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Abstract
This work specifically examines the modeling of the transient thermodynamic reaction of a Kirchhoff–Love thermoelastic 
thin circular plate that is simply supported and set on an elastic base of Winkler type. The plate experiences a time-varying 
external load. The Kelvin-Voigt model is employed to simulate the viscoelastic behavior of the plate in this investigation. 
The modified dual-phase-lag (DPL) thermoelasticity model is used to represent the intricate thermoelastic properties of the 
plate accurately. The DPL thermoelastic model includes the effects of restricted thermomechanical diffusion, which considers 
the connection between thermal and mechanical events in the plate. This model offers a more extensive depiction of the 
plate's reaction, considering both temperature and mechanical factors. Analytical solutions for the studied variables, such 
as deflection, temperature, displacement, bending moment, and thermal stress, were extracted using the Laplace transform. 
The viscoelastic coefficient, Winkler base, and the angular frequency of the distributed load greatly affect how circular plate 
structures behave, as shown by numerical examples and insightful discussions. Finally, to verify the validity of the results and 
the proposed model, they were compared with previously published studies and their corresponding thermoelastic models.

Keywords  Plate structures · DPL model · Viscoelastic · External load · Winkler foundation

1  Introduction

New developments in MEMS (microelectromechanical 
systems) technology have completely changed how small 
devices like sensors, actuators, and resonators are made. 
These devices have sizes between microns and sub-microns 
(Judy 2001). These gadgets have become widely used 
because of their compact size, exceptional sensitivity, and 
low power consumption. Comprehending and defining the 
mechanical features of microscale structures is essential for 
guaranteeing the effectiveness and dependability of MEMS 
devices. Scientists are currently conducting a thorough 

study to examine these characteristics using a combina-
tion of experimental testing, model creation, and numeri-
cal simulation (Lobontiu and Garcia 2004). Scientists cre-
ate mathematical models and theoretical frameworks that 
combine ideas from solid mechanics to precisely explain 
the mechanical behavior of objects at the microscale. These 
models incorporate a range of mechanical phenomena, such 
as elasticity, viscoelasticity, and structural dynamics. They 
provide the forecasting and examination of crucial mechani-
cal attributes of microscale structures, including deflection, 
stress distribution, and vibration characteristics (Lee 2011). 
The mechanical operation of micro-scale structures is gov-
erned by equations, which are solved using analytical and 
numerical approaches. These methodologies offer vital 
insights into the efficiency and behavior of such systems. 
Nevertheless, performing experimental testing on micro-
scale structures presents numerous obstacles. The intri-
cate nature of these structures, together with their unique 
characteristics and small scale, presents challenges in their 
manufacture and handling (Chircov and Grumezescu 2022). 
Manufacturing processes must possess the ability to produce 
structures with great precision and uniformity. Furthermore, 
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the task of overseeing and altering these fragile formations 
without causing harm or contamination can present difficul-
ties. Smaller structures, known as microscale structures, are 
more susceptible to environmental interactions as compared 
to bigger ones (Lyshevski 2018). The mechanical behavior 
of structures can be greatly influenced by factors, such as 
temperature, humidity, and surface forces, which can greatly 
influence the mechanical behavior of objects. It is therefore 
necessary to control and minimize these environmental vari-
ables during testing in order to achieve accurate and reliable 
results (Vlase et al. 2017).

The Kirchhoff plate theory is a prevalent mathematical 
framework employed to analyze the mechanical 
characteristics of plates at the microscale. This is a 
simplified version of the three-dimensional elasticity 
theory that focuses on thin plates with small thickness in 
relation to their lateral dimensions. The Kirchhoff plate 
theory assumes that the plate is both thin and malleable, 
exhibiting small transverse displacements and rotations 
(Mittelstedt 2023). The hypothesis disregards the influence 
of transverse shear deformation and assumes that the plate 
undergoes just in-plane loads. This simplification allows for 
the examination of plate deflections and stresses using two-
dimensional equations. The control equations of Kirchhoff's 
plate theory include force balance and plate deformation 
consistency. These equations relate to the plate's deflection, 
which refers to the displacement of points on the plate 
in a direction perpendicular to the plane, as well as the 
plate's bending moment and shear forces (Zhang et  al. 
2022). The theory also includes material parameters, such 
as the Young's modulus and Poisson's ratio, to describe 
the mechanical behavior of the plate. The Kirchhoff plate 
theory allows for the examination of many mechanical 
phenomena in microscale plates, such as bending, buckling, 
vibration, and dynamic response. It enables the calculation 
of quantities such as deflection profiles, stress distributions, 
and the plate's natural frequencies (Zhao et  al. 2022). 
Nevertheless, it is crucial to acknowledge that the Kirchhoff 
plate theory is not without its constraints. It is unsuitable 
for assessing plates that experience significant transverse 
shear deformation or plates with thicknesses that are similar 
to their lateral dimensions. For such situations, it may be 
preferable to employ more sophisticated plate theories, such 
as the Reissner–Mindlin theory or higher-order theories 
(Zhou and Huang 2023).

Circular plates and their composite structures are widely 
used in numerous engineering disciplines, particularly in 
electromechanical systems. These structures have been 
employed in electromagnetic applications to tackle special 
difficulties and exploit their distinctive characteristics (Zhang 
et al. 2015). One research topic focuses on the nonlinear 
mixed-resonance problem of magnetic circular plates 
subjected to transverse alternating magnetic fields. The 

interplay between the magnetic field and the ferromagnetic 
material results in nonlinear behavior. Investigating 
resonance phenomena in these systems is critical for 
understanding their responses and improving their design 
(Reddy 2022). Another area of research is the study of how 
conductive circular plates behave under time-dependent 
magnetic fields, taking into account their electromagneto-
thermo-mechanical properties. The objective of these 
investigations is to examine the interconnected impacts of 
electromagnetic, thermal, and mechanical phenomena on 
conductive circular plates. Understanding these interactions 
is crucial for the functioning of equipment like sensors, 
actuators, and energy-harvesting devices (Shen et al. 2021). 
Furthermore, the utilization of circular plates in rotating 
machines, transformers, and magnetic bearings has been 
investigated. Ferromagnetic materials possess distinctive 
characteristics, including their capacity to concentrate 
magnetic flux and amplify magnetic fields, rendering them 
well-suited for a range of electromechanical devices. These 
systems can utilize circular plates as components to attain 
certain capabilities and enhance their performance (Kaur 
and Singh 2021).

