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Abstract This paper provides a theoretical analysis to

consolidate the theory of ‘‘adaptive’’ target detection in the

surveillance channel of passive bistatic radars where noise,

strong returns of clutter and target returns are present. It is

known in the literature that by generating the mixing pro-

duct for each bistatic sample delay in the surveillance

channel using the preprocessed and multipath-free refer-

ence channel signal, adaptivity can be realized. However,

the theoretical background of this idea is not strong. In this

paper, the statistical characteristics and the distribution of

the mixing product are analyzed leading to the hypothesis

test applicable to the ‘‘adaptive’’ detection problem. We

investigate the iid requirements of secondary data, and a

suitable scheme for secondary data generation in which

these requirements are approximately satisfied is proposed.

Several adaptive target detectors from active pulse radars’

literature based on the derived hypothesis test are gener-

alized for use in passive radars and their performances are

assessed by simulations and theoretical analysis. The

simulation results indicate that these detectors are generally

preferred compared to the conventional cross ambiguity

function processing. It is also shown that the simulation-

based and theoretical detection performances validate each

other.

Keywords Passive bistatic radar � Adaptive detection �
Mixing product � Ambiguity function

1 Introduction

Passive bistatic radars (PBRs) are known by some char-

acteristics and benefits that make them unsubstitutable in

some applications. They do not require dedicated trans-

mitters and so are inexpensive, invulnerable to jamming,

covert and without frequency allocation requirements.

Moreover, frequency and space diversity are provided. But

as the transmitter’s location and the transmission properties

cannot be controlled by the radar designer, processing,

synchronization and system challenges are increased (Ch-

erniakov 2008).

The general geometry of a PBR is shown in Fig. 1. The

transmitter of opportunity is assumed to have a wide beam

antenna in azimuth, propagating the transmitting signal in a

wide sector. The receiver’s antenna is an array antenna

with several directional surveillance beams produced by a

suitable beamforming method and a separate beam toward

the transmitter (reference beam) for the reception of

directly transmitted signal. So, the PBR depicted in Fig. 1

has M surveillance channels and one reference channel.

The surveillance channels collect the target echoes.

Unfortunately, the strong unwanted returns of direct signal

and clutter/multipath are also received in the surveillance

channels which degrade or deny the capability to detect the

targets (Cherniakov 2008; Colone et al. 2009a; Radmard

and Nayebi 2015). For each surveillance channel, time-

domain signal processing and target detection are done

independently. The algorithms to allow for the detection of

targets can be categorized into ‘‘adaptive’’ and ‘‘non-

adaptive’’. For PBRs, the non-adaptive approach has been

researched vastly, while the theory of adaptive approach is

still immature. The analytical discussion of PBR ‘‘adap-

tive’’ detection problem is the main subject of this paper.

Before introducing the works which have already been
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presented in the literature and demonstrating our contri-

bution, let us explain some required concepts for future

discussions.

Throughout this paper as shown in Fig. 2a, the total

clutter scatterers within a given surveillance beam and

between two ellipses of constant range sums (bistatic iso-

range contours) corresponding to Rr and Rr þ DR are

defined as the rth ‘‘clutter cell’’ where DR is chosen

according to the range resolution. The clutter cells adjacent

to the rth clutter cell are also shown in Fig. 2a, b. Hence,

there are several clutter cells corresponding to successive

range cells. The clutter scatterers within a given clutter cell

have different bistatic velocities. If we divide the total

possible bistatic velocity interval into some velocity cells,

the total scatterers whose bistatic velocities belong to each

velocity cell are called ‘‘clutter patch’’. For example, a

zoomed view of the clutter cells of Fig. 2a is given in

Fig. 2b, where each clutter patch is shown with a distinct

dash type. In this illustration, there are three clutter patches

for each clutter cell as depicted in Fig. 2c. The total bistatic

range and velocity intervals covered by the clutter patches

of clutter cells are defined as ‘‘clutter scatterers range-ve-

locity region’’.

In the non-adaptive category of algorithms, it is assumed

that each clutter cell’s complex radar cross section (RCS)

has a narrow spectrum around zero Doppler frequency and

Doppler frequencies of targets of interest are higher than

the bandwidth of this spectrum. Hence, clutter cancellation

methods are firstly exploited and then target detection is

performed by forming the cross ambiguity function which

acts as a matched filter and provides the necessary inte-

gration gain as well as target bistatic range and Doppler

estimation (Cherniakov 2008). Transversal adaptive filters

Fig. 1 PBR general geometry

Fig. 2 Categorizing clutter scatterers: a clutter cells, b zoomed view of clutter cells and c clutter patches of clutter cells (scatters and their

velocities are denoted by points and arrows, respectively)
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such as the least mean squares (LMS) and recursive least

squares (RLS) (Cherniakov 2008; Colone et al. 2007), the

extensive cancellation algorithm (ECA) (Colone et al.

2006), the sequential cancellation algorithm (SCA)

(Colone et al. 2006), the multistage processing algorithm

(Colone et al. 2009a), the generalized likelihood ratio test

(GLRT) (Zaimbashi et al. 2013) and OFDM-specific

methods (Colone et al. 2014; Palmer et al. 2013; Zhao et al.

2012) are some of the main works presented in the litera-

ture. This category of algorithms is generally used for

passive ground-based radars. It is noteworthy to mention

that for such radars an alternative approach is using clutter

map for adaptation of threshold to be applied to cross

ambiguity function.

For the situations such as airborne and maritime PBRs

where each clutter cell’s RCS spectrum overlaps with the

target’s RCS spectrum and its parameters such as band-

width and center frequency vary rapidly and within a wide

range, the slowly varying clutter maps do not provide

sufficient adaptation to the environment and also the non-

adaptive approach is not feasible. Considering these issues

and especially for maritime and airborne passive radars,

there is a vital need for developing data-adaptive methods

based on the estimation of unknown spectral properties of

clutter cell’s RCS. This is the case of interest in this work.

Adaptive processing is a fully developed theory for

active pulse radars. In this theory, two sets of data vectors

known as primary and secondary (training) data are

exploited. The primary data, which are the output of the

receiver’s matched filter in a given range cell (range cell

under test), contain the target echoes, returns of its corre-

sponding clutter cell and noise. The set of target-free sec-

ondary data, which are the outputs of the receiver’s

matched filter in range cells adjacent to the range cell under

test, are assumed to have the same covariance matrix as the

primary data. It is satisfied under the assumption that the

neighboring clutter cells corresponding to the primary and

secondary data sets are homogenous, i.e., their RCSs have

the same spectral properties. In addition, due to the sta-

tistical independence of clutter cells’ RCSs, it is readily

concluded that the secondary data set are independent of

each other and are also independent of the primary data.

The unknown covariance matrix of the primary data can be

estimated using the independent and identically distributed

(iid) secondary data and then target detection proceeds.

While sample matrix inversion (SMI) (Reed et al. 1974) is

probably the most basic work in this theory, Kelly’s GLR

(generalized likelihood ratio) (Kelly 1986) replaces this ad-

hoc procedure by a likelihood ratio test which has the

constant false alarm rate (CFAR) behavior. In Robey et al.

