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Abstract Business firms around the world have been

generating enormous amounts of domain-related docu-

ments. Most of these firms are adapting semantic Web-

based techniques into their software systems. Hence, they

want to semantically enrich their documents to enable more

meaningful querying or processing of the information in

the documents. To impart semantics into these documents,

ontologies relevant to the business domain should be used.

In this context, to populate the domain ontology with the

information from the source documents, a method for semi-

automatic learning of extraction rules for populating the

ontology is presented and implemented in the rule learning

system. In addition to the rule learning system, a frame-

work for separating the business logic from application

logic and storing the business rules and extraction rules in

external user-friendly format is presented in brief. The rule

learning system is mainly developed to be a part of the

presented framework, but it can be used as a standalone

system to learn any decision or association rules too. The

framework uses the rule learning system for learning

extraction rules. The main idea behind the work presented

is to learn extraction rules to be used by an information

extraction system (part of the framework) to populate the

domain ontology. The extraction rules learned by the rule

learning system can be used with any business rules

management system (BRMS) with appropriate wrappers to

populate the domain ontology.

Keywords Business applications � Business rules �
Extraction rules � Rule learning � Ontology � Semantic Web

1 Introduction

The work presented in this paper incorporates features of

the semantic Web (Alpaydin 2004; Apache POI HSSF

2002) by using ontologies to impart semantics to the

business documents. Around the world, most of the busi-

ness documents with information about their consumers,

working staff, procurement details, stock information, and

other business data are mostly stored in organized docu-

ments such as tables. Hence, a very commonly used doc-

ument format in this direction is Microsoft Excel, which is

very user and business friendly. To impart semantics into

the data in the business documents, ontologies relevant to

the domain of business are used. These ontologies specific

to a business domain are called domain ontologies (Bach

et al. 2008; Ball et al. 2005). Some common enterprise

ontologies are: enterprise ontology (Behkamal et al. 2012),

ontology for enterprise modeling (Berners-Lee et al. 2001),

TOVE Ontology Project for enterprise modeling (Biletskiy

and Ranganathan 2008), and many others. The ontology

can be represented in any ontology language like Web

Ontology Language (OWL) (Boley 2004).

To enable easy creation of domain ontologies, the

knowledge engineers can use ontology editors such as
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Protégé (Buitelaar et al. 2008). The domain ontology can

be built using ontology building methods. Among the

common methodologies to build ontologies (Bach et al.

2008), the skeletal methodology proposed by Uschold and

King (Ball et al. 2005) is very widely used. The created

domain ontology should be populated with instances. To

populate the ontology with information from source doc-

uments, there is a need for an information extractor. The

information extractor used as a part of the presented

framework (Celjuska and Vargas-Vera 2004) is the rule-

based BRMS engine like OpenL tablets (Cimiano 2006).

The extraction rules needed by the BRMS engine are

learned by the rule learning system. The described

approach for rule learning enables us to populate business

domain ontologies semi-automatically and semantically to

enrich business documents. The ontology instances reflect

the content of semantically processed business documents.

If desired, the populated domain ontology can be further

compared (matched) with methods such as the ones intro-

duced in Cohen (1995) to previous versions of the ontology

(if available) or other similar ontologies in the domain for

populating or finding inconsistencies between two

ontologies.

To perform the necessary learning semi-automatically,

the method described in this paper uses an annotation

system which enables the knowledge engineer to create a

training dataset. This training dataset is then used by the

rule learning system to learn extraction rules required for

populating the domain ontology. For populating the

ontology with instances from the source documents,

ontology capture methods (Bach et al. 2008; Ferrer-Troy-

ano et al. 2005; Fox and Gruninger 1998), which form a

part of the ontology building process, can be used. Ontol-

ogy is normally captured from sources containing infor-

mation about the domain of interest. There are two general

methods of ontology capture: manual capture and, in

general, information extraction-based capture. In the pre-

sented framework, the focus is only on populating the

created domain ontology using an information extraction

and document classification method.

