¼ argmax
w

EtfsðtÞsðt þ stÞg
EtfsðtÞ2g

¼ argmax
w

wTCsw

wTCw
ð3Þ

Etf�g denotes averaging over time; C¼D EtfxðtÞxTðtÞg and
Cs¼

D
EtfxðtÞxTðt þ stÞg are the covariance and lagged

covariance matrices, respectively; st is a variable period

calculated using the reference (here the maternal) ECG R-

wave peaks, as defined in Sameni et al. (2008a). Estimating

the matrix W in Eq. (3) is equivalent to solving the fol-

lowing GEVD problem for W 2 RN�N :

WHCsW ¼ K; WHCW ¼ IN ð4Þ

where W ¼ ½w1; . . .;wN � is a matrix of generalized eigen-

vectors, IN is an N � N identity matrix and K ¼
diagðk1; . . .; kNÞ is a diagonal matrix containing the gen-

eralized eigenvalues on its diagonal. It can be shown that

w� ¼ w1; i.e., the eigenvector corresponding to the largest

generalized eigenvalue k1 maximizes (3). Moreover, if C

and Cs are symmetric matrices, k1� k2� � � � � kN are real

and the components of sðtÞ ¼WTxðtÞ are ranked according

to their resemblance with the desired (the maternal) ECG

(Sameni et al. 2008a).

An interesting property of the DEFL algorithm is that

unlike most PCA and ICA denoising schemes, the data

dimensionality is preserved. Moreover, due to the denois-

ing block between the linear projection stages, it overall

performs as a nonlinear filtering scheme, which can deal

with full-rank and even non-additive mixtures. Apparently,

the method is only applicable when prior information about

the signal/noise subspaces is available and the maternal

ECG is normal (pseudo-periodic). In previous studies, this

algorithm has been used for various applications (Amini

et al. 2008; Gouy-Pailler 2009; Sameni et al. 2010a;

Sameni and Gouy-Pailler 2014). Despite its vast range of

applications, the block-wise nature of the algorithm has

limited its application to batch processing. In this work, an

online extension of DEFL is presented.

3.2 Incremental Common Spatial Pattern

Common spatial pattern (CSP) has found vast applications

in machine learning and signal processing in the recent

decade. It has been widely used in biomedical applications

such as brain computer interface (Ramoser et al. 2000).

From an algebraic viewpoint, CSP consists of finding a

matrix W; which jointly diagonalizes two matrices (Rl and

Rc) using GEVD.

An online extension of CSP, known as incremental

common spatial pattern (ICSP), has also been developed

for time-varying matrices RlðtÞ and RcðtÞ (Zhao et al.

2008). In ICSP, the sample-wise update of the first spatial

pattern is as follows:

w1ðtÞ ¼
wT

1 ðt � 1ÞRcðtÞw1ðt � 1Þ
wT

1 ðt � 1ÞRlðtÞw1ðt � 1Þ R
�1
c ðtÞRlðtÞw1ðt � 1Þ

ð5Þ

The minor patterns are found by repeating (5), after

applying a deflation procedure on Rl:

Rl  IN �
Rlw1w

T
1

wT
1Rlw1

� �
Rl ð6Þ

In Sect. 4, this recursive update algorithm is integrated in

the pCA algorithm to develop an online extension of

DEFL.

4 Method

Herein, an online extension of DEFL, which we coin as

online denoising by deflation (ODEFL) is proposed for

mECG cancellation. The overall block-diagram of ODEFL

is summarized in Algorithm 1. In this algorithm, xðtÞ is the
input multi-channel data, yiðtÞ (1� i�K) is the output of

each iteration, K is the number of iterations, T is the

number of samples, and Gið�; LÞ is the denoising function

for removing the undesired parts,1 applied to the first

L channels in iteration i.

In Algorithm 1, unlike DEFL, which works on a block

of data, ODEFL proceeds sample-by-sample in parallel

units corresponding to the successive iterations of the

deflation algorithm. In ODEFL, the matrixW is recursively

1 Note that for mixtures of signals with different origins and temporal

characteristics, the projection (and back-projection) algorithms and

the denoising scheme can generally be customized for each iterations,

which is beyond the scope of the current study.
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updated from one sample to another and all stages of DEFL

are repeated on a sample-wise basis in each iteration. The

major stages of Algorithm 1 are detailed below.