(1992), the adaptive matched filter (AMF) has been intro-

duced which is the simplified version of Kelly’s GLR and

is less computationally intensive, slightly underperformed

and less robust in non-Gaussian interferences than its

counterpart. The Doppler domain localized GLR (DDL–

GLR) (Wang and Cai 1991) and the per-symmetric GLR

(PGLR) (Wang and Cai 1992) have been presented which

require a reduced size of iid training data set by exploiting

localized adaptive processing and by considering a per-

symmetric structure for the interference covariance matrix,

respectively. Through years of studies, there are numerous

works done in this field, all of which share the same basis

as the mentioned methods and also investigate specific

problems such as nonhomogeneous secondary data (Gao

et al. 2014; Melvin 2000; Shahraki et al. 2007).

In passive radars, due to the continuous-wave nature of

transmitting signals, the reflected signals from all clutter

cells and targets overlap in the surveillance channel signal.

Hence, the generalization of adaptive processing concepts

in active pulse radars to PBRs is not straightforward and

has been a subject of recent researches. In this regard (Neyt

et al. 2006), the feasibility of PBR adaptive processing is

shown through the definition of mixing product for the first

time. The simulation-based and experimental results of

applying space–time adaptive processing (STAP) based on

SMI for a GSM-based PBR have been reported. A similar

work has been done in (Raout et al. 2007) but for a DVB-T

(digital video broadcast-terrestrial)-based PBR. A number

of other spatio-temporal filtering methods such as PC

(principal components), JDL (joint domain localized), D3

(direct data domain) and the hybrid JDL-D3 have also been

investigated by the same authors in (Raout and Preaux

2008; Raout 2008a, b). They are implemented based on the

mixing product, too. The mixing product has also been

used in a novel method which does not estimate the

covariance matrix but iteratively rejects the components of

the clutter using the amplitude and phase estimation

(APES) (Raout et al. 2010a) which is later followed by a

work which combines the Wiener filtering and the APES

(Raout et al. 2010b). The implementation of STAP in PBRs

has also been investigated in (Tan et al.

2010, 2011, 2012, 2014) in which the snapshot modeling

approach is based on the separate matched filtering of

several segments of the surveillance channel signal and

joint processing of them is proposed. It is also shown that

before applying STAP algorithms such as SMI, a prior

cancellation of direct signal and strong clutter signals of

closer ranges by the ECA leads to a superior performance

(Tan et al. 2014).

Most literature about adaptive approach for PBRs, as

mentioned earlier, is based on designing adaptive weights

to filter out the interference and maximize the signal-to-

interference-plus-noise ratio. The aim of this paper is to

consolidate the theory of existing methods and, in contrast

to them, organize the study based on a detection perfor-

mance measure. In this regard, the previous works are ad-
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hoc. So, in this paper, with a detailed statistical analysis of

the mixing product approach including the distribution and

also the covariance matrix, adaptive target detection as a

hypothesis test and modification of the conventional sec-

ondary data generation which leads to a suitable secondary

data generation scheme to have iid secondary data are

studied. It is also established that adaptive detectors from

active pulse radar area can be generalized for use in passive

radars and their detection performances can be theoreti-

cally obtained using the derivations of this paper. In this

regard, the generalizations of Kelly’s GLR, DDL-GLR and

PGLR are presented. The analysis of detection perfor-

mance and performance comparison with cross ambiguity

function processing is another contribution of this paper.

The adopted detectors estimate the unknown spectral

specifications of clutter cell’s RCS and by using the

spectral differences between the complex RCSs of target

and clutter cell make target detection possible even in the

clutter scatterers range-velocity region. This is in contrast

to non-adaptive algorithms like the ECA (Colone et al.

2006) and the GLRT (Zaimbashi et al. 2013) where the

clutter scatterers range-velocity region should be defined a

priory. In such algorithms, for the purpose of proper clutter

cancellation a high detection loss occurs in the clutter

scatterers range-velocity region (Zaimbashi et al. 2013) and

no target detection is possible within this region. So, non-

adaptive and adaptive algorithms are used in different

categories of applications and it is not accurate to compare

them in terms of detection performance. However, in the

PBR literature, a logical solution for the problem of target

detection in the presence of clutter with unknown clutter

scatterers range-velocity region is known to be the cross

ambiguity function processing, without interference can-

cellation. Hence, the detection performances of the adopted

detectors are compared to the conventional cross ambiguity

function processing with CFAR thresholding, and their

superiority, in most situations, is shown by several

simulations.

This paper is organized as follows. In Sect. 2, the signal

model is described and its statistical properties are intro-

duced. The procedure for formulating adaptive detection

problem as statistical hypothesis testing is also given

through some lemmas. Section 3 discusses some adaptive

detectors for the desired hypothesis test. Simulation results

are reported in Sect. 4. Finally, some conclusions are given

in Sect. 5. For the purpose of shortening the main body of

the paper while preserving its integrity, most excess

explanations, math expressions, and proofs of the important

lemmas in Sect. 2 are moved to the appendices. These

appendices include some of the novelties of this work.

In this paper, superscripts, ð:Þ�, ð:ÞT and ð:ÞH are

exploited to represent complex conjugate, transpose, and

complex conjugate transpose, respectively, and � denotes

Hadamard product. The symbols used for statistical

expectation and covariance matrix of a random vector are

Ef:g and Rf:g, respectively. The operator digð:Þ converts a

vector to a diagonal matrix whose main diagonal entries are

the elements of the vector. It must be noted that we have

attempted to keep the symbols and notations used within

this paper consistent with (Raout and Preaux 2008; Raout

2008a, b; Raout et al. 2010a) for ease of understanding and

referral.

2 Signal Model and its Statistical Property

Let us denote the lth sample of the surveillance channel

and reference channel signals after baseband demodulation

by xðlÞ and xrefðlÞ, respectively. The vector representations

of these samples of the surveillance channel signal, x, and

the reference channel signal, xref , during the integration

time are given by

x ¼ ½xð0Þ xð1Þ. . . xðNi � 1Þ�T

xref ¼ ½xrefð0Þ xrefð1Þ. . . xrefðNi � 1Þ�T
ð1Þ

where the number of samples to be coherently processed

within the integration time is Ni.

It is assumed that target detection is to be performed in a

given delay (range) interval, and targets, direct signal and

clutter cells corresponding to previous and forthcoming

delays (outside of detection range interval) have been

canceled using a least square approach such as the ECA

(Colone et al. 2006). In fact, x presents the surveillance

channel signal after this preprocessing. In general, x

includes the signal returns of targets, contributions of

clutter/multipath and additive white Gaussian noise

(AWGN) which are symbolized by xt, xc, and w,

respectively:

x ¼ xt þ xc þ w ð2Þ

It is assumed that xref is a delayed replica of transmitting

signal and is free of multipath (Colone et al. 2009a, b;

Zaimbashi et al. 2013). By assuming that the direct signal

to noise ratio (DNR) in the reference channel is much

larger than the DNR in the surveillance channel, the ther-

mal noise in the reference channel can be neglected

(Colone et al. 2009a; Zaimbashi et al. 2013). Under these

assumptions, the signal model is developed.