Manual methods are not interesting in the context of this

paper. Information extraction methods (Fox et al. 1996;

Gomez-Perez et al. 2004) deal with semi-automatic or

automatic information extraction of necessary information

from structured, semi-structured, and unstructured docu-

ments. The extracted information is stored in an appro-

priate format which can be used for further processing.

Some useful methods of information extraction related to

the present work are described in Holmes et al. (1994). The

work Holmes et al. (1994) presents a system engineered to

perform Web-based information gathering, filtering, and

monitoring using ontology and agents. The work Jena

(2011) extracts relevant information from source

documents based on a measure it proposes called query-

sensitive similarity measure (QSSM).

The most popular information extraction methods are

based on a smaller subset of information extraction called

machine learning. Information extraction also includes rule

extraction or rule induction, or rule learning, which is the

focus of this paper. The work Language and org (2004)

describes a semi-automatic system, so-called ‘‘Ontoso-

phie’’, for ontology population from unstructured text. The

system is based on supervised learning of extraction rules

from annotated text. The extracted rules are applied to new

texts to populate the ontology. The ‘‘Ontosophie’’ system

uses natural language processing (NLP) to recognize syn-

tactic constructs. The system described in the present work

focuses on the position-based information extrications, but

can be empowered by NLP in future. The main focus of the

present work is on the position-based rule learning using

advantages of structure in the tabular formatted documents.

Another challenge of the present work is that the infor-

mation extraction rules are learned from human created

documents rather than Web pages generated from a data-

base in the background.

Rule learning (Li et al. 2007; Maedche and Staab 2001)

is an area of information extraction in which formal rules

are extracted from sets of observations. In the context of

this paper, the set of observations is created by the anno-

tation system. The rules extracted may represent a full

scientific model of the data, or merely represent local

patterns in the data. The rules extracted can be represented

in any of these languages or others, not mentioned here, for

further processing. Some useful methods of rule learning

and ontology population have been described (Manine

et al. 2008; Mierswa et al. 2006; Nederstigt et al. 2014a, b;

Oberle et al. 2005; OpenL Tablets and net 2006; Protégé

ontology editor and edu 2000). The paper by Manine et al.

(2008) presents a system which performs information

extraction for ontology population. In Mierswa et al.

(2006), a model to learn transformation rules generated

from a set of features for part of speech tagging has been

presented. In Nederstigt et al. (2014a), an adaptation rule

learning system which learns the rules and the domain

knowledge from a case base has been presented. The work

by Nederstigt et al. (2014b) presents a system based on

ViPER for extracting information in Web tables using a

type of rules called Florid rules. The work by Oberle et al.

(2005) presents a hybrid method which combines auto-

matic ontology construction with human intervention to

increase the effectiveness of ontology learning. The

framework FLOPPIES for ontology population from doc-

uments in tabular format has been presented in OpenL

Tablets and net (2006). This work is very relevant to the

present work, but applied to Web-based e-commerce

storage. A comprehensive survey of ontology-based
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information extractions has been presented in (Protégé

ontology editor and edu 2000). Some methods of infor-

mation extraction from semi-structured documents for

ontology population are relevant to the present work.

To enable the use of the rule learning system, the

knowledge engineer has to create a training dataset from

the source documents and annotate this set of documents

with respect to the ontology. The resulting annotation

information is pre-processed to create a training dataset for

the rule learning system. The rule learning system is then

enabled to learn a model from the training dataset. Once

the rule learning system learned a model, it can be used to

create a set of extraction rules, which can be used by

BRMS for populating the ontology with instances from the

source documents. The rule learning system is based on an

implementation of propositional rule learner named

Repeated Incremental Pruning to Produce Error Reduction

(RIPPER) (Ren 2014).

In the presented framework, all the information extrac-

ted (ontology instances or facts) from the source docu-

ments are stored in Positional Slotted Language (POSL)

(Schapire and Singer 2014) syntax. Then the POSL facts

and rules can be used with a reasoning engine like OO

jDREW (Sim and Wong 2004), for further processing.

The remaining sections of the paper are organized as

follows: Sect. 2 presents related works. The framework is

given in Sect. 3. The details of the annotation system and

rule learning systems are presented in Sects. 4 and 5,

respectively. An example system is given in Sect. 6 and

evaluation of the system is described in Sect. 7. Finally,

Sect. 8 concludes this work.