4.1 Online Estimation of Covariance Matrices

for pCA

For an online formulation, the signal statistics contained in

C and Cs; should be tracked in time. In order to re-estimate

them as the signal evolves, the temporal averaging in the

definitions of C and Cs can be replaced with a weighted

sum as follows (Yang 1995):

CðtÞ ¼
Xt�1
i¼0

bixðt � iÞxTðt � iÞ

CsðtÞ ¼
Xt�1
i¼0

cixðt � iÞxTðt � iþ st�iÞ
ð7Þ

where b 2 ½0; 1� and c 2 ½0; 1� are forgetting factors. This is

an infinite impulse response (IIR) formulation, in which all

samples in the range 1� i� t contribute in estimating the

covariance matrices; but with smaller weights to the older

samples.2

The weighted sum in (7) can be replaced with the fol-

lowing recursion formulas, in favor of computational and

memory efficiency:

CðtÞ ¼ bCðt � 1Þ þ xðtÞxTðtÞ
CsðtÞ ¼ cCsðt � 1Þ þ xðtÞxTðt þ stÞ

ð8Þ

The forgetting factors enable the adaptation of the algo-

rithm in stationary and non-stationary environments. For

stationary data, selecting b ¼ c ¼ 1 incorporates all the

samples with identical weights. For non-stationary data, the

value is chosen less than 1, which for t	 1 is similar to

using a sliding window with the effective window length of

1=ð1� bÞ (Yang 1995).

In order to guarantee the symmetry of C and Cs (to have

real generalized eigenvalues extracted by GEVD), the

following update is applied after re-estimation of the sec-

ond order statistics.

CðtÞ  CðtÞ þ CTðtÞ
2

; CsðtÞ  
CsðtÞ þ CT

s ðtÞ
2

ð9Þ

4.2 Online Demixing Matrix Update

In order to obtain an online solution for the GEVD problem

in (3) and (4), the time-varying covariance matrix updates

are integrated into the online update formula (5) as follows.

w1ðtÞ ¼
wT

1 ðt � 1ÞCsðtÞw1ðt � 1Þ
wT

1 ðt � 1ÞCðtÞw1ðt � 1Þ C
�1
s ðtÞCðtÞw1ðt � 1Þ

ð10Þ

where w1ðtÞ is the the first generalized eigenvector corre-

sponding to the largest generalized eigenvalue at time

2 For other applications, one might prefer a finite impulse response

(FIR) form, in which the samples do not have any effect beyond a

finite window length.
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index t. As noted in Sect. 3.2, the other minor eigenvectors

are computed in a sequential (deflation) manner (Zhao

et al. 2008).

As shown in Step 11 of Algorithm 1, in order to reduce

the computational complexity of the matrix inversion

required in (10), C�1s ðtÞ is recursively calculated by

applying the matrix inversion lemma to the sample-wise

covariance matrix update in (8).

It should be noted that since the online pCA algorithm

requires the R-peak locations for calculating CsðtÞ; the

update of this matrix has a minimum delay of one ECG

beat, which can be fixed to the longest expected mECG

beat gap (e.g., 1.2 s). Therefore, the ODEFL output has a

fixed delay with its input (of the order of a second), which

is acceptable for fECG extraction.

4.3 Real-Time Implementation

The parallel structure of Algorithm 1 is specifically

appealing for real-time applications. The algorithm can be

efficiently implemented using reconfigurable hardware

architectures, such as field-programmable gate arrays

(FPGA), or using real-time processors, embedded systems

or graphics processing units (GPU). For FPGA imple-

mentations, the iteration over K is converted into K parallel

units (known as modules). For software implementations

(e.g. using GPU), parallelization techniques such as loop

unrolling can be used to implement the algorithm concur-

rently on K parallel processors. In either case, the iteration

over time (t) is performed sample-by-sample as the data

flows into the processor in real-time, with a single sample

dependency to sample t � 1:

As later noted in Sect. 7.4, for real-time implementa-

tions (either on FPGA, embedded systems or GPU), the

number of iterations K and the number of denoised chan-

nels L can be fixed to predefined values to obtain clock-

wise accuracy and a constant processing load over time and

processing units.

5 Benchmark Algorithms

The proposed algorithm has been evaluated on both real

and synthetic data and compared with the block-wise

DEFL (Sameni et al. 2010a), single-channel ECG Kalman

Filter (Sameni 2008; Sameni et al. 2007b, 2008b), standard

ANC (Widrow et al. 1975), a modified multistage ANC

(Swarnalath and Prasad 2010), template subtraction (Mar-

tens et al. 2007), ICA denoising (Zarzoso and Nandi 2001)

and a single-channel wavelet denoiser. In this section, the

details of the benchmark methods used for evaluation are

reviewed.

5.1 Kalman Filter

The Kalman filter (KF) and its nonlinear version, the ex-

tended Kalman filter (EKF), are methods for estimating

hidden states of a system, having its dynamics and a set of

observations. In the past decade, this filter has been adapted

for estimating ECG signals from noisy measurements and

other applications (Sameni et al. 2007b, 2008b; Sameni

2008). In summary, using a polar extension of the mor-

phological ECG model proposed by McSharry et al.

(2003), the following state space and observation models

have been used as the ECG dynamic model (Sameni et al.