The delayed version of the reference channel signal with

sample delay n is computed by Dnxref where D is a 0/1

permutation matrix that applies a delay of single sample

and is expressed by (Colone et al. 2009a):

D ¼ fdijgi;j¼1;...;Ni
; dij ¼

1 i ¼ jþ 1

0 otherwise

�
ð3Þ
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Let us consider Nt targets, xtk , (k ¼ 1; . . .;Nt) with

sample delays ntk (with respect to the reference channel

signal), normalized Doppler frequencies �ftk ¼ ftk=fs (ftk is

Doppler frequency and fs denotes the sampling frequency)

and complex amplitudes atk . The temporal steering vector

of the kth target corresponding to �ftk is denoted by stk . So,

we can formulate xt by (Colone et al. 2006; Zaimbashi

et al. 2013; Raout 2008b):

xt ¼
XNt

k¼1

xtk ð4Þ

where

xtk ¼ atkðDntk xrefÞ � stk ð5Þ

and

stk ¼ 1 ej2p
�ftk . . . ej2p

�ftk ðNi�1Þ
h iT

ð6Þ

It should be remembered that in this paper, sample

delays, ranges, velocities and Doppler frequencies are all

based on bistatic measurements. The clutter, in the detec-

tion range interval, is composed of Nr clutter cells with Nc

clutter patches for each clutter cell and its signal contri-

bution, xc, can be expressed as (Colone et al. 2006;

Zaimbashi et al. 2013; Raout 2008b):

xc ¼
XNr

r¼1

XNc

i¼1

cci;rðD
ncr xrefÞ � sci

¼
XNr

r¼1

ðDncr xrefÞ �
XNc

i¼1

cci;rsci

" # ð7Þ

in which the complex amplitude, sample delay (with

respect to the reference channel signal) and normalized

Doppler frequency of the ith clutter patch within the rth

clutter cell are symbolized by cci;r , ncr and �fci , respectively,

and the temporal steering vector, sci , of this clutter patch

with normalized Doppler frequency �fci is given by

sci ¼ 1 ej2p
�fci . . . ej2p

�fci ðNi�1Þ
h iT

ð8Þ

As Eq. (4), xc can also be written based on its

components:

xc ¼
XNr

r¼1

XNc

i¼1

xci;r ð9Þ

where

xci;r ¼ cci;rðD
ncr xrefÞ � sci ð10Þ

In the PBR literature, this is the most general modeling

used for clutter signal contribution (Colone et al. 2006;

Zaimbashi et al. 2013; Raout 2008b), and is shown to be

practically applicable to real scenarios (Zaimbashi et al.

2013). The complex amplitudes of clutter patches, cci;r , are

assumed to have complex zero-mean Gaussian distribu-

tions (Skolnik 2005; Theodoridis and Chellappa 2013;

Stergiopoulos 2009) with variances of Gi;r, and to be

independent and hence uncorrelated. Therefore, we have:

E cci;rc
�
cj;t

n o
¼ 0 i 6¼ j or r 6¼ t

Efjcci;r j
2g ¼ Gi;r i ¼ j and r ¼ t

�

ð11Þ

Considering these assumptions, we study the statistical

characteristics of the surveillance channel signal, x, in

Appendix A. According to this appendix, x has a complex

Gaussian distribution with mean xt and covariance matrix

Rc þ r2
wI where I denotes the identity matrix, r2

w is the

variance of AWGN, and the clutter covariance matrix, Rc,

is presented in Appendix A (see Eqs. (40) and (41)). The

representation used for this distribution is

x �d Nðxt;Rc þ r2
wIÞ.

The mixing product corresponding to sample delay n,

which mixes the surveillance channel signal with the

complex conjugate of the nth sample delayed version of the

reference channel signal, is defined as (Neyt et al. 2006;

Stein 1981):

~xðnÞ ¼ x� ðDnx�refÞ ð12Þ

It can be considered as a vector of length Ni for each

sample delay n as follows and is called ‘‘mixed signal’’

throughout this manuscript.

~xðnÞ ¼ ½~xð0; nÞ ~xð1; nÞ. . . ~xðNi � 1; nÞ�T ;
~xðl; nÞ ¼ xðlÞx�refðl� nÞ; l ¼ 0; . . .;Ni � 1

ð13Þ

The mixed signal can also be decomposed into its

components using a similar procedure to Eq. (2):

~xðnÞ ¼ ~xtðnÞ þ ~xcðnÞ þ ~wðnÞ

~xtðnÞ ¼ xt � ðDnx�refÞ ¼
XNt

k¼1

atkstk � ðDntk xrefÞ � ðDnx�refÞ

¼
XNt

k¼1

~xtkðnÞ

~xcðnÞ ¼ xc � ðDnx�refÞ ¼
XNr

r¼1

XNc

i¼1

cci;r sci � ðDncr xrefÞ � ðDnx�refÞ

~wðnÞ ¼ w� ðDnx�refÞ
ð14Þ

In Appendix A, it is shown that the distribution of the

mixed signal is Gaussian with mean ~xtðnÞ, and its covari-

ance matrix which is dependent on the sample delay n is

given by

Rf~xðnÞg ¼ ðRc þ r2
wIÞ � ððDnx�refÞðDnxrefÞTÞ ð15Þ
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The adaptive approach is based on the mixed signal

(Neyt et al. 2006; Raout et al. 2007; Raout and Preaux

2008; Raout 2008a, b), and the mixed signal is then applied

to a low-pass filter and subsampled. In the following, we

consolidate the theory regarding why this decimation

maintains the target signal contribution and then statisti-

cally analyze the subsampled mixed signal.

Using Eq. (14), for any target with index k and sample

delay ntk ¼ n, we have

~xtkðnÞ ¼ xtk � ðDnx�refÞ ¼ atkstk � ðDnxrefÞ � ðDnx�refÞ
ð16Þ

Considering ðDnxrefÞ � ðDnx�refÞ¼
D
eðnÞ, we have:

eðl; nÞ ¼ jxrefðl� nÞj2 where eðl; nÞ, the lth sample of eðnÞ,
is also a sample of the square of envelope of transmitting

signal. To better understand Eq. (16), let us firstly consider

the special case of constant envelope transmitting signals

like phase shift keying (PSK) and frequency modulated

(FM) signals. For this case, in which eðl; nÞ ¼ cte; 8l; n,

eðnÞ is a scalar multiple of unit vector so that ~xtkðnÞ / atkstk
is a pure tone with target Doppler frequency. So, if a target

with sample delay n is present, ~xðnÞ will be a pure tone

with target Doppler frequency immersed in a colored

Gaussian interference. As a result, it is reasonable to use

~xðnÞ as decision data for the detection of targets with

sample delay n. Using this idea, since the Doppler fre-

quencies of targets of interest are noticeably smaller than

the sampling frequency, according to the irrelevance the-

orem (Proakis and Salehi 2008), the out-of-band Doppler

components of ~xðnÞ can be filtered and ~xðnÞ can be sub-

sampled. Let us assume that the magnitudes of Doppler

frequencies of targets, ftk , are at most 2S times smaller than

the sampling frequency, or more exactly are such that:

ftk �
fs

Ni

����
����	 fs

2S
; �ftk �

1

Ni

����
����	 1

2S
ð8kÞ ð17Þ

Then, the mixed signal, ~xðnÞ, can be decimated to Nd ¼
Ni=Sb c samples by the subsampling factor S to yield ~yðnÞ.