2 Related Work

The rule learning system presented in this work mainly

focuses on learning classification rules. The system pre-

sented can be used to learn robust association rules similar

to the rules presented in Simon et al. (2006) if data to be

learned is presented in an appropriate format. The rule

learning system implicitly uses ontologies in the back-

ground, which is equivalent to those of (Simon et al. 2006)

to some extent. The system can be considered to be

equivalent to that of Uschold and King (1995) in the sense

that it can be made to learn decision and association rules.

The presented rule learning system uses classification rules

for learning ontology instances. Hence, it also can be

compared with TRIPPER (Uschold et al. 1998). Since the

system uses contextual information to improve the learning

of rules, it does incorporate the idea presented in Vasile

et al. (2006). The system also has some features of the

work by Simon et al. (2006), but the work in Simon et al.

(2006) cannot be directly compared with the work

presented in this paper, because the work in Simon et al.

(2006) presents numerical data streams alone. Annotated

documents are similar to example documents; hence, the

work in this paper covers the information presented in

Uschold and King (1995). The work in this paper uses an

annotation system with which the knowledge engineer can

annotate documents to learn rules from. Then the rules

learned are applied to similar documents to populate the

domain ontology. This is equivalent to the concept of

learning from examples (Uschold and King 1995).

The proposed rule learning system has a wide variety of

applications. In the context of this paper, the rule learning

system is used as a part of a framework (Celjuska and

Vargas-Vera 2004). The knowledge (ontology and rule)-

based framework for the development of business domain

applications is presented in Fig. 1.

3 The Framework

The components of the presented framework in Fig. 1 are

presented in Table 1. The following sections after this

section each describe the components from Table 1 in

detail.

4 Annotation System

The annotation system (developed in Java) enables the

knowledge engineer to load the appropriate domain

ontology into the system. In addition to the ontology, the

system can load source documents, one at a time. Once the

ontology and the source documents are loaded into the

system, the knowledge engineer can annotate the infor-

mation in the source documents with the ontology. Each of

the selected source documents can be annotated on a row-

cell basis by selecting the entities and properties from the

ontology. The result of this annotation will be an XML file

which contains all the necessary information. This XML

file with annotation information is then further used by the

rule learning system. For now, it is implemented to work

with MS Excel documents. The annotation system also

extends support to annotate relationships between entities

in the ontology. The system and its graphical user interface

(GUI) are implemented using Java. To develop the anno-

tation system, JENA API (Wimalasuriya and Dejing 2010)

and Apache POI API (Witten and Frank 2005) were used to

load the domain ontology into the system and to load the

MS Excel file into the system respectively.

To annotate the necessary cells with the information

from the ontology, the user can navigate to the appropriate

row using the next and previous buttons, select the

appropriate class in the main combo box, and then select
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the appropriate property in the combo box above the col-

umn to be annotated. The annotation information for the

row is captured when the user presses the next or previous

button. The user can thus annotate the entire sheet or even

the workbook in this manner. After all the necessary cells

have been annotated, the annotation information can be

stored in an XML file by pressing the save button. A part of

the XML file generated by the annotation system is shown

in Fig. 9 in ‘‘Appendix’’.

5 Rule learning system

The rule learning system (Fig. 2) uses an implementation

of a fast rule induction system called Repeated Incremental

Pruning to Produce Error Reduction (RIPPER) (Ren 2014).

The rule learning system uses the RapidMiner (Zachman

1987) tool’s Java API for its implementation. RapidMiner

is a tool which includes an implementation of the most

successful machine learning and data mining algorithms. It

is a tool developed using Java programming language

which offers an environment for performing machine

learning and data mining experiments. It was formerly

known as YALE (Yet Another Learning Environment). It

allows experiments to be made up of a large number of

arbitrarily nestable operators described in XML files,

which can easily be created manually or with its graphical

user interface. It also integrates all learning schemes and

attribute evaluators of the Weka learning environment (Li

et al. 2007), which is another successful environment for

machine learning experiments. RapidMiner is a very flex-

ible tool which can be used to implement, test, experiment,

and evaluate different machine learning and data mining

algorithms on a variety of datasets from application code

by just modifying the necessary configuration files.