2007b, 2008b; Sameni 2008):

hkþ1 ¼ ðhk þ xdÞ mod 2p

zkþ1 ¼ zk �
X
i

d
aix
b2i

Dhi exp �
Dh2i
2b2i

� �
þ g

8><
>: ð11Þ

sk ¼ zk þ vk

/k ¼ hk þ uk

�
ð12Þ

where Dhi ¼ ðhk � hiÞ mod 2p; d is the sampling period,

g is an additive noise, and the summation is taken over

finite number of Gaussian waveforms used for modeling P,

Q, R, S and T waves with amplitude, center and width

parameters ai; hi and bi; respectively. The variable zk; the

amplitude of the noiseless ECG at time instant k, and h
(known as the cardiac phase), are assumed as state vari-

ables for this model. The parameters hi;x; ai; bi and g are

i.i.d Gaussian random variables considered as process noise

vectors. In the observation equations, sk and /k are

amplitude and phase of the noisy observation ECG and vk
and uk are observation noise vectors of the ECG and its

phase.

Using an EKF, the ECG signal zk can be estimated from

the background noise vk (Sameni et al. 2007b, 2008b). For

our application of interest, zk is the maternal ECG, which

should be estimated and removed from the maternal

abdominal sensors. Further details can be found at Sameni

et al. (2007b, 2008b). The required source codes are online

available at Sameni (2010).

5.2 Adaptive Noise Cancellation

Adaptive noise cancellation (ANC) is a well-known

method for online signal denoising developed by Widrow

et al. (1975). Standard ANC consists of a primary input

that is the corrupted signal and a reference input containing

the noise that is correlated with the primary noise. The

weights of the filter adaptively change over time to retrieve

an estimate of the noise and the weight update algorithm

depends on the defined cost function. By subtracting the

filter output (noise estimate) from the primary input, the
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primary signal is estimated and the corrupted signal is

denoised.

For mECG cancellation, the reference input is obtained

by a mECG channel recorded directly from the maternal

chest. The primary input is obtained by maternal abdomen

recordings containing both maternal and fetal ECG.

For multichannel recordings, the ANC is applied to each

channel separately. As discussed in Sameni et al. (2007b),

the drawback of conventional ANC for ECG denoising is

that the reference ECG should be morphologically similar

to the contaminating ECG. However, since the ECG mor-

phology highly depends on the lead position, the mECG

contaminating the maternal abdominal leads do not nec-

essarily resemble the chest lead ECG morphology. As a

result, the performance of this method widely differs from

one channel to another, which leads to a weak overall

performance over all channels, as compared to other

methods. Nonetheless, the method remains as a well-know

benchmark for mECG cancellation.

More rigorously, considering n(t) as the mECG, s(t) as

the non-mECG (fECG plus background signals), dðtÞ ¼
sðtÞ þ nðtÞ as the noisy observations, x(t) as the reference

mECG, and w ¼ ½w0; . . .;wp�1�T as the weight coefficient

of length p, using a least mean squares (LMS) algorithm,

the output of an ANC is obtained from Algorithm 2.

In Algorithm 2, T is the number of data samples, n̂ðtÞ
and ŝðtÞ are estimates of primary noise and primary signal,

respectively. The parameter l is a step size that controls the

filter stability and convergence rate and should be in the

range ½0; kmax�; where kmax is the greatest eigenvalue of the

covariance matrix R ¼ EfxðtÞxðtÞTg (Haykin 1996, Ch. 9).

More recently, other extensions of the ANC have also

been introduced for fECG extraction. One of the extensions

that is used in this study for comparison is a multistage

ANC (Swarnalath and Prasad 2010). The modified ANC

consists of two sequential adaptive filters, which enables

the application of different adaptive algorithms such as

LMS, recursive least squares (RLS) and normalized least

mean square (NLMS) in a single filter. Another aspect of

this method is that the primary and reference inputs are

applied to the algorithm after a sequence of operations such

as squaring and/or rescaling to increase reliability of the

algorithm to situations in which the maternal ECG in the

primary input is not quite similar to the reference input.

Further details regarding this filtering scheme can be fol-

lowed from Swarnalath and Prasad (2010).

5.3 ICA-Based BSS and Denoising

ICA-based BSS was first used in Zarzoso and Nandi (2001)

for fECG extraction from maternal abdominal sensors. This

method exploits the statistical independence and spatial

diversity of the sources (here the maternal and fetal heart

signals plus noises), for separating fECG from other sig-

nals. In classical ICA, it is assumed that the observed

signals xðtÞ 2 RN are linear mixtures of N independent

sources sðtÞ 2 RN :

xðtÞ ¼ AðtÞsðtÞ ð13Þ

in which the mixing matrix AðtÞ 2 RN�N models the

propagation media and sðtÞ contains the source signals.

ICA methods are used to find the separating matrix BðtÞ
such that ŝðtÞ ¼ BðtÞxðtÞ is an estimate of the sources and

ÂðtÞ ¼ B�1ðtÞ is an estimate of the mixing matrix. Among

the different ICA algorithms, the joint diagonalization of

eigenmatrices (JADE) (Cardoso 1998), is used in this work

as a benchmark.