Because of their distinctive mechanical properties, 
viscoelastic materials are frequently used in the production 
of small-scale plates. These materials demonstrate both 
viscous (depending on time) and elastic (independent of 
time) properties, which can be beneficial for specific uses in 
micro-scale electronics (Cappelli et al. 2019). Microscale 
plates composed of viscoelastic materials provide numerous 
advantages. The materials possess viscoelastic properties 
that enable them to dissipate energy and relax stress, 
thereby reducing the impact of dynamic loads, vibrations, 
and collisions. This tendency can improve the longevity and 
dependability of microscale plates, particularly in situations 
where there is frequent loading or vibrations at high 
frequencies (Ghayesh et al. 2020). Viscoelastic microscale 
plates display both time-dependent deflection and creep. 
Creep is the slow and continuous deformation that happens 
when an object is subjected to a steady load over time. This 
phenomenon is particularly significant in situations where 
long-term stability and performance are crucial. Models that 
integrate both elastic and viscous components can be used to 
describe the mechanical behavior of viscoelastic micro-scale 
plates (Chinnaboon et al. 2023). The Kelvin-Voigt model 
is an example of a viscoelastic behavior representation 
that combines a linear spring, which represents the elastic 
response, with a dashpot, which represents the viscous 
response. These models can be used to predict the distortion, 
stress distribution, and dynamic reaction of microscale plates 
made of viscoelastic materials (Qu et al. 2024). Gaining 
insight into the mechanical behavior of viscoelastic micro-
scale plates is essential for the purpose of designing and 
enhancing microscale devices, including sensors, actuators, 
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and resonators. Engineers can enhance device performance 
and reliability by incorporating the time-dependent 
properties of viscoelastic materials into their models and 
simulations (Xie et  al. 2023). The characterization and 
modeling of viscoelastic behavior in micro-scale plates 
can be hard because of the small length scales involved, 
which is important to acknowledge. Employed methods for 
studying the viscoelastic properties of microscale plates and 
validating models include experimental approaches such as 
nanoindentation and dynamic mechanical analysis, as well 
as numerical simulations.

A microscale structure is supported by an elastic 
foundation that follows the Winkler model. The foundation 
serves as an elastic basis of the Winkler type to maintain 
small-scale structures. The Winkler model simplifies an 
elastic foundation by assuming a linear correlation between 
the applied load and the resulting deflection. In this layout, 
the elastic base is positioned atop the microscale structures, 
such as beams, plates, or foundations (Singh et al. 2018). 
The elastic foundation mimics the support provided by the 
substrate or neighboring material, which can be made of 
various materials, such as metals, polymers, or composites. 
When the elastic foundation consists of a set of individual 
linear springs that are evenly distributed over the contact 
region between the structure and the base, the Winkler model 
is used. Every spring symbolizes the foundation's firmness 
and provides resistance to distortion. The microscale 
structure's deflection is determined by the cumulative effect 
of the deflections caused by each individual spring (Gholami 
and Alizadeh 2022). The Winkler model simplifies the study 
of microscale structures on elastic grounds by transforming 
the scattered support into an equivalent discrete support. 
This approach enables the calculation of deflections, 
stresses, and other mechanical parameters of structures 
subjected to applied loads. The Winkler model is commonly 
used to analyze a variety of small-scale structures, such as 
foundations, plates, and beams. It enables the creation of 
realistic estimates for a variety of practical applications and 
simplifies complex continuum models (Ye et al. 2020). It is 
crucial to recognize that the Winkler model has limitations. 
It relies on linear behavior and does not take into account 
the impact of local material qualities and gradients. In such 
cases, it might be necessary to use more complex models, 
such as the Pasternak model or the finite element method, to 
accurately represent the interactions of small structures with 
elastic foundations (Boral et al. 2023).

Thermoelasticity is a scientific discipline that examines 
the impact of temperature variations on the mechanical 
properties of materials. It integrates concepts from 
thermodynamics and elasticity to comprehend the thermal 
deformation and stress encountered by substances when 
subjected to different temperature settings (Nowinski 
1978). Classical thermoelasticity is a foundational theory 

that assumes immediate heat transfer and predicts an 
unlimited velocity of thermal wave propagation. It offers a 
streamlined framework for examining how materials react 
to fluctuations in temperature. This theory has a broad range 
of practical applications and offers useful insights into the 
thermal behavior of materials. Nevertheless, it possesses 
constraints in precisely predicting certain phenomena, 
such as high heat flow or transitory behavior. Generalized 
thermoelastic models have been created to address classical 
thermoelastic constraints. These models include extra 
elements or introduce new variables to account for the finite 
speeds at which thermal waves propagate, as well as other 
related phenomena (Ignaczak and Ostoja-Starzewski 2009). 
These models offer a more accurate depiction of the thermal 
behavior of materials by taking into account the finite speed 
at which thermal waves propagate.

The Lord and Shulman model (Lord and Shulman 1967) 
and the dual-phase-lag thermoelasticity models (Tzou 1995a, 
b, 1997) are both examples of generalized thermoelasticity 
models that are superior to classical thermoelasticity because 
they provide more accurate depictions of how materials 
behave when they are heated. These models provide useful 
insights into how temperature changes affect the mechanical 
properties of solids. They are used in numerous fields, such 
as thermal barrier coatings, heat exchangers, and materials 
science. The Lord and Shulman model (Lord and Shulman 
1967) incorporates a relaxation time element into Fourier's 
law of heat conduction. By incorporating this relaxation 
time, the model takes into consideration the limited velocity 
at which heat is transmitted in materials. Dual-phase-lag 
thermoelasticity models (Tzou 1995a, b, 1997) take into 
account the limited velocity of heat propagation and the 
time lag between temperature gradients and heat fluxes. 
These theories assume that temperature gradients and heat 
fluxes are regulated by distinct time lags or phases. The 
delay is accounted for by incorporating dual-phase delays 
into the thermal calculation. By including these delays, these 
models provide a more accurate depiction of the heat transfer 
process, especially in scenarios with fast heat transfer or 
thermal waves of high frequency. Also, the GN-I, GN-II, 
and GN-III theories proposed by Green and Naghdi (Green 
and Naghdi 1991, 1992, 1993) are distinct formulations 
of generalized thermoelasticity. These theories take into 
account temperature, temperature gradient, and thermal 
displacement as individual variables.