For now, the rule learning system presented uses the

RuleLearner operator of the RapidMiner to perform the

rule induction. The reason for choosing RIPPER over other

existing rule learning systems like PRISM, single attribute

learning, Perceptron, Apriori-type algorithm, Conjunctive

rule learner, naı̈ve Bayes, etc. is that the efficiency, pre-

cision and recall of the RIPPER over the type of data used

as part of this paper are much higher than the others.

The rule learning system starts its role after the anno-

tation system is done with generating the XML files for

each of the documents annotated. The XML files with

annotation information (a part of a sample XML file is

shown in Fig. 9 in ‘‘Appendix’’) are parsed to create the

training dataset for the rule learning system. The parsed

data are then mapped back to the source documents to

extract the appropriate structural information, which would

help the rule learning system to extract rules with relatively

Fig. 1 The framework for

development of business

domain applications (Celjuska

and Vargas-Vera 2004)
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higher accuracy. These steps are visualized using the

example system in Sect. 6.

The annotation information is given for the rule learning

system in an XML file. The XML file contains details from

the source document such as the column number or row

number, or cell’s column and row numbers along with the

annotation information: the ontology name, class name,

instance and property names and the cell content (a part of a

sample XML file is shown in Fig. 9 in ‘‘Appendix’’). This

information is stored in predefined XML tags. The XML tag

structure is used to parse the information stored in between

the tags. The parsed information is stored in the memory

initially and then organized into a tabular Excel format

(training data) making it easy for the knowledge engineer to

Table 1 Components of the framework (Celjuska and Vargas-Vera 2004)

Component Description

Source documents Source documents are the main source of information to the system. They can be documents in user-friendly formats (i.e.,

Microsoft Word, Excel, etc.) or XML-based formats. The information from the source documents is loaded into the system

memory and used for further processing

Appropriate

parser

The proposed framework assumes the need for appropriate parsers for source documents, which can parse the document

enabling the information extractor to retrieve the necessary information needed to populate the ontology

Information

extractor

An information extractor is needed to extract the facts or ontology instances from the parsed source documents. This

information extractor is implemented by using extraction rules created by the rule learner in BRMS format such as OpenL

tablets stored in user-friendly document formats such as MS Excel, thereby making the extraction rules user friendly and

external to the application. These rules are then used by the OpenL tablets engine to extract the facts or ontology instances

from the source documents. In the presented framework, there is also an alternative way to create rules for information

extraction using the semi-automatic rule learning subsystem

Domain ontology Domain ontology is one of the main components of the proposed framework. The role of the domain ontology is to bring

semantics into the system. The information sources and users may follow different schemes or terminologies. Hence, at

least lightweight background ontology must be developed by a knowledge engineer to interoperate between the different

schemes. In the presented framework, the domain ontology is supposed to be stored in Resource Description Framework

Schema (RDFS) syntax or Ontology Web Language (OWL) syntax, and populated by ontology instances extracted from

source documents. These instances are stored in Positional Slotted Language (POSL) syntax (which is another

representation of RuleML) because of relative human readability (so, the knowledge engineer can manually intervene with

the knowledge/rule-base without difficulties)

Business rules Business rules for the application logic, which may be used for the delivery of appropriate information from source

documents to users, can be created and stored in user-friendly formats like Microsoft Excel due to the convenient tabular

format, which enables easy human reading and editing. On the other hand, formats like MS Excel are not machine

interpretable due to the lack of semantics in documents. The presented framework considers the use of rules in Excel

documents to externalize them from specific applications

Application logic A part of the application logic (is a distributed component in the framework) can also be externalized in Excel tables, with

the help of BRMS like OpenL tablets, in the proposed framework. As a result, the externalized part of the application logic

can be modified by a software developer or knowledge engineer without affecting the other components of the system or

even the main system

Reasoning engine The reasoning engine used in the framework loads the domain ontology, converts business rules from the rules repository

and the extracted facts from the source documents. Based on the user’s choices, queries can be generated from the

application or the users can create the queries themselves. These queries are then given to the reasoning engine. The

reasoning engine can then run the query and return the results to the application for further processing or for creating a

report for the user. Some transformations can also be used to present the results in other user-friendly formats. Although

any reasoning engine can be used, the OO jDREW is proposed in the present work because of its capabilities to handle the