In fECG applications, due to the multidimensional nat-

ure of the sources, source signals are categorized into sets

of multichannel components including mECG, fECG and

noise subspaces as described in multidimensional ICA

(MICA) (Cardoso 1998) and blind source subspace sepa-

ration (BSSS) (Lathauwer et al. 2000) schemes. Suppose

that ŝf ðtÞ ¼ ½ŝf1ðtÞ; . . .; ŝfM ðtÞ� represents M-dimensional

fetal components and the remaining components of ŝðtÞ
include mECG and noises. Accordingly, the corresponding

columns of the mixing matrix are stored in Âf ðtÞ ¼
½âf1 ; . . .; âfM � 2 RN�M: As a result, the contribution of the

fetal signals in the observation signals is obtained as

follows:

x̂f ðtÞ ¼ Âf ðtÞŝf ðtÞ ð14Þ

in which x̂f ðtÞ is the extracted fECG signal in the original

domain. A known drawback of conventional ICA is that

they cannot preserve the order, sign and amplitude of the

sources (Hyvärinen et al. 2001). Therefore, for automatic

applications, reliable source type detection and block-wise

sign/amplitude correction is required to identify and correct

the fECG sources among the other extracted components.

In practice, due to the rather structured morphology of the

ECG, the significant amplitude of the mECG compared to

the fECG and accessible of prior information about the

mECG (from maternal chest leads), the mECG signals can

be systematically identified in the transformed space. In

this work, we detect mECG signals using a channel

assessment criteria based on maternal R-peaks.
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6 Evaluation

Both synthetic and real data are used for qualitative and

quantitative evaluation of the proposed method. The details

of both datasets are presented in this section.

6.1 Real Data

The widely used DaISy fECG dataset, shown in Fig. 6a is

used for evaluation (Moor 1997). This dataset consists of

five abdominal and three thoracic channels, recorded from

the abdomen and chest of a pregnant woman, with a

sampling rate of 250 Hz.

6.2 Synthetic ECG Generation

Synthetic maternal and fetal ECG mixtures are generated

using a realistic model adopted from the open-source

electrophysiological toolbox (OSET) (Sameni 2010;

Sameni et al. 2007a):

xðtÞ ¼ HmðtÞsmðtÞ þHf ðtÞsf ðtÞ þHgðtÞvðtÞ þ nðtÞ

¼D xmðtÞ þ xf ðtÞ þ gðtÞ þ nðtÞ
ð15Þ

This model is based on the single dipole model of the

heart, which assumes three geometrically orthogonal

lead pairs, known as the Frank lead electrodes, or the

vectorcardiogram (VCG), and a linear propagation

media for the body volume conductor to map the three

dimensions to body-surface potentials, using a Dower-

like transformation (Edenbrandt and Pahlm 1988).

Although the single dipole model is only an approxi-

mation of the true cardiac activity (Sameni et al. 2006),

the model was found to be accurate enough for the

hereby presented study, as it has all the required spatio-

temporal features of the ECG.

Based on this model, we generate three-dimensional

smðtÞ and sf ðtÞ; representing the ECG signal of maternal

and fetus hearts respectively, using a three-dimensional

VCG. The ECG sources are then mapped to twelve body

surface channels using the HmðtÞ and Hf ðtÞ matrices,

which model the propagation media. As a result, both

maternal and fetal ECG are distributed in all body sur-

face ECG channels; but with only three underlying

dimensions. A realistic full-rank noise with a desired

SNR is also added to the signal using the idea proposed

in (Sameni et al. 2007a). Using this model, 10,000

samples (20 s) of twelve lead synthetic maternal/fetal

ECG mixtures were generated at a sampling rate of

500 Hz, for evaluation.

6.3 Quantitative Measures

After applying the denoising procedure, various measures

can be used to evaluate the effectiveness of mECG can-

cellation algorithm, which we detail below.

6.3.1 Signal-to-Noise and Signal-to-Interference Ratios

Following (1), consider xðtÞ as the noisy input observa-

tions, xf ðtÞ as the fECG signal, xmðtÞ as maternal inter-

ference and gðtÞ þ nðtÞ as noise for the fECG. The total

interference plus noise for the fECG is

IðtÞ ¼ xmðtÞ þ gðtÞ þ nðtÞ ð16Þ

and the overall fetal signal-to-interference-plus-noise ratio

(SINR) is defined (Sameni et al. 2010a):

SINR¼D 10 log
trðEfxfðtÞxTf ðtÞgÞ
trðEfIðtÞITðtÞgÞ

� �
ð17Þ

SINR can be used to quantify the data quality before

denoising. For synthetic data, the SINR can be set to

arbitrary ratios by scaling the mixing matrices HmðtÞ;
Hf ðtÞ; HgðtÞ and the noise variances in (1) by appropriate

factors (cf. Sameni et al. 2010a for further details).