This study was primarily motivated to develop a 
model for analyzing the behavior of thin, thermoplastic 
Kirchhoff–Love sheets. The sheets were supported in a 
straightforward manner and placed on a flexible Winkler 
foundation. The time-varying external load acting on the 
plate was considered, and the Kelvin-Voigt model was used 
to simulate the plate's viscoelastic behavior. A modified 
dual-phase-lag (DPL) thermoelasticity model was used 
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to accurately model the elastic plate and how thermal and 
mechanical events interact with each other. The DPL model 
takes advantage of the limited rate at which heat spreads 
and introduces a dual-phase delay in the thermal equation. 
By measuring and incorporating these phase delays, the 
model offers a more accurate depiction of the panel's heat 
conduction process.

The results of the present study can provide valuable 
insights into the interrelationship between the thermal and 
mechanical properties of flexible panels. Additionally, these 
materials could be utilized in engineering applications for thin 
structures that experience to variations in temperature and 
mechanical stress. The effects of the viscoelastic coefficient, 
Winkler's basis, and angular frequency of the distributed load 
on the behavior of physical fields in circular plate structures 
were considered. These factors were examined to understand 
how they influence the characteristics of the circular plate 
structures. The results derived from the suggested model were 
also compared to previously published research to validate the 
model's accuracy and dependability, assess the effectiveness 
of the proposed methodology, and confirm the validity of the 
findings.

2 � Governing Equations

The constitutive equations, strain–displacement relationships 
and the equation of motion for an anisotropic thermoelastic 
medium can be expressed as follows (Marin et al. 2020; 
Zhou et al. 2022):

In this equation, the stress tensor components are denoted 
by �ij , the increment in temperature is represented by 
� = T − T0 , the uniform reference temperature is denoted 
by T0 , and the Lamé constants are represented by � and � , 
� =

E�t

1−2�
= �TE , in which E and � represent the Young's 

modulus and Poisson's ratio of the plate material, respec-
tively, the thermal expansion coefficient is represented by 
�t , and the function of Kronecker's delta is denoted by �ij . 
Also, the components of the strain tensor are denoted by the 
symbols �ij , Fi , which represent the external body forces, ui , 
which stand for the components of the displacement vector, 
�kk = ui,i , and � , which stand for the density of the material.

(1)�ij = 2��ij +
[
��kk − ��

]
�ij,

(2)�ij =
1

2

(
�ui

�xj
+

�uj

�xi

)

.

(3)�ji,j + �Fi = �
�2ui

�t2
,

It is important to note that Lamé's constants, � and � , can 
be expressed in terms of the Young's modulus ( E ) and 
Po i s s o n ' s  r a t i o  (  �  ) ,  u s i n g  t h e  r e l a t i o n s 
� =

E�

(1+�)(1−2�)
,� =

E

2(1+�)
.

The entropy-strain-temperature relation and the energy 
equation are respectively expressed as (Ignaczak and Ostoja-
Starzewski 2009):

where � represents the entropy per unit volume, Q represents 
the heat supply per unit volume, CE represents the specific 
heat, and qi encompasses the components of the heat flux.

Tzou (Tzou 1995a, 1995b) provided a generalization of 
the Fourier using Taylor series expansions, which can be 
expressed as follows:

In this context, the phase lag of the heat flow is denoted 
by �f  , whereas the phase lag of the temperature gradient is 
denoted by �T . The Eqs. (4)–(6) provide the formulation of 
the generalized theory of thermoelasticity with phase delays, 
as follows (Tzou 1995a, b, 1997):

In the Kelvin-Voigt viscoelastic model, the constitutive 
relationship involves aspects of thermoelasticity and 
viscoelasticity. To accommodate the material's viscoelastic 
properties, the Young's modulus ( E ) form has been 
reformulated. The Kelvin-Voigt model defines the modified 
Young's modulus as follows (Serra-Aguila et  al. 2019; 
Bulıcek et al. 2012):

The symbol τv indicates the viscosity coefficient, which 
denotes the internal damping coefficient of the material and 
E0 denotes the elastic Young's modulus. Integrating the 
revised Young's modulus into the constitutive equation of the 
Kelvin-Voigt viscoelastic model allows for the consideration 
of the material's viscoelastic characteristics and examination 
of how it reacts to external forces and its time-dependent 
features. By setting τv = 0 in the modified Young's modulus 
Eq. (8), we effectively remove the effect of internal viscosity, 

(4)�� = ��kk +
�CE

�0
�,

(5)𝜌𝜃0𝜂̇i = −qi,i + Q,

(6)−K
(
1 + �T

�

�t

)
�,i =

(

1 + �f
�

�t
+

1

2
�2
f

�2

�t2

)

qi

(7)

(
1 + �T

�

�t

)
∇ ⋅ (K ∇�)

=

(

1 + �f
�

�t
+

1

2
�2
f

�2

�t2

)(

�CE

��

�t
+ � T

0

��kk

�t

)

(8)E → E0

(
1 + τv

�

�t

)
,
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and only the thermoelastic behavior of the elastic material 
is taken into account.

3 � Thermal Modeling of Circular Microplates

Figure 1 represents a Winkler-based Kelvin–Voigt thermov-
iscoelastic circular plate resonator. It was assumed that the 
plate is isotropic, homogeneous, and thermally conductive, 
with a radius R and a uniform thickness h . Cylindrical coor-
dinates (r,Θ, z) were used, with the origin of the coordinate 
system located in the middle of the plate. At a reference 
temperature of T0 , it was assumed that the plate was in equi-
librium and free of any external forces or deformations. It 
was also taken into account that the upper layer of the plate 
is exposed to a varying external load that depends on time.