POSL syntax

Annotation

system

Annotation system plays a major role in the presented framework. The knowledge engineer can create training dataset from

large amounts of source documents. This training dataset is then annotated by the knowledge engineer with respect to the

domain ontology. The annotation system is implemented such that the knowledge engineer can load the semi-structured

source documents and the domain ontology and can annotate the parts of the documents with respect to the ontology. The

annotated information is captured in XML format

Rule learning

system

The rule learning system in the framework is for learning extraction rules to be used by the information extractor component

for populating the ontology. It uses the annotated information to create a training set. The annotated information in XML

is mapped back to the source documents to extract some structural information. This extracted structural information

along with the annotation information is used to create an organized training set to be used by the rule learning system.

The rule learning system then uses the created training set to learn a model for the presented information. The learned

model is then used for creating extraction rules. The created extraction rules are then converted to appropriate BRMS

format such as OpenL and are given to the information extractor for further use
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edit and troubleshoot (a snapshot of a part of the annotation

information in tabular format is shown in Sect. 6).

The rule learning is performed incrementally in four

stages (depending on the number of attributes to be

learned). At the first stage, the remaining attributes are

hidden, facilitating the learning of the first attribute. At the

second stage of learning, the first unknown attribute col-

umn (part of annotation information) is included. At the

third stage of learning, the first and second unknown

attribute columns (part of annotation information) are

included. In the fourth stage, the first, second and third

unknown attribute columns (part of annotation informa-

tion) are included. In each stage, rules for learning the

appropriate unknown attributes are created. This type of

learning can be called incremental rule learning.

In the presented example, there are four unknown

attributes. The order of the attributes plays a very important

role. To select the order of the attributes, there is a need to

consider the fact that the OpenL tablets rules engine (any

other BRMS can be used) overrides the first set of rules

with a later set of rules if they address the same data or

dataset. Hence, the attribute columns are ordered based on

the diversity of the data in the column from least diverse to

the most diverse. This is because when there is less diverse

data, the accuracy of the created rules is low, and the use of

this less diverse data is low. On the other hand, the set of

rules created using a high diverse data is much more

accurate than the set of rules created using less diverse

data. Hence, it is important to give higher priority to the set

of rules created using more diverse data.

The learning is performed by the rule learner operator of

the RapidMiner tool. The result of the incremental rule

learning process is a set of rules in human readable format

represented using a group of if–then–else statements. The

set of output rules by the RapidMiner tool is then processed

to convert them into appropriate syntax to be used by the

information extraction system. In the presented example,

the rules created by the RapidMiner tool are converted to

Java syntax to be used by the OpenL tablets BRMS. Then

the new rules are stored in the appropriate rules file to be

used by the BRMS. To use the learned rules with OpenL

tablets, the attributes (both known and unknown) used for

learning the rules can be used to create data types in

OpenL. Once OpenL data types are created from the

attributes, the converted rules can be used directly with the

OpenL engine because the rules work by assigning a value

or a range of values for different attributes. As a part of the

future work, methods for directly learning the decision

table from the training dataset is under progress.

6 An Example System

An application of the framework is considered in this

section (Fig. 3). A newspaper publishing company is

considered as a consumer of the framework. In this

example, OpenL tablets is used as the BRMS. Also, to

utilize the framework in this company, an ontology

belonging to a newspaper domain is needed. A simple

lightweight ontology is considered to be used as the

background ontology. The ontology used as a part of this

work is the newspaper ontology which is available as a part

of Protégé (version: 3.3). The rules applicable to this

domain, the information about the employees, parsers, and

partly the application logic are stored in MS Excel and will

be utilized by OpenL tablets.

To explain the developed application in relative detail, a

table with information about the employees of the company

is considered (Fig. 4). The data in the form of Excel

table are parsed by the developed parser.