In order to assess the mECG cancellation quality, we

additionally define the signal-plus-noise-to-interference

ratio (SIR)

SIR¼D 10 log
trðEfxsðtÞxTs ðtÞgÞ
trðEfx̂mðtÞx̂TmðtÞgÞ

� �
ð18Þ

where xsðtÞ¼
D
xf ðtÞ þ gðtÞ þ nðtÞ is the summation of all

non-mECG components, which we call the mECG com-

plement. x̂mðtÞ is the mECG (noise) residue in the mECG

canceler’s output:

x̂mðtÞ ¼ yðtÞ � xsðtÞ ð19Þ

and yðtÞ denotes the denoised signal. Since the objective of

the proposed method is to remove mECG, in an ideal

mECG canceler, yðtÞ should be equal to xsðtÞ: In the later

presented results, SIR improvement is defined as the output

SIR minus the input SIR in dB. Therefore, SIR improve-

ment is a measure of mECG cancellation in dB.

6.3.2 Periodicity Measure

The most dominant characteristic of the ECG is its pseudo-

periodicity. We define the ECG periodicity measure (PM)

as follows

PM¼D trðEfyðtÞyTðtþ stÞgÞ
trðEfyðtÞyTðtÞgÞ

����
����� 100 ð20Þ
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The PM, measures the amount of periodicity of denoised

data according to the period of a reference ECG. By defi-

nition, 0� PM� 100 (PM ¼ 0 for fully aperiodic signals

and PM ¼ 100 for a fully periodic signal). By computing

the PM for mECG, it indicates the amount of mECG

components that still exists in the output of the denoiser. It

should be noted that the reduction of PM is only a neces-

sary—but not sufficient—measure for the algorithm suc-

cess; since the PM might decrease due to an increase of

noise or at a cost of losing the fECG. Therefore, a com-

pliment measure is required, which assures the fidelity of

the remaining components. This measure is proposed in

what follows.

6.3.3 Similarity Measure

The similarity measure (SM) is defined as a complement

for the PM:

SM¼D jtrðEfyðtÞxTs ðtÞgÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðEfyðtÞyTðtÞgÞtrðEfxsðtÞxTs ðtÞgÞ

p ð21Þ

SM is the correlation coefficient between the denoised data

and the original signal components, xsðtÞ: By definition

0� SM� 1: A SM value close to 1 indicates that the

algorithm has preserved the non-mECG components (in-

cluding the fECG) in its output.

7 Parameter Selection

All the algorithms used for comparison have parameters

that require optimization. The details of the parameter

selection is studied in this section.

7.1 Extended Kalman Filter Parameters

For estimating the parameters of the Gaussian kernels used

in the extended Kalman filter, the ensemble average of the

mECG are extracted as a single beat average template.

Next, the parameters are estimated by applying a nonlinear

least squares error algorithm to fit the ECG template, using

open-source packages available in OSET (Sameni 2010).

The other parameters and covariance matrices are initial-

ized following the methods developed in Sameni et al.

(2007b).

7.2 ANC Parameters

The standard ANC and the modified multistage ANC are

implemented using a 5-tap FIR filter (20 ms window length

at a 250 Hz sampling frequency) with a step size equal to

l ¼ 10�6: Both parameters were found as the optimal

values, by searching over a grid of possible values in

varying SINR. The maternal ECG reference, required for

the ANC is selected directly from xmðtÞ in Eq. (15) during

the generation of synthetic data. Since xmðtÞ is a pure

mECG without other noise and interferences, each of its

channels can play the role of the chest lead ECG required

as reference.

7.3 Wavelet Parameters

In Sameni et al. (2007b), Sameni (2017), a comprehensive

study has been reported on more than 7000 combinations

of wavelet parameters for ECG denoising. Herein, based on

these studies, the Coiflets3 mother wavelet with six levels

of signal decomposition, using the Stein’s unbiased risk

estimate (SURE) shrinkage rule, single level rescaling and

a soft thresholding strategy is used as the optimal denoising

setup for the wavelet-based ECG denoiser (cf. Sameni

et al. 2007b; Sameni 2017 for a detailed discussion).

7.4 DEFL and ODEFL Parameters

The optimum number of iterations, K, the number of

channels to be denoised in each iteration, L, and the

strategy used for denoising are critical (and application-

dependent) issues that highly influence the performance of

DEFL and ODEFL. The parameter K, provides the capa-

bility of eliminating full-rank and possibly nonlinearly

superposed noise, which is beyond the capabilities of

conventional ICA techniques. The parameter L, may be

considered as the effective number of dimensions of the

signal and noise subspaces.

For typical software-based implementations, the

parameters K and L can be dynamically optimized using

signal-dependent measures calculated online. This results

in variable values for these parameters depending on the

signal quality and the ECG channels used during data

collection. On the other hand, for clock-wise accurate

software implementations (e.g. real-time embedded sys-

tems) or parallel hardware implementations (e.g. using

FPGA), fixed values of K and L are preferred.