According to Kirchhoff-plate-theory, it was presumed that 
the plate is relatively thin in relation to its radius and that the 
displacements and rotations between the plates are relatively 
minor. To describe the axisymmetric deformation of a Kirchhoff 
circular plate, it will be taken into account that the field variables 
do not depend on the angular coordinate ( Θ ) and depend only on 
the radial coordinates ( r ) and vertical coordinates ( z ), in addition 
to the time variable t . As a result, the displacement components 
of a circular Kirchhoff plate can be expressed as follows (Shen 
et al. 2021; Kaur and Singh 2021):

In this instance, the deflection of the plate is represented 
by the function w(r, t) . As a result, the strain components, 
denoted by �rr , �ΘΘ , and �rΘ , and the cubical dilatation e 
are expressed by Chugh and Partap (2021); Gaikwad 2019):

(9)ur(r, z, t) = −z
�w(r, t)

�r
, uΘ(r, z, t) = 0, uz = w(r, t).

(10)�rr = −z
�2w

�r2
, �ΘΘ = −

z

r

�w

�r
, �rΘ = 0,

When it comes to thermal stress tensor, the nan-
vanishing components �rr and �ΘΘ , are given by Chugh 
and Partap (2021); Gaikwad 2019)

By utilizing relationships (12) and (13), we can derive 
the constituent components of the bending moments Mrr 
and M�� in the following manner (Rao 2019):

where D = D0

(
1 + τv

�

�t

)
 in which D0 =

h3E0

12(1−v2)
 denotes the 

flexural rigidity of the plate.
Also, the thermal moment, referred to by the symbol 

MT  in Eqs.  (14) and (15), can be determined from the 
relationship

The transverse motion equation governing the behavior 
of a circular plate supported by Winkler's basis under 
the action of external forces q(r, z, t) can be expressed as 
follows (Zhou et al. 2014):

(11)e = �rr + �ΘΘ = −z

(
�2w

�r2
+

1

r

�w

�r

)

= −z∇2w.

(12)

�rr =
E

(1 − v2)

[
�r + v�� − (1 + v)�t�

]

= −
E

(
1 − v2

)

[

z
�2w

�r2
+

vz

r

�w

�r
+ (1 + v)�t�

]

,

(13)

�ΘΘ =
E

(1 − v2)

[
�� + v�r − (1 + v)�T�

]

= −
E∗

(
1 − v2

)

[
z

r

�w

�r
+ vz

�2w

�r2
+ (1 + v)�t�

]

.

(14)Mrr =

h

2

∫
−

h

2

�rrzdz = −D
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�2w

�r2
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v
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,
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v
�2w

�r2
+

1
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]

.

(16)MT =
12

h3

h

2

∫
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h

2

z�(r, z, t)dz.

(17)
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+

2

r

�2MrΘ
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2
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−

1
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,

Fig. 1   Diagram of a circular plate supported by a Winkler foundation
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The parameter Ks denotes the Winkler foundation, which 
represents the resistance offered by the foundation to the plate's 
deformation.

By substituting Eqs.  (14) and (15) in Eq.  (17), the 
differential equation can be extracted from the transverse 
vibration of the slight circular plate as follows:

It has been assumed that the circular plate is supported by 
its edges, is subject to a uniformly distributed load q , and var-
ies in harmony over time. The distributed external load equa-
tion can be expressed uniformly as follows (Wawrzynski 2021; 
Xu et al. 2021):

where q0 represents the loading capacity (load magnitude) 
and � represents the angular frequency of the distributed 

(18)D∇2∇2w + D(1 + v)�t∇
2MT + �A

�2w

�t2
= Ksw + q.

(19)q(r, z, t) = q(t) = q0 cos (�t),

load. It is worth noting here that in the case of � = 0 , the 
external loading will be a fixed and distributed amount in 
a uniform.

Without the heat source ( Q = 0 ), the generalized DPL heat 
transfer Eq. (7) developed by Tzou (Green and Naghdi 1993; 
Marin et al. 2020) can be expressed in the following form:

4 � Analytic Solution of Governing Equations

Assuming no heat flow transfer occurs across the surfaces of 
the circular plate (i.e., ��∕�z = 0 when z = ±h∕2 ) and the 
temperature change follows a sinusoidal pattern in the z-direc-
tion. In this case, the temperature distribution within the thin 
plate can be mathematically represented by equation:

By employing Eq. (21) and substituting it into Eqs. (18) and 
(20), and subsequently simplifying, we obtain the following 
the equations:

(20)

K
(
1 + �T

�

�t

)
∇2� =

(

1 + �f
�

�t
+

1

2
�2
f

�2

�t2

)(
�CE
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�t
− � T0z

�

�t
∇2w

)

(21)�(r, z, t) = �(r, t) sin (z�∕h).

In addition, the bending moments, expressed in Eqs. (14) 
and (15), can be written as

In order to provide a more convenient solution, 
dimensionless parameters will be used to simplify the 
governing equations. It is possible to use the following 
dimensionless parameters for the problems of flexibility and 
thermoelasticity:

where c2
0
=

E0

�
 and � =

�CE

K
.

By introducing these dimensionless parameters, the gov-
erning equations can be rewritten in a more convenient form 
(primes are dropped for convenience):
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where

In order to solve the governing equations of the 
problem, it is necessary to take into account both 
the starting conditions and the boundary conditions. 
The problem assumes that the starting conditions are 
homogeneous. Therefore, the initial conditions at t = 0 
are assumed as follows:

When a circular plate is clamped at the edges, it is 
mechanically restricted from moving in a perpendicular 
direction to its surface, preventing any transverse 
displacement. This scenario is frequently encountered in 
applications where the circular plate must provide a level 
and steady surface to support or enclose other components. 
The clamping mechanism used to secure the panel's edges 
can vary depending on the structure's design and specific 
needs. To describe the mechanical boundary conditions 
on the edges of a clamped circular plate, we may use the 
following conditions:

When examining the behavior of an elastic circular 
plate exposed to thermal shock, it is crucial to take into 
account the impacts of swift and substantial temperature 
changes in close proximity to the plate's edges. Thermal 
shock can cause significant deviations in pressure and 
heat within the plate, potentially impacting its structural 
integrity and performance. The thermal shock condition 
at the ends of the circular plate can be expressed by the 
following equation:

5 � Solution of the Problem

The Laplace transform is an exceptionally effective 
technique for solving differential equations, particularly 
those that emerge in engineering, physics, and mathemat-
ics. The following integral defines the Laplace transform:
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(35)w(r, t) = 0,
�w(r, t)
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= 0 at r = R.