This can be implemented by an integrate-and-dump filter in

its simplest form (Raout et al. 2010a, b), i.e.,

~yðnÞ ¼ ½~yð0; nÞ ~yð1; nÞ. . . ~yðNd � 1; nÞ�T ;

~yðb; nÞ ¼
XbSþS�1

l¼bS

~xðl; nÞ; b ¼ 0; . . .;Nd � 1
ð18Þ

The sampling frequency is now reduced to f 0s ¼ fs=S. It

is noted that Eq. (17) ensures that the mentioned pure tone

is within the low-pass filter bandwidth (1=S in the nor-

malized frequency domain).

In general, since the square of the envelope of any

transmitting signal (as a positive function) has a non-zero

dc component and an ac component, ~xtkðnÞ is the sum of a

pure tone with target Doppler frequency and an ac com-

ponent. Using the idea of constant envelope case, if

Eq. (17) is satisfied, the subsampling can be performed by

Eq. (18) and the ac component of ~xtkðnÞ after decimation

can be ignored.

Equation (18) implies that each element of ~yðnÞ is

proportional to the average of S successive elements of

~xðnÞ. If the filtered and subsampled versions of ~xtðnÞ,
~xcðnÞ, and ~wðnÞ are represented by ~ytðnÞ, ~ycðnÞ, and ~zðnÞ,
respectively, we have

~yðnÞ ¼ ~ytðnÞ þ ~ycðnÞ þ ~zðnÞ !
~yðb; nÞ ¼ ~ytðb; nÞ þ ~ycðb; nÞ þ ~zðb; nÞ; b ¼ 0; . . .;Nd � 1;

~ytðb; nÞ ¼
XbSþS�1

l¼bS

~xtðl; nÞ

~ycðb; nÞ ¼
XbSþS�1

l¼bS

~xcðl; nÞ

~zðb; nÞ ¼
XbSþS�1

l¼bS

~wðl; nÞ

ð19Þ

It is noteworthy to emphasize that, for instance, ~yðb; nÞ
denotes the bth element of ~yðnÞ. Using Eq. (14) in Eq. (19)

and by a change of variable l0 ¼ l� bS, it can be shown

that

~ytðnÞ ¼
XNt

k¼1

atkwðn� ntk ;��ftkÞ � vtk

~ycðnÞ ¼
XNr

r¼1

XNc

i¼1

cci;rwðn� ncr ;��fciÞ � vci

ð20Þ

where vtk and vci are the reduced steering vectors of the kth

target and the ith clutter patch corresponding to the reduced

normalized Doppler frequencies ttk and tci , respectively:

vtk=ci ¼ 1 ej2pttk=ci . . . ej2pttk=ci ðNd�1Þ
h iT

;

ttk=ci ¼ �ftk=ciS ¼
ftk=ciS

fs
¼

ftk=ci
f 0s

ð21Þ

and wðn� ntk ;��ftkÞ and wðn� ncr ;��fciÞ are vectors of

dimension Nd whose bth elements, b ¼ 0; 1; . . .;Nd � 1 are

defined as:

w n� ntk=cr ;��ftk=ci

� �
¼ w0 n� ntk=cr ;��ftk=ci

� �
. . . wNd�1

h

n� ntk=cr ;��ftk=ci

� �iT

wb n� ntk=cr ;��ftk=ci

� �
¼
XS�1

l0¼0

xref l0 þ bS� ntk=cr
� �

x�ref :

ðl0 þ bS� nÞej2p�ftk=ci l0

ð22Þ
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Suppose that the reference channel signal is divided into

Nd segments of length S, for large enough S (with respect to

the maximum sample delay of detection range interval) it

can be shown that wbðn� ntk=cr ;��ftk=ciÞ is approximately

the S-sample complex self-ambiguity function of the bth

(b ¼ 0; . . .;Nd � 1) segment of the reference channel sig-

nal, computed in sample delay n� ntk=cr and normalized

Doppler frequency ��ftk=ci . For each segment of the refer-

ence channel signal, the magnitude of its corresponding S-

sample complex self-ambiguity function generally has a

single correlation lobe peaking at zero delay and zero

normalized Doppler frequency. The width of correlation

lobe is 2 fs=ð2BÞb c þ 1¼D 2c� 1 samples in the delay

domain (B denotes the transmitting signal bandwidth) and

1=S in the normalized Doppler frequency domain. Hence,

we have

jwbðn� ntk=cr ;��ftk=ciÞj ffi 0; jn� ntk=cr j � c; 8b !
wðn� ntk=cr ;��ftk=ciÞ ffi 0; jn� ntk=cr j � c

ð23Þ

Since ~yðnÞ is the subsampled version of output of an LTI

filter whose input is the Gaussian vector ~xðnÞ, it is also

normally distributed with mean ~ytðnÞ, and it can be shown

that its covariance matrix is given by

Rf~yðnÞg ¼
XNr

r¼1

XNc

i¼1

Gi;rðwðn� ncr ;��fciÞw
Hðn� ncr ;��fciÞÞ

� ðvcivHci Þ þ r2
wI

ð24Þ

where without loss of generality we presume that:

wbð0; 0Þ ¼ jwbð0; 0Þj ffi 1; 8b.

As also mentioned before, the idea is to use ~yðnÞ (the

subsampled version of ~xðnÞ) as decision (primary) data for

target detection at sample delay n. In the literature, it is

suggested that the subsampled mixed signals with sample

delays adjacent to n are exploited as secondary data (Neyt

et al. 2006; Raout et al. 2007; Raout and Preaux 2008;

Raout 2008a). For adaptive detection which is the subject

of this paper, one may use ~yðkÞ; k 2 D as target-free

secondary (training) data provided that the secondary data

set D is generated such that some requirements are met.

The secondary data should be iid and have the same dis-

tribution as the background of the primary data, and be

independent of it. Hence, by the statistical analysis of this

paper, the following lemmas are demonstrated in which a

suitable secondary data generation scheme is established

and the corresponding hypothesis test is formulated.

Lemma 1 If a target exists in sample delay n with

complex amplitude at and reduced normalized Doppler

frequency tt, and there is no other target in the delay

interval ½n� cþ 1; nþ c� 1�, we have

~ytðnÞ ¼ avt ð25Þ

where vt is the target reduced steering vector corresponding

to tt, a is a complex scalar proportional to at and 2c� 1 is

the sample width of main lobe of S-sample complex self-

ambiguity function in the delay domain.