The knowledge engineer can now load the source doc-

ument (Fig. 3) along with the newspaper ontology into the

annotation system and annotate the source document. The

annotation information produced by the annotation system

is stored in XML file in a predefined format. The infor-

mation in the XML file is parsed and stored in the Excel

file for further processing. A snapshot of the annotation

information in the Excel file is presented in Fig. 5.

The information in this Excel file is used to extract

contextual information from the source document. A

snapshot of some contextual information that has been

extracted is shown in Fig. 6.

Test Bench

R

Evaluation 
Results

Rule learning system

Information 
Extractor

Domain 
Ontology

Training data from source 
documents

Training data for 
Rule Learning

Annotation 
System

RIPPER 
implementation

Knowledge 
Engineer

Source 
documents

Test data sets
Model

Model Applier

Performance Analyzers

Fig. 2 The semi-automaticrule learning system with test bench

108 Iran J Sci Technol Trans Electr Eng (2016) 40:103–115

123



Now, the contextual information extracted (Fig. 6) from

the source document is appended to the annotation infor-

mation (Fig. 5) to create a final training set for the rule

learning system. This final training set is further parsed to

add some filler into empty cells, because the rule learning

system performs better with non-empty cells in the training

set. The filler added into the empty cells depends on the

contents of the column predominantly. If the column

mostly consists of string values, then the filler used to test

the system is a string ‘‘N/A’’. If, on the other hand, the

column contains mostly integer or float values, negative

infinity can be used. This is just for testing. In real world,

the knowledge engineer can determine the fillers that will

work best for their application and data needs. This final

training set is given to the rule learning system

incrementally to learn the set of extraction rules for pop-

ulating the domain ontology.

The rule learning system produces a final set of rules

after all the stages of the incremental learning process are

finished. The rules generated are then processed and con-

verted to appropriate syntax based on the BRMS or other

extraction system used. In the presented example, the rules

are converted to the Java syntax in a manner to be used

with the OpenL tablets. A snapshot of the final rules (user

readable) generated is shown in Fig. 7.

The parsed information is then converted into POSL

facts by the converter with the consideration of the news-

paper ontology in the background. The reason is POSL

facts and rules can later be queried or new information can

be inferred:

Fig. 3 Source data fragment in

Excel table format

Fig. 4 An example of data and

rules of a Newspaper publishing

company in Excel format

Fig. 5 Transformed annotation information
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The POSL facts, which are partly an instantiation of the

ontology, can be created in two ways in the presented

framework: manually using OpenL tablet for rules and

schema for facts, and another way is through the semi-au-

tomatic rule learning system by manual annotations. For

creating POSL facts manually, the knowledge engineer

creates conversion rules or OpenL methods in OpenL tablets

which convert the data in the table to POSL syntax. This

task becomes very cumbersome if the domain has volumi-

nous amount of data in different tables. In this context, the

rule learning system becomes very handy, where the

knowledge engineer can create a small dataset and annotate

them with respect to the domain ontology. The rule learning

system now takes the annotated information and creates the

necessary extraction rules for populating the ontology. The

populated ontology can then be expressed in POSL format.

This mechanism can be used to convert the business rules in

tables to ontology-based POSL format too.

The POSL syntax of the rules is not shown to the

business analyst, making his/her work simple. The business

Fig. 6 Information obtained from source document
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analyst or the respective official would like to maintain the

information about the employees and at the same time keep

track of, for example, their salaries to different employees.

For this, he/she can develop a set of rule tables where the

rules applied to the different types of employees are stored

(Fig. 4 part A). The system takes these rules and converts

them into appropriate POSL facts and rules. Once these

rules are in POSL format, the business analyst or the

respective official can start querying the knowledge base to

get necessary information about employees. Some of the

POSL facts created from the rules in Excel table are:

Using the above-mentioned facts, the respective official

can query the knowledge base for obtaining information

about employees. To use these facts to get information

about a particular employee, the system also generates

rules which can be used to receive information on new

salary for any employee. When the respective official

wants to receive information from the knowledge base, the

system calls a method generating an internal query to the

knowledge base using the OO jDREW (Sim and Wong

2004) engine in the backend. These queries get automati-

cally called based on the selections made by the respective

official. In the case with a knowledge engineer, he/she can

query the knowledge base directly in the GUI of the OO

jDREW engine, because he/she will probably be familiar

with the POSL syntax. The system delivers the results of

the query to the person querying when the queries are

issued using the system. There might be situations when

the user might have been instructed by the organization, for

instance, to raise the salary of an employee or a set of

employees on a specific occasion like a bonus for many or

promotion for a group. In this case, the respective official

just has to create another table which specifies the per-

centage raise information on the salary for each class of

employee and the knowledge engineer has to create rule

schema or annotation information for this new table. A

similar scenario is shown in Fig. 4 part B, where the

respective official can create rules to apply a uniform

percentage raise to employees of a class. From the

table presented in Fig. 4 part B, the rules for inferring the

new salary raise will look as follows:

Once these rules are created, the system can automati-

cally recognize the new rules and incorporate them. Now,

if the knowledge engineer or the respective official queries

the system, they will be getting the updated information for

different employees based on the new percentage increase

added into the system. The domain ontology is loaded into

OO jDREW reasoning engine through the Java API and

parsed. Then the created facts and rules of the system are

loaded into the reasoning engine and parsed. To test the

system, the following query is issued to the reasoning

engine:

Fig. 7 A snap shot of classification or extraction rules generated by

the rule learning system
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The query result is stored in the variable—?c as

?c = 2612.609. A snapshot of OO jDREW reasoning

engine running the query is shown in Fig. 8.

7 Evaluation

In the context of the present paper, a rule learning system

and a framework are presented. The rule learning system is

the focus of the work presented. A test bench was created

to test the rule learning system incrementally. The test

bench evaluates the rule learning system during each

incremental phase and gives results in terms of precision

and recall. The test bench was created using the testing

operators available in RapidMiner. As explained earlier,

the rule learning system learns the rules for the unknown

attributes from the known attributes incrementally. After

the model for each unknown attribute is learned, the model

learned for that unknown attribute is evaluated immedi-

ately. Testing was performed on 1:3 training to test the set

basis (for every model learned it has been tested on three

test datasets). The knowledge engineer has to create the test

datasets by giving the values for each of the unknown

attributes. The created test datasets are then given to the

test bench which then loads the learned model and predicts

each of the unknown attributes in an incremental manner.

Then the test bench compares the predicted values for the

unknown attributes with values for this unknown attributes

given by the knowledge engineer. Based on this

Fig. 8 A snap shot of query result in OO jDREW
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comparison, precision, recall and F-measure are calculated

for each attribute for each test data. In the context of this

paper, precision is defined as the amount of relevant

information retrieved by a search divided by the total

information retrieved by that search, and Recall is defined

as the amount of relevant information retrieved by a search

divided by the total existing relevant information. The

overall evaluation results for the evaluation conducted are

presented in Table 2. For the test data with equivalent

similarity with the training data, the evaluation results are

almost similar.

The performance of the system depends on a variety of

factors like the quality and quantity of the training dataset,

similarity between the test and training dataset, and the

method used to generate the test data. The quality and

quantity of the training dataset is dependent on the way the

training set is created. The performance of the model

learned will be much better if each unknown attribute has

sufficient training values to learn the model from. The

distribution or uniformity of the number of values used to

train each unknown attribute again plays a very important

role in the quality of the model learned.

The similarity between the training dataset and test

dataset is a very common factor which plays a very

important role in the result of evaluation. To evaluate the

rule learning system, different test datasets have been

created with different levels of similarity between the

training dataset and the test dataset. Three cases have been

considered, greater than 80% similarity, greater than 60%

but less than or equal to 80% similarity, and greater than

40% but less than or equal to 60%.

The method used to generate the test dataset plays a very

important role in the result of evaluation. The most general

methods for generating test data are: manual creation and

automatic creation of test dataset. As a part of this paper,

the test dataset is created by the knowledge engineer

manually. Hence, it is believed that the percentage of error

is minimal. Also, the test dataset is created in a way that it

is different from the training dataset beyond a certain

percentage (80, 60, 40% similarity), etc. The similarity

here mainly means the similarity in the format of the

contents in the document and very minor repetition of

content.