(36)�(r, t) = �0H(t)atr = R.

In this equation, f (r, s) represents the Laplace transform 
of the function f (r, t) , and the parameter s is a complex 
number with a positive real part. The following sets of 
equations are obtained by applying the Laplace transform 
to Eqs. (27)–(32):

Equations (38) and (39) can be reformulated as follows:

where

Eliminating the variable w or � yields the following 
results from Eqs. (44) and (45):
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The solutions to Eqs. (47) and (48) can be expressed as

The second kind of order zero modified Bessel function 
in these equations is denoted by I0

(
kir

)
 . Furthermore, the 

parameter ki , i = 1 , 2, and 3, is given by the roots of the 
equation:

After applying the Laplace transform to Eq.  (9) and 
making use of Eq. (49), the transformed displacement u can 
be expressed as:

Using the solutions of the functions w and � and 
substituting them into Eqs. (40)-(43), the solutions for the 
bending moments and thermal stresses can be derived as 
follows:

Through the process of applying the Laplace transform to 
the boundary conditions represented by Eqs. (35) and (36), 
the following formulas are obtained:
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(57)w(r, s) = 0,
dw(r, s)

dr
= 0 at r = R,

By introducing the functions w and � into the boundary 
conditions (57) and (58), the linear equations can be derived 
for the unknown constants as follows:

By solving this system of linear equations, the unknown 
parameters A1 , A2 , and A3 can be determined, which are nec-
essary to calculate the Laplace physical fields being inves-
tigated, such as displacements, pressures, or temperatures. 
Next, these studied domains must be converted back to the 
time domain.

6 � Inversion of the Laplace Transforms

There are several instances in which it is not possible to get 
inverse Laplace transforms of complex functions by analyti-
cal means. As a result, numerical approaches are required to 
approximate solutions in the time domain. The Fast Fourier 
Transform (FFT) is a commonly employed method for estimat-
ing the time-domain solution from the frequency domain in 

the context of the inverse Laplace transform. The FFT-based 
method is a common and widely used numerical approach 
for estimating the inverse Laplace transform and getting time-
domain solutions in many fields, including physics, engineer-
ing, and signal processing.

Based on this methodology, the inverse Laplace transform 
of , represented by , can be estimated as follows 
(Davies and Martin 1979): 
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The equation involves the parameter m  , associated with the 
Laplace domain, while n  represents the total number of terms 
in the summation. It is important to note that the exact values 
of t and m  , as well as the choice of n  , depend on the problem 
and the properties of the transformed Laplace function. These 
values can be determined via numerical experiments or rel-
evant literature in the specific problem domain.

7 � Validation of Results and Discussion

This section of the essay presents three distinct case studies 
to examine, analyze, and validate the importance of the 
problem under investigation and the efficacy of the theoretical 
framework employed. Each case study focuses on a specific 
aspect and examines how it affects the behavior of physical 
fields within a thin circular elastic plate.

Case Study 1: The Impact of Viscosity (Please remove 
the sub-section numbering

The objective of this case is to investigate the impact of 
viscosity on the dynamics of physical fields in a thin circu-
lar elastic plate. The study aims to understand how viscos-
ity affects different things in the plate, like displacements, 
stresses, and other physical properties, by looking at the 
theoretical model and combining parameters that have to 
do with viscosity.

Case Study 2: The Winkler Base Effect
This scenario includes analyzing the effect of the 

Winkler basis parameter on the distribution of variables 
within the panel, which depicts the interaction between 
the elastic structure and the elastic base. By manipulat-
ing the Winkler foundation modulus, the study seeks to 
investigate how varying levels of foundation or support 
stiffness affect the distribution of physical quantities in 
the elastic plate.

Case Study 3: The Impact of the External Mechani-
cal Load

The third case study investigates the presence and absence 
of an external mechanical load applied to the flexible plate. 
By looking at different loading conditions, the study seeks 
to understand the panel's behavior under multiple loading 
scenarios, including constant loads, time-dependent loads, 
or a combination of both. This case study aims to evaluThe 
study specifically examines the thermoelastic coupling 
phenomena in a circular plate made of magnesium, which 
exhibits thermo-viscoelastic behavior. To investigate this 

(65)

phenomenon, several magnesium material properties are 
given as follows (Tang et al. 2022; Abouelregal 2022):

ate the effect of an applied mechanical load on the physi-
cal properties of the plate, including deformations, tempera-
ture change, stresses, and deflection.

7.1 � The Effect of Viscosity on Different Fields

The impact of viscosity on the reactions of thermoelastic mac-
roscale beams and plates pertains to the influence of viscous 
damping on the thermal and mechanical characteristics of these 
structures. Viscous damping occurs when energy is dissipated 
by internal friction inside a substance or between the struc-
ture and its surrounding environment. Within the framework 
of thermoelasticity, viscous damping encompasses the process 
of dissipating heat energy and mechanical vibrations.

The objective of this case study is to investigate the 
impact of viscosity, as indicated by the viscosity coefficient 
τv , on the behavior and mechanical characteristics of flexible 
plates and beams. The evaluation will be conducted using 
the modified DPL thermo-viscoelastic model (DPL-VTE). 
The DPL-VTE model incorporates the fundamental ther-
moelasticity equations as well as the Kleven-Voigt model, 
which accounts for the influence of viscosity and damping. 
When analyzing the impact of viscosity on the thermoelastic 
reactions of a tiny magnesium plate resonator, the viscosity 
coefficient τv will be assigned the values of 0.03 and 0.05. 
In the absence of viscosity effects (pure thermoelasticity), 
τv is set to 0. We will analyze the gathered data and present 
the results in Figs. 2, 3, 4, 5, 6. The dynamic response of 
thermoelastic microplates is greatly influenced by the vis-
cous thermal damping parameter τv . These results demon-
strate the impact of viscosity on various distributions, such 
as bending moment, deviation, and stress range values. This 
consistency aligns with the conclusions reached in Abouel-
regal (2022); Zhao et al. 2024), indicating that viscosity 
plays a crucial role in influencing the mechanical behavior 
and responses of nanostructures.