Lemma 2 Let k � k0 � 2c� 1 and the clutter patches be

range homogenous (Gi;r ¼ Gi; 8r), then ~ycðkÞ þ ~zðkÞ and
~ycðk0Þ þ ~zðk0Þ (interference plus noise components of ~yðkÞ
and ~yðk0Þ, respectively) will be iid and have zero-mean

Gaussian distributions with covariance matrix Ry, given by

Ry ¼
XNc

i¼1

GiðvcivHci Þ �
Xc�1

r0¼1�c

wðr0;��fciÞw
Hðr0;��fciÞ þ Rw

 !" #
þ r2

wI

ð26Þ

where Gi is the power of the ith clutter patch in each clutter

cell and Rw as expressed by Eq. (47) corresponds to the

side-lobe region of complex self-ambiguity functions.

Regarding Lemmas 1 and 2, if the clutter patches are

range homogenous, the detection problem of a target with

reduced normalized Doppler frequency tt and sample delay

n, where there are no other targets in the delay interval

½n� L� cþ 1; nþ Lþ c� 1� (the sample delay under test

n and its 2Lþ 2c� 1 surrounding sample delays), can be

formulated as the following hypothesis test:

H0 : ~yðnÞ �d Nð0;RyÞ; ~yðkÞ �d Nð0;RyÞ; k 2 D

H1 : ~yðnÞ �d Nðavt;RyÞ; ~yðkÞ �d Nð0;RyÞ; k 2 D

(

ð27Þ

where

vt ¼ 1 ej2ptt . . . ej2pttðNd�1Þ
h iT

Ry ¼
XNc

i¼1

GiðvcivHci Þ �
Xc�1

r0¼1�c

wðr0;��fciÞw
Hðr0;��fciÞ þ Rw

 !" #

þ r2
wI;

ð28Þ

a is a deterministic and unknown complex scalar, ~yðnÞ and

~yðkÞ; k 2 D are independent, the training data set D is

given by

D ¼ kjk ¼ n� ð2c� 1Þd; d ¼ 1; . . .;
L

2c� 1

� 	� 

;

ð29Þ

and the total number of training data is

K ¼ 2 L=ð2c� 1Þb c.

Proofs See Appendix B.

So, using the proposed secondary data generation

scheme of Eq. (29) and under the mentioned assumptions,
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the theory of adaptive target detection can be generalized

to passive radars. In the next section, we continue the

investigation of adaptive detection problem in passive

radars and express the detection tests based on the derived

hypothesis test of Eq. (27).

3 Detection Algorithms

The hypothesis test given by Eq. (27) is the same as the

general hypothesis test of adaptive detection problem in

active pulse radars (Kelly 1986). So, all adaptive

detectors from active pulse radar theory based on this

hypothesis test can potentially be generalized for use in

passive radars. In this section, we investigate the gen-

eralizations of Kelly’s GLR, the DDL-GLR and the

PGLR. In addition, we can use the theoretical perfor-

mance expressions of these detectors using the derived

covariance matrix (Eq. (28)) to predict their perfor-

mances in passive radars.

When the interference covariance matrix Ry is totally

unknown and the target reduced normalized Doppler

frequency tt is known (equivalent to known reduced

steering vector vt), the GLR solution of Eq. (27) is the

same as Kelly’s GLR (Kelly 1986) with the following

decision test:

LKellyðnÞ ¼
jvHt R̂

�1

y ~yðnÞj2

(vHt R̂
�1

y vt)(1 +~yHðnÞR̂�1

y ~yðnÞ)
[
H1

g0 ð30Þ

where R̂y is the sample covariance matrix using secondary

data:

R̂y ¼
X
k2D

~yðkÞ~yHðkÞ ð31Þ

The presence of a target at sample delay n and with

known reduced normalized Doppler frequency tt is decided

if LKellyðnÞ exceeds the threshold g0. g0 is set to meet the

desired probability of false alarm, pfa, with the following

theoretical expression (Kelly 1986):

g0 ¼ 1 � ðpfaÞ
1

K�Ndþ1 ð32Þ

where K is the total number of training data. The proba-

bility of detection, pd, is expressed by Kelly (1986):

pd ¼ 1 � ð1 � g0ÞK�Ndþ1
XK�Ndþ1

k¼1

K � Nd þ 1

k

� �

� g0

1 � g0

� �k

Hkðbð1 � g0ÞÞ
ð33Þ

where

HkðyÞ ¼
K!

ðK � Nd þ 1Þ!ðNd � 2Þ!

�
Z1

0

rK�Ndþ1ð1 � rÞNd�2
e�ry

Xk�1

n¼0

ðryÞn

n!
dr

ð34Þ

and

b ¼ jaj2vHt R�1
y vt ð35Þ

As can be seen, the detection performance depends on

Nd, K and the signal-to-interference-plus-noise ratio

parameter b, where b is dependent on target Doppler fre-

quency, target power and the true interference covariance

matrix, Ry.

Since the target Doppler frequency is unknown in

practical applications, the GLR test is evaluated for a dis-

crete set of Doppler frequencies, forming a Doppler

detector bank. For an acceptable performance, we require

that (Wang and Cai 1994):

K� 2Nd � 3Nd ð36Þ

It must be reminded that if Eq. (36) is not satisfied, i.e.,

we do not have enough iid training data as required, more

data-efficient implementations such as the DDL-GLR and

the PGLR can be utilized.

The DDL-GLR (Wang and Cai 1991) tries to find the GLR

solution of Eq. (27) in the Doppler frequency domain. It is

based on applying several GLR processors to the Doppler

frequency domain data, divided into several localized pro-

cessing regions (LPRs), separately (Wang and Cai

1991, 1994). The DDL-GLR reduces the required number of

training data toK� 2Nl � 3Nl, assuming that the lth LPR has

Nl Doppler-bin coverage (Wang and Cai 1994).

Using Eq. (28), since the elements of Rw are smaller

than the elements of
Pc�1

r0¼1�c wðr0;��fciÞw
Hðr0;��fciÞ and if

it can be assumed that the complex self-ambiguity func-

tions of all segments of the reference channel signal are

approximately equal in the main lobe region

(r0 2 ½1 � c; c� 1�), it can be shown that the interference

covariance matrix has approximately per-symmetric prop-

erty, i.e.,

Ry ¼ JR�
yJ ð37Þ

where JNd�Nd
is the permutation matrix with unit cross-

diagonal entries and zero elements elsewhere. The target

steering vector has per-symmetric property, too:

vt ¼ Jv�t ð38Þ

The PGLR detector uses this information about the

structured form of Ry to reduce the secondary data size

requirement by a factor of two (Wang and Cai 1992).
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4 Simulation Results

In the preceding sections, the adaptive detection theory

has been established for passive radars and it has been

shown that regardless of the type and modulation of

transmitting signal, this theory is applicable. Here, the

detection performances of the adopted detectors are

evaluated by Monte Carlo simulations and compared to

the cross ambiguity function processing with CFAR

thresholding.