The evaluation of the framework itself is not very

important in the context of the present paper, but an

evaluation of the framework with the rule learning system

might be of interest. The best way to evaluate the presented

framework is to compare it with a successful framework in

its cadre. There are four classes of enterprise architecture

frameworks: open source or consortia-developed frame-

works, commercial frameworks, defense industry frame-

works, and government frameworks.

A very popular and successful framework for enterprise

architecture is Zachman framework for enterprise archi-

tecture (Zolghadri-Jahromi and Valizadeh 2006). To

compare the presented framework with the Zachman

framework, a comparison is conducted between the com-

ponents of the two frameworks to determine how well the

presented framework fits into the Zachman framework. The

presented framework for business domain applications

covers the Zachman framework. All the data perspectives

are covered by the domain ontology and its model pre-

sented as a part of the framework. All the functional per-

spectives are covered by the reasoning engine used and

externalized application logic made possible by the use of

an appropriate BRMS (like OpenL tablets). All the network

perspectives are covered by the relationships between the

components of the presented framework. All people per-

spectives are covered by the possibility of independent

development and maintenance of the components of the

framework. All time and motivation perspectives are cov-

ered by the design and implementation of rules, and their

semantic processing, and the entire framework.

8 Conclusion

The present paper has described a semi-automatic rule

learning system, which creates information extraction

rules semi-automatically with the help of manual anno-

tations. The paper describes a novel approach to the rule

learning system for ontology population from business

documents stored in tabular formats (e.g., MS Excel). The

presented rule learning system utilizes fast rule induction

algorithm (RIPPER) and the semantic Web techniques

with the purpose of extracting ontology instances and

imparting semantics to the business documents. The

documents in tabular formats are first processed by the

annotation system, which produces corresponding XML

files with annotation information; this information along

with some contextual information is processed by the rule

learning system to learn the model of the system and

create classification or extraction rules to populate the

ontology. The fast rule induction algorithm (RIPPER)

Table 2 Evaluation results

Similarity between the

training data and test data

Precision

overall (%)

Recall

overall

F measure

overall

[80% 100.00 100.00 100.00

[60% but\=80% 83.40 84.60 84.00

[ 40% but\=60% 78.80 79.68 79.24
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used by the rule learning system is implemented as part of

the RapidMiner tool. A rule learning example is presented

as a proof of concept. The reason for creating a semi-

automatic rule learning system for learning classification

or extraction rules is that in industry (since the data dealt

with is sensitive) the knowledge engineers would need to

have more control over the system, also they would like to

have better accuracy, precision and recall which are

higher in the case of semi-automatic systems than fully

automatic systems.

A part of the paper presented a framework for building

knowledge-based software applications and also presented

the use of the rule learning system in such a framework.

The presented framework works with domain ontology in

the background. The framework assumes full independence

of development of all its components (ontology, business

logic/business rules, application logic, and reasoning) on

each other. The presented framework combines the

advantages of the semantic Web computing techniques,

OpenL as the framework works toward the externalization

and semantic enrichment of business rules for their

machine interpretability, and semantic querying of business

rules. The success of a business domain software applica-

tion built using this framework depends on the quality of

each single component. Overall, the presented framework

has all the components and details necessary for perform-

ing successful business modeling.

Future research in the direction shown by the presented

framework is multi-dimensional. An important further

direction is an extension of the developed framework to

support other types of information systems (different from

business domain software applications). Future research

will work toward providing support for multiple ontologies

in the presented framework. The presented framework has

an information extraction component which, for now, only

populates the domain ontology. This direction will be to

include information extraction methods for extracting

complete ontologies from source documents. Future

research will also include providing support for a large

variety of document formats, including other semi-struc-

tured formats to unstructured formats, as source docu-

ments. Another area of future research, even though

challenging, will be to extract business rules automatically

from business documents, which will lead to further soft-

ware requirements elicitation from business documents.

Appendix

See Fig. 9.

Fig. 9 A part of the XML file

with annotation information
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