T0 = 298K, � = 2.696 × 1010(kg∕ms),

� = 1.639 × 1010(kg∕ms),

�T = 1.78 × 10−5 K−1, � = 0.37,

K = 170W/(mK), �f = 0.04 s,

CE = 1.04 × 103(J∕kgK),

E = 40GPa, � = 1740 kg/m3,

�T = 0.025 s
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Figure 2 illustrates the dynamic deflection w , which quan-
tifies the plate's dynamic deformation over time under the 
influence of viscosity and in its absence. The figure illus-
trates that an increase in τv results in a decrease in the deflec-
tion capacity. This indicates that stronger damping leads to 

faster stabilization and a reduction in the maximum deflec-
tion. The amount of deflection change is most pronounced 
around the plate boundaries and decreases toward the center. 
Figure 3 depicts the temperature distribution � , which exam-
ines the temperature changes within the panel under external 
and thermal stresses. The figure shows that viscous damp-
ing indirectly affects the temperature distribution through its 
effect on mechanical interaction. Also, systems with higher 
τv show less variation in temperature profiles. In line with 
what was found, the results in reference (Abouelregal 2021) 
confirm the well-known and studied effect of viscosity on 
the dynamic features, damping properties, and stress distri-
bution in very small systems.

Figure 4 shows how the radial displacement component u 
changes as the plate radius changes. This is done so that we 
can figure out how the flexible plate deforms when it is sub-
jected to thermal and mechanical loads. The data indicates 
an inverse relationship between the viscosity coefficient ( τv ) 
and the minimum displacement values near the outer plate 
surface throughout the range 1.0 ≤ r ≤ 0.9 . In addition, the 
maximum displacement values at the inner surface decrease 

Fig. 2   The transverse deflection w via viscous thermal damping 
parameter τv

Fig. 3   The temperature change � via viscous thermal damping param-
eter τv

Fig. 4   The radial displacement u via viscous thermal damping param-
eter τv

Fig. 5   The flexure moment Mrr via viscous thermal damping param-
eter τv

Fig. 6   The radial thermal stress �rr via viscous thermal damping 
parameter τv
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as τv increases throughout the range 0 ≤ r ≤ 0.9 . Viscosity 
dampens the system, allowing it to dissipate energy from 
external loads. This minimizes oscillations and stabilizes 
the system, resulting in diminished deformations over time. 
This is of utmost importance in applications where reduced 
motion is essential, such as precision instruments.

Figure 5 shows the effect of bending moment ( Mrr ) due 
to thermo-mechanical loads. Since the bending moment Mrr 
is directly related to deflection, with increasing values of the 
viscosity constant τv , the bending moment values are less 
pronounced due to the decrease in deflection. Figure 6 shows 
the distribution of stress �rr in the radial direction and its 
effect on the change of the viscosity parameter. The picture 
clearly shows that as the viscosity ( τv ) goes up, the radial 
stress ( �rr ) distribution goes down, with smaller peaks. This 
is because higher damping changes the stresses caused by 
outside forces. These results emphasize the importance of 
taking viscosity into account when analyzing the dynamic 
behavior, damping effects, and how stress is distributed in 
microscopic systems.

The viscous parameter τv is critical in regulating the 
deflection characteristics of the microplate. By adjust-
ing the viscosity index values ( τv ), we can fine-tune how 
a microplate responds to external forces and temperature 
changes. This allows us to optimize its performance for spe-
cific applications, such as enhancing its stability, responsive-
ness, or sensitivity in various environments. For example, 
in applications where precise control of vibrational charac-
teristics is crucial, varying τv could help achieve the desired 
level of damping or resonance. This capability is especially 
valuable in fields like micro-electromechanical systems 
(MEMS), where precise mechanical behavior is essential. 
Also, higher τv values can indeed help in applications requir-
ing minimal deflection and high precision, as they contribute 
to greater stiffness and stability. Conversely, lower τv values 
can enhance adaptability and flexibility, which is useful in 
dynamic or variable conditions.

The revised DPL (dual phase lag) theory of thermoelas-
ticity, with its integration of a thermal conductivity model, 
is a robust framework for simulating these effects. It offers a 
more nuanced understanding of how thermal and mechani-
cal interactions affect system dynamics, which is crucial 
for optimizing performance in various applications. This 
approach can provide better predictions and control over 
how materials and devices will behave under different con-
ditions. The analysis and discussion clearly demonstrate that 
the results obtained in the current study align closely with 
the findings of previous studies (Xu et al. 2022; Feri et al. 
2022). This consistency in the simulation helps to improve 
the reliability of the results obtained, as well as increase 
confidence in the accuracy of the numerical results and mod-
eling techniques used in the present work.

7.2 � The Effect of Winkler Foundation Parameter

By examining the vibration characteristics of thermoelastic 
microplates on a Winkler viscoelastic basis, a critical aspect of 
small-scale engineering can be addressed. The Winkler basis 
model is indeed a useful representation for understanding how 
support conditions affect the behavior of circular microplates. 
Including the effects of temperature and viscosity in this 
study expands the analysis, as these factors have a significant 
impact on the material properties and the behavior of 
microplates (Abouelregal 2021). The present results give a 
full picture of how changes in temperature and mechanical 
loads impact the performance of microplates because they use 
generalized thermoelastic models to include these effects. This 
approach could lead to valuable insights for applications in 
nanotechnology and MEMS devices, where precise control of 
vibration and stability is of paramount importance.

Studying the vibration characteristics of a circular ther-
moelastic microplate on a Winkler viscoelastic substrate 
over time is essential for comprehending the influence of 
foundations on its vibrational response. The rigidity of the 
foundation is a crucial factor in determining the amount of 
bending or deformation (Abouelregal et al. 2023). Engi-
neers can modify the stiffness of the microplate's deflec-
tion properties to suit specific design needs. It is possible to 
achieve the desired balance between rigidity and flexibility 
by adjusting the stiffness of the foundation, thus improving 
the performance of the microplate for its intended purpose.