It should be remembered that in some derivations of

Sect. 2, we have made reasonable assumptions such as

Eq. (23). If these assumptions are approximately satisfied,

the detection performance of adaptive detectors will obey

the theoretical performance expressions. To investigate

these approximations, each simulation of this section also

contains a comparison between the theoretical and simu-

lation-based detection performances of Kelly’s GLR. As

will be seen, the simulation-based and theoretical detection

performances validate each other.

We suppose that the transmitting signal of opportunity is

BPSK (binary PSK) with 192 kbit/s bit rate, and is received

in the reference channel with DNR of 63 dB (the trans-

mitting waveforms of satellite-based PBR systems (Cris-

tallini et al. 2010) are based on such digital modulations).

The sampling frequency of 192 kHz (equal to the trans-

mitting signal bandwidth) is considered.

In the first simulation set, the direct signal in the

surveillance channel is canceled by preprocessing, and the

detection range interval corresponds to 75 sample delays in

time, containing range homogenous clutter patches. The

input clutter to noise ratio (CNR) per sample delay (range

cell) in this interval is assumed to be 15 dB. The power

spectrum of each clutter cell’s RCS is a Gaussian function

centered at zero Doppler frequency with r ¼ 1 Hz [r
denotes its standard deviation (STD)], which is frequent in

maritime and airborne radar applications. To achieve this

spectrum in the simulations, the Doppler frequencies of

clutter patches of each clutter cell are very closely spaced

in the interval of ½�6; 6� Hz while their powers, fGig,

change as a Gaussian function with r ¼ 1 Hz. Firstly, the

detection performances of Kelly’s GLR and the cross

ambiguity function processing with a CFAR thresholding

algorithm are compared. The comparison depends on the

target Doppler frequency. Hence, several simulation sce-

narios with different assumed target Doppler frequencies

are arranged. In all of them, the target is located in the 50th

sample delay. Other simulation parameters are listed in

Table 1.

In Kelly’s GLR, the subsampled mixed signals corre-

sponding to the mentioned delay interval are used to gen-

erate training data according to the proposed scheme of

Eq. (29) with 2c� 1 ¼ 2 fs=ð2BÞb c þ 1 ¼ 2 192=384b cþ
1 ¼ 1. The size of the training data set is K ¼ 74. For the

integration time of 1 s, the Doppler resolution of 1 Hz is

expected, and the Doppler frequency bins for the GLR

detector bank are selected as:

ft 2 f�11;�10; . . .; 11gHz;

tt 2 �0:5 þ 1

24
;�0:5 þ 2

24
; . . .; 0:5 � 1

24

� 

ð39Þ

Kelly’s GLR has the embedded CFAR property with

respect to the level and structure of interference covariance

matrix (Kelly 1986), and a fixed threshold is assigned to the

whole range-Doppler plane (75 sample delays and Doppler

frequencies up to 11 Hz) for the desired probability of false

alarm (pfa ¼ 10�3).

In the cross ambiguity function processing, a CFAR

thresholding algorithm should be applied over the square of

magnitude of the cross ambiguity function (equivalent to

the Fourier transform of the subsampled mixed signals,

Stein 1981) in the range-Doppler plane (75 sample delays

and Doppler frequencies up to 11 Hz) which is designed

carefully based on the considered scenario. To do this, the

square of magnitude of the cross ambiguity function, when

no target is present, is shown in Fig. 3a. As depicted in

Fig. 3a, due to the range homogeneity of the clutter patches

in the detection range interval, for every cell in the range-

Doppler plane its neighboring cells in the range dimension

can be used as reference or training cells. Let us also

illustrate a simple case in which the surveillance channel

contains thermal noise and the return of a strong target at

sample delay n ¼ 50 with Doppler frequency of 0:25 Hz

(no clutter) in Fig. 3b. As shown in Fig. 3b, a strong target

can cause false targets around itself in the Doppler

dimension due to the poor side-lobe property of cross

Table 1 Simulation parameters

for the performance comparison

of Kelly’s GLR and the cross

ambiguity function processing

Integration time 1 s

Subsampling factor (S) 8000

Nd 24

Sample delay of target 50

Different scenarios’ target Doppler frequencies (Hz) 0, 1, 2, 3, 4, 5, 6, 8

Probability of false alarm 10-3

STD of Clutter cell’s RCS spectrum r = 1 Hz
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ambiguity function and sampling phenomenon. This issue

happens in the general case of simultaneous presence of

target and clutter, too. To prevent false targets’ detection,

the cells adjacent to the cell under test in the Doppler

dimension should also be used as reference cells. But due

to the non-uniform spectrum of clutter cell’s RCS (as

shown in Fig. 3a), the number of these cells should be as

low as possible. To consider these points, we propose that

the CFAR algorithm be the combination (logical and) of

two one-dimensional cell-averaging CFARs (CA-CFARs)

in the range dimension and the Doppler dimension. The

CA-CFAR in the range dimension for a reasonable and fair

comparison utilizes the same number of reference cells as

the number of training data used in Kelly’s GLR, which is

74 in this simulation. The CA-CFAR in the Doppler

dimension, when the Doppler bins are selected in the same

way as Eq. (39), is composed of only two reference cells.

The thresholds of these CA-CFARs are chosen such that

each yields approximately the same probability of false

alarm, and also the combination of both CA-CFARs leads

to pfa ¼ 10�3 in the whole considered range-Doppler plane.

In each of the considered scenarios (Table 1), the detec-

tion probability (pd) of both methods versus input signal to

clutter ratio (SCRi) is depicted in Figs. 4 and 5. From Figs. 4

and 5, it is concluded that for such targets whose Doppler

frequencies are far enough from the peak of clutter cell’s

RCS spectrum (at zero Doppler frequency), the performance

of Kelly’s GLR (the GLR) is considerably superior to the

cross ambiguity function processing with CFAR threshold-

ing (CFAR CAF). However, in the strong peak region of

clutter cell’s RCS spectrum, the GLR underperforms the

CFAR CAF to a much lesser extent. To clarify this, the

required input SCRs of these methods (in decibels) for pd ¼
0:8 and their difference as a function of the target Doppler

frequency are shown in Fig. 6a. An important observation in

Fig. 6a is that at ft ¼ 4 Hz (four times the STD of Gaussian-

shaped clutter cell’s RCS spectrum), the performance

improvement of the GLR with respect to the CFAR CAF is

maximum (about 10:7 dB). To further investigate this

observation, simulations are repeated without any change,

except that the STD is selected r ¼ 0:5 Hz. The results are

shown in Fig. 6b which confirms that the most performance

improvement is achieved around the edge of clutter cell’s

RCS spectrum. In Figs. 4 and 5, the theoretical detection

performance of Kelly’s GLR is also plotted which matches

well with the simulation-based performance. It is noted that

according to Eq. (33), the detection performance is a func-

tion of b, defined by Eq. (35). To generate each plot, firstly

Ry is computed by substituting the simulation parameters in

Eq. (28) in which Rw is derived by Eq. (47) for n ¼ nt ¼ 50.