The denoising function Gð�; �Þ; used for signal and noise

subspace separation, also influences the overall perfor-

mance of both DEFL and ODEFL. In practice, all of these

parameters should be tuned according to the application.

Herein, a Monte Carlo simulation was carried out to

investigate the sensitivity of DEFL and ODEFL algo-

rithms, with respect to the denoising function and the

values of L and K. The performance was investigated using

700 simulated data, generated according to the scheme in

Sect. 6.2, in different input SINRs, in the range of -35 to

-5 dB in 5 dB steps. Figure 2 shows the average SIR

improvements versus K and L using four denoising
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strategies Gð�; �Þ: In the first strategy, which we call

blanking DEFL, the first L channels of sðtÞ are simply set to

zero (similar to hard-thresholding in wavelet denoising). In

the second strategy, wavelet denoising was used as the

denoiser using the optimal parameters explained in

Sect. 7.3. In the third strategy, the single-channel extended

Kalman filtering scheme proposed in Sameni et al.

(2007b, 2008b) is used as the denoiser. In the fourth

strategy, the single-channel template subtraction technique

proposed in Martens et al. (2007) is used as the denoiser.

The results of optimizing the parameters of all methods

are shown in Fig. 3. In Fig. 3a, the SIR improvement

versus different SINRs is calculated for the best values of

K and L parameters. In Fig. 3b, the average SIR

improvement over the average of the whole values of K and

L in the range of studied parameters is calculated versus

different SINRs.

According to Figs. 2 and 3a, by setting appropriate

values for L and K, blanking DEFL has better performance

as compared to wavelet, template subtraction and Kalman

denoising strategies, which is due to the fact that when the

signal space dimensions are obtained, the algorithm com-

pletely removes all the noise space dimensions while it

leaves the signal unchanged.

In practice, the appropriate value of K can be estimated

using some termination criterion such as the PM criterion.

The optimal value of L can also be calculated using related

methods for estimating the signal/noise dimensionality

(Nadakuditi and Edelman 2008; Lee and Verleysen 2007).

For non-stationary data, K and L can also be updated in

Fig. 2 Sensitivity of the SIR improvement versus K and L parameters in four denoising schemes

Iran J Sci Technol Trans Electr Eng (2017) 41:65–79 73

123



time.3 According to Fig. 3, although blanking DEFL per-

forms best for the suitable parameters, it is sensitive to the

proper choice of K and L and its performance highly

degrades in case of inappropriate parameters. On the other

hand, wavelet denoiser, template subtraction and Kalman

denoising strategies are more robust to the choice of

parameters; since increasing K and L beyond their optimal

values does not significantly degrade the SIR improve-

ments. As a result, using denoising methods such as

wavelets, template subtraction or Kalman filter in DEFL,

instead of banking DEFL are more appropriate in practice.

From Fig. 3 it is also seen that the Kalman filter out-

performs template subtraction and wavelet denoiser in

terms of SIR improvement and robustness to its parame-

ters. This result was anticipated, as the Kalman filter is a

model-based approach, which benefits from prior knowl-

edge of the signal. Besides, as compared to template sub-

traction, the Kalman filter performance relies on both the

model and the observation, which makes it effectively

adaptive to different SNR scenarios. Nevertheless, the

necessity of a signal model is a limitation of this method in

practice as compared to the non model-based methods. In

what follows, for simplicity, the first denoising strategy

(blanking the first L components) with K ¼ 1 and L ¼ 3 are

used for evaluation of both DEFL and ODEFL algorithms.

The other parameters of ODEFL are the forgetting

factors b and c: These factors should be chosen according

to the degree of data (non-)stationarity within the range

[0, 1]. In the studied database, the ECG signal and noise

were both stationary. Hence, we chose b ¼ c ¼ 1; i.e., the

algorithm does not forget the old samples.

7.5 ICA Denoising Parameters

The free parameter in ICA denoising is the number of

mECG components (effective number of mECG dimen-

sions) that should be removed after the source separation

stage. For synthetic data, according to our prior knowledge,

smðtÞ is three-dimensional. Therefore, we set L ¼ 3: For

real data, this choice was also empirically found to be the

optimal value for the studied dataset, in order to eliminate

the most dominant components of the mECG. In general,

the number of mECG channels can be adaptively obtained

during the denoising process by morphological similarity

(the PM measure defined in 20), or by using the notion of

effective number of dimensions (Sameni and Gouy-Pailler

2014). In this work, the mECG identification for both real

and synthetic data is accomplished by computing the

similarity measure defined in (21) between the maternal

reference signal (chest lead ECG) and the different source

channels extracted by ICA. The top L channels having the

highest correlations are selected as the mECG components.

These channels are set to zero and the remaining channels

are back-projected to the original subspace. This strategy is

rather similar to a single stage of the DEFL algorithm.