In the field of vibration analysis of thermoelastic micro-
plates, there has been a lack of published material focusing 
on foundations and considering the effects of temperature 
and viscosity. This subsection addresses this gap by utiliz-
ing generalized thermoelastic DPL models to investigate 
how foundations influence the vibration properties of a 
circular thermoelastic plate grown on a Winkler viscoelas-
tic substrate. Figures 7, 8, 9, 10, 11 depict the influence of 
Winkler's foundation parameter Ks on temperature change 
� , thermal deflection w , radial thermal stress �rr , flexure 
moment Mrr , and displacement u in the case of a clamped 
microplate. Three specific values for the Winkler's founda-
tion coefficient are provided: Ks = 0 , Ks = 10 , and Ks = 30 . 
It is important to note that Ks represents the stiffness of the 
springs in the foundation, with lower values indicating a 
more flexible foundation and higher values indicating a more 
solid foundation.

The Figures show that the stiffness of the foundation, 
which is shown by the parameter Ks in the Winkler 
foundation model, impacts many parts of the system, such 
as the microplate's deflection and thermal stress. Figure 7 
shows that a stiffer foundation (higher Ks ) increases the 
resistance of the microplate to deflection w . As a result, the 
microplate has smaller deflections. A more flexible founda-
tion (lower Ks ) also allows smaller deflections, making the 
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microplate more adaptable to external forces. This means 
that for small deformations or small loads, the microplate 
experiences less deflection because the stiffer foundation 
resists bending more effectively.

Figure 8 demonstrates that the stiffness of the foundation 
( Ks ) influences the distribution of temperature changes 

( � ) within the structure. A more rigid foundation (with a 
higher Ks value) has the tendency to uniformly disperse heat, 
resulting in a more consistent distribution of temperature � . 
This is because the inflexible foundation has the capacity to 
effectively transmit and distribute heat energy. Conversely, 
a more adaptable foundation (with lower Ks ) might lead to 
uneven temperature distributions and localized temperature 
fluctuations. The restricted capacity of the springs in 
a flexible foundation to equally transfer thermal loads 
results in concentrated temperature fluctuations within the 
foundation (Kardooni et al. 2022). The findings emphasize 
the importance of the foundation's stiffness in regulating 
both mechanical and thermal reactions in microplate 
systems. Engineers can optimize performance in diverse 
applications by manipulating the value of Ks to construct 
microplates with precise deflection characteristics and 
predictable temperature.

Figure 9 demonstrates that a foundation with higher 
stiffness ( Ks ) not only offers greater resistance to 
deformation but also ensures a more uniform distribution 
of displacement ( u ) throughout the structure. This leads to 

Fig. 7   The deflection w via Winkler’s foundation coefficient Ks

Fig. 8   The temperature change � via Winkler’s foundation coefficient 
Ks

Fig. 9   The radial displacement u via Winkler’s foundation coefficient 
Ks

Fig. 10   The flexure moment Mrr via Winkler’s foundation coefficient 
Ks

Fig. 11   The radial thermal stress �rr via Winkler’s foundation coef-
ficient Ks
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a more consistent and balanced distribution of deformations 
throughout the microplate, resulting in improved structural 
integrity and stability. On the other hand, a foundation that is 
more adaptable ( Ks ) enables greater localized deformations, 
resulting in an unequal distribution of displacement u . This 
can lead to elevated stress concentrations and possible 
structural vulnerabilities in specific regions. Having a clear 
understanding of how the stiffness of a foundation affects 
the displacement u is essential when it comes to creating 
microplates with specific mechanical characteristics. 
Uniform deformation and minimal localized stresses 
are crucial for reliable operation, especially in precision 
applications.

The distribution of bending moments Mrr throughout the 
structure is an important factor affected by the foundation's 
stiffness, as depicted in Fig.  10. A stiffer foundation 
distributes applied loads more uniformly, resulting in a more 
even distribution of bending moments along the shape of 
the structure. This can reduce the incidence of localized 
excessive bending moments and potential structural failures. 
Conversely, a more flexible foundation may lead to an 
uneven distribution of bending moments, potentially causing 
localized high moments in certain areas. A higher Winkler's 
foundation coefficient results in fewer bending moments 
as the stiffness of the springs aids in foundation support 
and resistance to bending. Conversely, a lower Winkler's 
foundation coefficient may lead to more bending moments 
due to reduced foundation support and bending resistance. 
These results align with findings reported in previous studies 
(Abouelregal et al. 2022), reinforcing the reliability of our 
conclusions. Understanding the distribution of bending 
moments and their relationship with foundation stiffness 
is vital for designing microplates that are both strong and 
resilient, especially in applications where structural integrity 
is critical. By optimizing the foundation stiffness, engineers 
can ensure that microplates handle applied loads effectively, 
minimizing the risk of localized stresses and enhancing the 
overall performance and longevity of the structure.

The stiffness of the foundation also influences the 
distribution and magnitude of thermal stresses �rr in the 
circular thermoelastic microplate, as shown in Fig. 11. A 
stiffer foundation with a higher Ks value tends to distribute 
thermal stresses more evenly throughout the microplate, 
resulting in a decrease in localized stress concentrations. In 
contrast, a more flexible foundation with a lower Ks value 
may lead to localized stress concentrations in specific areas 
of the microplate. By studying the effect of the foundation 
stiffness on the thermal stress distribution in thermoelastic 
materials, one can ensure that the laminates can withstand 
thermal fluctuations efficiently. This ensures that structural 
integrity and optimum performance are maintained 
in situations where thermal stability is important.

7.3 � The Effect of External Mechanical Load

The external mechanical load applied to the elastic thermal 
plate induces mechanical pressures on the fine panels. These 
mechanical pressures result in deformations, displacements, 
and internal stresses within the plate (Abouelregal 2021). 
The magnitude, direction, and distribution of the mechanical 
load influence the response of the plate, leading to bending, 
twisting, or stretching deformations. An investigation 
into the impact that the external mechanical load 
( q(t) = q0 cos (�t) ) has on the elastic thermal plate is going 
to take place in this part of the examination. How which the 
mechanical pressures, thermal pressures, and qualities of 
the materials that make up the fine panels interact with one 
another will be the determining factor in the effect that the 
outer load has. Through a thorough examination of these 
factors, we will gain a comprehensive understanding of 
how external mechanical loads influence the behavior of 
the elastic thermal plate. Understanding this information is 
critical for creating plates that can efficiently handle and 
adapt to changing loads, ensuring the structure's durability 
and effectiveness in a variety of scenarios.