Secondly, b and hence pd is evaluated for the assumed target

Doppler frequency and a set of input SCRs using the com-

puted Ry. It is also demonstrated that the computation of Rw

with different values of n has very little effect on the theo-

retical performance.

The cross ambiguity function is the matched filter

detector in a white interference scenario. For highly cor-

related interferences, its performance degradation com-

pared to the adaptive detectors is increased. In addition, the

GLR achieves better false alarm regulation than the CFAR

CAF.

Let us also investigate the detection performance in

the presence of a strong interfering target at the range

cell under test for the GLR and the CFAR CAF. It is

assumed that in the 50th sample delay, there is a strong

target with Doppler frequency of 0:25 Hz and SCRi ¼
5:6 dB as well as the test target with ft ¼ 4 Hz. The

detection probability of both methods versus the input

SCR for the test target is plotted in Fig. 7. If compared

to Fig. 5a, the performance of the CFAR CAF in the

presence of an interfering target is decreased while the

GLR maintains its performance.

Fig. 3 Square of magnitude of cross ambiguity function (CAF) in dB for a target-free and b clutter-free surveillance channel signal
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Fig. 4 Detection performance comparison of Kelly’s GLR and the CFAR CAF for target Doppler of a 0 Hz, b 1 Hz, c 2 Hz and d 3 Hz

Fig. 5 Detection performance comparison of Kelly’s GLR and the CFAR CAF for target Doppler of a 4 Hz, b 5 Hz, c 6 Hz and d 8 Hz
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In the next simulation, for the target Doppler frequency

of ft ¼ 4 Hz and the previously considered detection range

interval, the detection performances of the three adopted

detectors and the CFAR CAF for pfa ¼ 10�3 and pfa ¼
10�4 are shown in Fig. 8a, b, respectively. The considered

LPR for the DDL-GLR and the number of training data

used by the detectors are given in Table 2. Other simula-

tion parameters are the same as the first simulation. The

DDL-GLR unlike Kelly’s GLR and the PGLR can work

well even in high training-limited case of K ¼ 15. Figure 8

also highlights the fact that the PGLR and the DDL-GLR

outperform Kelly’s GLR for the same number of training

data, lower than the secondary data size requirement of

Kelly’s GLR. Obviously, the performance of Kelly’s GLR

in this simulation with K ¼ 36 is degraded with respect to

Fig. 5a with K ¼ 74. The cross ambiguity function pro-

cessing uses a CFAR algorithm with the same structure as

Fig. 6 Required input SCR

(dB) versus target Doppler for

pd ¼ 0:8 in the case of a RCS

power spectrum with r ¼ 1 Hz

and b power spectrum with

r ¼ 0:5 Hz

Fig. 7 Detection performance comparison of Kelly’s GLR and the

CFAR CAF for target Doppler of 4 Hz in the presence of an

interfering target at the range cell under test with Doppler of 0.25 Hz

and SCRi ¼ 5:6 dB
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one used in the previous simulations, except that the CA-

CFAR in the range dimension now employs K ¼ 36 ref-

erence cells. It has the worst performance among the

investigated methods.

An important model to depict nonhomogeneous envi-

ronments is the variation of clutter cell’s RCS power in

range (Gao et al. 2014). In the final simulation set, a

practical nonhomogeneous scenario in which the input

CNR per sample delay varies proportional to the inverse of

target range is considered. The input CNR per sample

delay changes over the interval ½10 dB;�10 dB� in the

sample delays between 1 and 100. The clutter cell’s RCS

spectrum is a Gaussian function with r ¼ 1 Hz. A target

with ft ¼ 4 Hz is located in the 80th sample delay. Figure 9

depicts the detection probability of Kelly’s GLR with 32

training data and the CFAR CAF with 32 training cells in

its range dimension CA-CFAR (corresponding to the

sample delay interval [64,96]) versus input SCR in the

sample delay under test (the 80th sample delay). The input

CNR in this sample delay is �9 dB. Figure 9 also shows

the detection performance in the case of ideally homoge-

nous detection range interval consisting of 33 sample

delays (32 training data) with input CNR per sample delay

of �9 dB (both theoretical and simulation-based). As we

can see, the performance of Kelly’s GLR degrades in the

practical nonhomogeneous environment with respect to the

Fig. 8 Detection performance comparison of the DDL-GLR, PGLR, CFAR CAF and Kelly’s GLR for target Doppler of 4 Hz a pfa ¼ 10�3 and

b pfa ¼ 10�4

Table 2 Simulation parameters

for the performance comparison

of the adopted detectors

K in PGLR and Kelly’s GLR 36

LPR in DDL-GLR [3,4,…,7] Hz

K in DDL-GLR for two cases 15, 36

Nl for the considered LPR (in DDL-GLR) 5

The number of reference cells for the CA-CFAR in the range dimension (K) 36

Fig. 9 Detection performance

comparison of Kelly’s GLR (the

GLR) and the CFAR CAF for a

practical nonhomogeneous case

with and without the prior ECA,

and its corresponding

homogeneous case for target

Doppler of 4 Hz
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ideally homogenous one. So, the ECA is applied to elim-

inate the first 63 sample delays, where the clutter cells’

RCSs are stronger and encounter severe non-homogeneity.

These interfering clutter cells degrade the performance of

adaptive detection in the desired detection range interval

(sample delays of 64–96). For reducing the computational

cost of the ECA, the Doppler frequency interval of

½�2; 2� Hz is selected for cancellation. Kelly’s GLR in the

nonhomogeneous environment after performing the ECA

has reasonably good performance, close to its performance

in the homogeneous environment. The CFAR CAF, with or

without the prior ECA, does not perform well. From the

results of this simulation, we conclude that the sample

delay under test and its adjacent sample delays usually

correspond to range homogenous clutter patches, and the

preprocessing of the surveillance channel signal helps to

reduce the masking effects of the clutter patches outside of

the detection range interval on the adaptive detection of

desired targets. Similar conclusion has been made in (Tan

et al. 2014) without the analysis of detection performance.

If after this preprocessing the non-homogeneity is still

severe, we could use the DDL-GLR or other detectors

especially designed for such cases (Gao et al. 2014; Melvin

2000). It is noted that for the simulations of Fig. 9, the

threshold is set for pfa ¼ 10�3 in the desired range-Doppler

plane consisting of sample delay interval ½64; 96� and

Doppler frequency interval ½�7; 7� Hz. In addition, we

have: Nd ¼ 16, K ¼ 32 and S ¼ 12;000.