8 Results

8.1 Simulated Data

The simulated data generation procedure was discussed in

Sect. 6.2. For visual inspection, a typical 20 s length syn-

thetic ECG with SINR of -20 dB, along with the

−45 −40 −35 −30 −25 −20 −15 −10
10

15

20

25

30

35

SINR in (db)

 S
IR

 Im
pr

ov
em

en
t

Blanking DEFL

 Wavelet DEFL

KALMAN DEFL

 tmpsubtract DEFL 

      For best parameter set

−45 −40 −35 −30 −25 −20 −15 −10
0

5

10

15

20

25

30

SINR in (db)

A
ve

ra
ge

 S
IR

 Im
pr

ov
em

en
t  

Blanking DEFL
 wavelet DEFL
Kalman DEFL
 tmpsubtract DEFL 

      Average over all parameters in range

(a)

(b)

Fig. 3 SIR improvement versus SINR using four denoising strategies

3 According to our empirical results, for ECG signals, the update

should be done over long temporal windows (tens of seconds and

above) rather than short windows; otherwise the performance

degrades.
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corresponding denoised output (mECG removal) is shown

in Fig. 4. It can be seen that the mECG is distributed in all

the simulated channels. The denoised output indicates that

the maternal ECG is removed in almost all channels

without affecting the fetal ECG. The first 500 samples (1 s)

of the denoised data, show the transient effect of the filter.

The filter has reached steady state after this period.

For a quantitative evaluation, the proposed algorithm

was compared with the benchmark methods using 1000

different ensembles of simulated data and noise, in dif-

ferent input SINRs. The average and standard deviation of

SIR improvements, PM, and SM are shown in Fig. 5.

Accordingly, DEFL outperforms all methods and is only

slightly better than the ODEFL. The outperformance of

DEFL as compared to ODEFL is reasonable, due to the

offline (non-causal) and exact calculation of the covariance

matrices used in DEFL. However, the difference is negli-

gible as compared to the advantages of ODEFL for online

and nonstationary applications. As shown, DEFL and

ODEFL, which are based on prior knowledge of the ECG

periodicity have outperformed ICA. This is due to the fact

that DEFL and ODEFL can deal with situations that ICA

assumptions are not satisfied. In fact, ICA algorithms

despite their vast and effective applications have some

intrinsic ambiguities due to their simplified assumptions.

Typically, it is assumed that the number of independent

sources is fixed and equal to the number of sensors. The

signal mixture is considered instantaneous and time-in-

variant. However, these assumptions are not necessarily

satisfied in practice. As a result, the performance of ICA

degrades in presence of full-rank Gaussian noise and

correlated/distributed sources (Fatemi et al. 2013), result-

ing in residual mECG within the fECG. Moreover, the

ranking property of DEFL and ODEFL (contrary to the

permutation ambiguity of ICA) helps the reliable and

automatic detection of fECG/mECG signals in long

recordings (Fatemi et al. 2013); while for ICA it is nec-

essary to have robust source identification methods, which

identify the mECG among others components.

Overall, DEFL, ODEFL and ICA denoising outperform

the other benchmarks, in both low and high SNR scenarios.

This can be due to the fact that the ANC, wavelet, template

subtraction and Kalman filtering schemes are all single-

channel, while DEFL, ODEFL and ICA benefit from the

spatial information within multiple channels to obtain

higher SNR.

Among the single-channel methods, the performance of

Kalman filter and template subtraction is similar in low

SNR and outperforms other single-channel methods; while

in high SNR the Kalman filter has superior performance.

The reason is that depending on the signal quality, the

Kalman filter dynamically tends towards the observations

or the system’s prior dynamics; i.e., when the data is too

noisy, the Kalman filter tracks the prior dynamic model

rather than relying on the observation. Therefore, in low

SNR, the Kalman filter performance is identical to template

subtraction. On the other hand, in high SNR the Kalman

filter benefits from the information within the observations,

making it better than template subtraction.

The low performance of ANC, as mentioned before, can

be related to the fact that the reference signal used in ANC

(here the chest lead mECG) does not necessarily resemble
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Fig. 4 A sample of synthetic ECG with -20 dB SINR and 20 s length a before and b after mECG removal. The peaks remaining after mECG

removal are the fECG plus background noise
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the morphology of the mECG superposed over the

abdominal leads, which significantly downgrades its

performance.

8.2 Real Data

The results of ODEFL on the DaIsy dataset are shown in

Fig. 6. It is seen that after about 4 samples (160 ms), the

algorithm has converged and the mECG is almost com-

pletely removed in the first channel; but it takes up to 500

samples (2 s) for all channels to converge. This is due to

the sequential nature of the proposed ODEFL algorithm.

Figure 7 shows a closer view of the results over two suc-

cessive ECG beats. It is seen that DEFL and ODEFL

outperform the ANC, template subtraction, Kalman filter

and ICA denoising. While DEFL and ODEFL have effec-

tively removed the mECG, other methods have left some

residual mECG or removed parts of the fECG.