5 Conclusion

A formulation of adaptive target detection for passive radar

systems as a hypothesis testing problem has been addressed

in this paper. This has been facilitated by a detailed sta-

tistical analysis of the mixing product approach, including

the distribution and also the covariance matrix. We have

presented how the conventional secondary data generation

should be modified based on the properties of the self-

ambiguity function of transmitting signal to satisfy iid

requirements. It has been established that adaptive detec-

tors from active pulse radar area such as Kelly’s GLR, the

DDL-GLR and the PGLR are applicable to the derived

hypothesis test using the proposed secondary data genera-

tion scheme. We have provided the required information to

use the theoretical performance expressions of these

detectors to predict their performances in passive radars.

Simulations have been performed to show the effectiveness

of the adopted detectors which in most cases and especially

around the edge of clutter cell’s RCS spectrum exhibit

significantly better detection probability than the cross

ambiguity function processing with CFAR thresholding.

Appendix A: Statistical Distributions
of the Surveillance Channel Signal and the Mixed
Signal

In this appendix, the distributions of the surveillance

channel signal and the mixed signal are investigated. As

complex amplitudes of targets are modeled to be unknown

deterministic parameters, xt is a deterministic vector with

unknown parameters. w is complex AWGN with covari-

ance matrix of r2
wI with I as the identity matrix and r2

w as

the noise level. Since xci;r is a vector proportional to cci;r , it

is distributed as a multivariate complex Gaussian distri-

bution with zero mean and covariance matrix Rci;r , given

by

Rci;r ¼ E xci;rx
H
ci;r

n o

¼ Dncr xrefð Þ � scið ÞE jcci;r j
2

n o
ðDncr xrefÞ � scið ÞH

¼ Dncr xrefð Þ � scið ÞGi;r Dncr xrefð Þ � scið ÞH

¼ Gi;r Dncr xrefð Þ Dncr xrefð ÞH
� �

� scis
H
ci

� �

ð40Þ

The symbol used for such a distribution in this manu-

script is Nð0;Rci;rÞ. As xc is a linear combination of inde-

pendent random vectors xci;r , it is a zero-mean Gaussian

vector with the following covariance matrix.

Rc ¼
XNr

r¼1

XNc

i¼1

Rci;r ð41Þ

Ultimately, the independence of noise and clutter signals

results in:

x �d Nðxt;Rc þ r2
wIÞ ð42Þ

It is noted that the statistical parameters of the

Gaussian distribution of x depend on the reference

channel signal.

To find the distribution of the mixed signal, defined by

Eq. (12), we note that if every linear combination of

components of a vector is Gaussian, then it is a multivariate

Gaussian and vice versa (Anderson 2003). Using this the-

orem and Eq. (12), it is concluded that ~xðnÞ is also nor-

mally distributed. Its mean becomes:

Ef~xðnÞg ¼ Efx� ðDnx�refÞg ¼ Efxg � ðDnx�refÞ
¼ xt � ðDnx�refÞ ¼ ~xtðnÞ; ð43Þ

and its covariance matrix can be derived by
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Rf~xðnÞg ¼ Efðx� ðDnx�refÞÞðx� ðDnx�refÞÞ
Hg � ~xtðnÞ~xHt ðnÞ

¼ ðEfxxHg � xtx
H
t Þ � ððDnx�refÞðDnxrefÞTÞ

¼ ðRc þ r2
wIÞ � ððDnx�refÞðDnxrefÞTÞ

ð44Þ

Appendix B: Proofs of the Lemmas

In the following, the proofs of the lemmas in Sect. 2 are

presented.

Proof of Lemma 1 Considering ~ytðnÞ as expressed by

Eq. (20) and using Eq. (23), since there is a target at

sample delay n and other probable targets are outside of the

delay interval ½n� cþ 1; nþ c� 1�, only the contribution

of the target with sample delay n exists in ~ytðnÞ and the

contributions of other targets are zero. Hence, we have:

~ytðnÞ ¼ atwðn� n;��ftÞ � vt ¼ atwð0;��ftÞ � vt ¼ avt;

a ¼D atwbð0;��ftÞ ð45Þ

in which we use: wbð0;��ftÞ ffi cte; 8b (which can be

shown since the Doppler frequencies of targets, as formerly

stated in Eq. (17), are within the width of the correlation

lobe of wb in the normalized Doppler frequency domain,

i.e., 1=S). In fact, the pure tone component of ~xtðnÞ due to

the target at sample delay n which has passed through the

integrate-and-dump filter is equivalent to ~ytðnÞ.

Proof of Lemma 2 It is assumed that the clutter/multipath

echoes corresponding to a given delay interval starting from an

arbitrary sample delay such as n1 are considered in the signal

model, and the sample delays of clutter cells are expressed by:

ncr ¼ n1 þ r � 1; r ¼ 1; . . .;Nr. Using the range homogene-

ity of the clutter patches, it can be shown that the covariance

matrix of ~yðnÞ, derived by Eq. (24), can be written as:

Rf~yðnÞg ¼
XNc

i¼1

GiðvcivHci Þ�
Xc�1

r0¼1�c

wðr0;��fciÞw
Hðr0;��fciÞ

 "

þ
Xn�n1

r0¼n�n1�Nrþ1
r0 62½1�c;c�1�

wðr0;��fciÞw
Hðr0;��fciÞ

1
CCA
3
775

þr2
wI; n1 þ c� 1	n	n1 þNr � c

ð46Þ

The second inside summation of Eq. (46) with index r0

is denoted by Rw, i.e.,:

Rw ¼
D Xn�n1

r0¼n�n1�Nrþ1
r0 62½1�c;c�1�

wðr0;��fciÞw
Hðr0;��fciÞ ð47Þ

The summation bounds in Rw correspond to the side-

lobe region of complex self-ambiguity functions. It can be

shown that for a large number of terms in Eq. (47), the

dependency on n is negligible and Rw does not depend on

n. Hence, we have:

Rf~yðnÞg ¼D Ry ¼
XNc

i¼1

GiðvcivHci Þ �
Xc�1

r0¼1�c

wðr0;��fciÞw
Hðr0;��fciÞ

 "

þ Rw
�


þ r2
wI

ð48Þ

Equation (48) shows that the interference plus noise

components of ~yðkÞ and ~yðk0Þ have the same distribution.

Now, we are going to examine the independence of ~yðkÞ and

~yðk0Þ. Since every linear combination of components of joint

vector of ~yðkÞ and ~yðk0Þ is a linear combination of compo-

nents of x, they jointly have a multivariate Gaussian distri-

bution and it is sufficient to check whether they are

uncorrelated or not. Using Eq. (20), it can be shown that the

cross-covariance matrix of ~yðkÞ and ~yðk0Þ can be derived by

Efð~yðkÞ � ~ytðkÞÞð~yHðk0Þ � ~yHt ðk0ÞÞg

¼
XNr

r¼1

XNc

i¼1

Gi;rðwðk � ncr ;��fciÞw
Hðk0 � ncr ;��fciÞÞ � ðvcivHci Þ

þ r2
wdigðwðk � k0; 0ÞÞ

ð49Þ

Using Eq. (23), it is easy to show that Eq. (49) becomes

a zero matrix, if and only if:

jk � k0j � 2c� 1 ð50Þ

which is the necessary and sufficient condition of data

independence and the proof is completed.
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