For numerical evaluation of the proposed method on real

data, we synthetically manipulate the real DaISy abdomi-

nal signals as follows (Sameni et al. 2010a):

xðtÞ ¼ G½x0ðtÞ þ KvðtÞ� ð22Þ

where x0ðtÞ is the original real data in Fig. 6, vðtÞ is

Gaussian white noise, K ¼ diagðk1; . . .; kNÞ is a diagonal

matrix, which controls the per channel SNR, G 2 RN�N is

an arbitrary non-singular random matrix and xðtÞ is the new
noisy signal. The signal xðtÞ is generated in three different

input SNR: 30, 20 and 10 dB, by changing the entries of K:
The proposed method is then applied to xðtÞ by selecting

L ¼ 3 and K ¼ 2: The algorithm is repeated over 1000

trials using different instances of vðtÞ and G in each trial.

The PM was defined in (20) as a measure of algorithm

performance in mECG cancellation. But as noted before,

the PM should be studied together with the fECG pre-

serving indexes, to assert the overall algorithm perfor-

mance. For this we define the overall periodicity measure

(OPM):

OPM¼D fPM�mPM ð23Þ

where mPM and fPM are maternal and fetal PM, respec-

tively. Accordingly, �100�OPM� 100; where higher

values of OPM are an indication of algorithm success in

simultaneously removing the mECG and preserving the

fECG. The average and standard deviation of the mPM and

OPM are shown in Fig. 8 for the proposed and benchmark

methods. We can see that the results on real data follow the

same trend and order as the synthetic data results. The only

exception is the ICA denoiser, which has inferior results for

real data. This might be due to the fact that for real noisy

data, mECG identification and estimation of L is difficult,

resulting in a degraded performance.

9 Conclusion

In this paper, an online version of an iterative subspace

denoising procedure proposed in Sameni et al. (2010a) was

presented for removing maternal ECG from noninvasive

Fig. 5 (Top) SIR improvement, (middle) PM and (bottom) SM versus

input SINRs. The PM and SM of DEFL and ODEFL have overlapped
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signals recorded from the abdomen of a pregnant woman.

The proposed method is rather generic and may be applied

to other blind and semi-blind source separation applica-

tions, in which the signal and noise mixtures are not sep-

arable using conventional source separation and denoising

techniques. It was shown that the proposed method out-

performs the state of the art single channel denoising

techniques, while it marginally performs as good as its

offline version. It was further shown that DEFL and

ODEFL algorithms which are based on the GEVD of only

(a) (b)

Fig. 6 DaISy dataset a before and b after mECG removal. The peaks remaining after mECG removal are the fECG plus background noise. Due

to the sequential structure of ODEFL, the algorithm converges slower in the last channels

(a) (b) (c)

(f)(e)(d)

Fig. 7 A typical data segment before (gray plots) and after (black plots) mECG cancellation. It is observed that the mECG is completely

removed in DEFL and ODEFL methods with minimal effect on the fECG
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two second-order matrices, outperform classical ICA,

which use more than two matrices containing the higher-

order statistics of the observations. The outperformance

can be related to the fact that DEFL and ODEFL can deal

with situations in which some of the underlying assump-

tions of ICA are not satisfied. Moreover, DEFL and

ODEFL benefit from the ranking property of GEVD for

mECG detection; while ICA suffers from permutation and

sign ambiguities, which require the utilization of a robust

mECG identifier. As a result, the proposed method is less

complicated and more reliable for long datasets, as com-

pared with batch ICA techniques.

The performance of ODEFL was investigated with dif-

ferent sets of parameters using different denoising strate-

gies including simple blanking, wavelet denoising,

template subtraction and Kalman denoising.

According to the hereby presented results and the former

experiments reported in Sameni et al. (2007b), we con-

clude that for single channel data, the Kalman filter out-

performs other ECG denoising schemes in different SINR

scenarios, while the DEFL and ODEFL algorithms are

better for multichannel data as they use inter-channel

correlations, without having the mixing matrix of the data.

Therefore, in future studies, the combination of the Kalman

denoiser and ODEFL may result in superior results.

Introducing an online method for automatic calculation of

the algorithm parameters L, K, b and c is also an inter-

esting extension to the current work, which was partially

studied in Sameni and Gouy-Pailler (2014); but requires

further investigation in future studies.

The performance of ODEFL is influenced by several

parameters including the method used for online GEVD. In

future studies, other online GEVD algorithms can be

compared with incremental common spatial pattern, used

in this work. Moreover, theoretical aspects of online GEVD

and the convergence of DEFL and ODEFL should also be

considered. A symmetric extension of the method for

avoiding the problems of sequential source separation and

error propagation is also interesting for practical

applications.

In recent studies, the problem of fetal motion tracking

using noninvasive ECG recordings has found significant

interests (Biglari and Sameni 2016). In future studies, the

hereby proposed techniques can be combined with these

developments to obtain a unified fetal ECG extraction and

motion tracking algorithm.
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