Figures 12, 13, 14, 15, and 16 show what happens to 
the fields when an outside mechanical load ( q0 ) is applied 
while the viscous coefficient τv and Winkler foundation 
parameter Ks stay fixed. These forms illustrate that the size 
of the mechanical load ( q0 ) greatly affects the distribution 
of several physical field parameters. Raising the mechanical 
load results in an increase in thermodynamic temperature, 
displacement, and lateral fields, which is particularly evident 
at the highest points of the curves. When q0 = 0 , it indicates 
that there is no external mechanical impact. Furthermore, 
when � = 0 , it indicates that the mechanical load is a con-
stant, non-negotiable regulator. Furthermore, the data sug-
gests that as the intensity of the external stimulus increases, 
so does the amplitude of lateral oscillation, temperature, 
displacement, and bending torque. Nevertheless, it is note-
worthy that the bending torque diminishes as q0 increases. 
This phenomenon can be attributed to the dynamic reaction 
that decreases the rigidity of the nanoparticle when sub-
jected to bending.

This subsection explains how the external mechanical 
load changes temperature ( � ), thermal deflection ( w ), radial 
thermal stress ( �rr ), flexure moment ( Mrr ), and displacement 
( u ) in a clamped microplate (see Figs. 12, 13, 14, 15, 16). 
Figure 12 illustrates the effect of external mechanical loads 
on the thermal deflection ( w ) of the clamped microplate. The 
association indicates that mechanical stress has a significant 
impact on the microplate deformation and bending caused 
by heat processes. Elevating the mechanical load causes 
changes in the microplate's deflection profile. The thermal 
deflection ( w ) is directly proportional to the external 
mechanical load, implying that larger loads lead to greater 
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deflection (Chen and Wang 2021). The observed deflection 
( w ) is the result of a combination of thermal expansion and 
mechanical deformation. This emphasizes the significance 
of considering both thermal and mechanical aspects when 
examining the response of microplates to external stressors.

Figure 13 depicts the impact of external mechanical 
forces on the temperature change ( � ) in the clamped 

microplate. Modifying the external mechanical stress 
might change the way heat is distributed, which may affect 
the thermal properties of the microplate. Variations in 
temperature distribution caused by mechanical loading can 
result in uneven thermal expansion, which can impact the 
overall structural performance.

Figure 14 shows the relationship between the external 
mechanical load q0 and the displacement change ( u ) in a cir-
cular flexible microplate. It can be seen from the figure that 
the total displacement ( u ) decreases with the magnitude of 
the external mechanical force at some points near the outer 
surface while it increases at other points inside the surface. 
Excessive displacement caused by increased loads can lead 
to structural failure or functional problems, especially in 
precision applications where maintaining structural integ-
rity is of paramount importance. These results emphasize 
the importance of considering both thermal and mechanical 
effects when studying and constructing a microplate.

Figure 15 shows the effect of an external mechanical force 
on the radial thermal stress ( �rr ) in the clamped microplate. 
The amount and spread of stress caused by thermal 
processes are affected by the mechanical load. When the 

Fig. 12   The transverse deflection w via the external mechanical load 
q0

Fig. 13   The temperature change � via the external mechanical load q0

Fig. 14   The radial displacement u via the external mechanical load q0

Fig. 15   The radial thermal stress �rr via the external mechanical load 
q0

Fig. 16   The flexure moment Mrr via the external mechanical load q0
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mechanical load changes, so do the size and arrangement 
of radial thermal stress. Applying an external mechanical 
load causes a rise in radial thermal stress, especially in areas 
experiencing higher mechanical loads, leading to intensified 
radial strains. Monitoring the radial stress ( �rr ) is essential 
to ensure it does not exceed the material's yield strength, as 
high radial stress may result in structural collapse. Figure 16 
shows how an external mechanical load affects the clamped 
microplate's bending moment ( Mrr ). Mechanical stress 
influences the distribution of bending moments produced 
by thermal processes. The bending moment ( Mrr ) drops 
in direct proportion to an increase in external mechanical 
stress, suggesting that higher mechanical loads result in 
reduced bending moments within the microplate.

Selecting materials with suitable mechanical and 
thermal qualities is essential to withstand expected loads 
and thermal stresses while maintaining deflection and 
stress levels within acceptable thresholds. By accurately 
estimating the mechanical load, designers can regulate 
deflection and ensure that it stays within the specified range 
for the application (Djabrouhou et al. 2024). Performing a 
comprehensive examination of stress distribution is crucial 
to guaranteeing that mechanical loads do not surpass the 
yield strength of the material. This may entail improving 
the shape of the microplate, incorporating reinforcements, 
or modifying mechanical loads to minimize stress 
concentrations and mitigate the likelihood of structural 
collapse (Chen and Lin 2024; Marin et al. 2021).

8 � Conclusions

The study examines the viscoelastic properties of Kelvin-
Voigt-type circular plate resonators, taking into account 
the effects of thermoelastic coupling. These resonators 
are assumed to have uniform composition and properties 
in all directions, in line with Winkler's principle. They are 
subjected to a harmonic external flow that changes over 
time. The study uses a modified two-phase thermoelasticity 
(DPL) model that incorporates limited thermomechanical 
diffusion and viscous effects. It aims to understand the 
behavior of various physical fields within the resonators and 
evaluate how different conditions affect their performance. 
Specifically, the research examines the effects of viscosity, 
Winkler foundation, mechanical excitation intensity, and 
phase delay on the physical fields. The study provides 
valuable insights into the viscoelastic characteristics of 
circular plate resonators by analyzing results under specific 
boundary conditions, highlighting the significance of 
thermoelastic coupling, viscosity, Winkler foundation, 
mechanical excitation, and phase delay in determining their 
performance.

We can summarize the key findings of this study as 
follows:

•	 The viscous thermal damping parameter has a significant 
impact on the dynamic response of thermoelastic 
microplates. The numerical simulation findings indicate 
that an increase in viscous parameter leads to a reduction 
in deflection.

•	 Accurate representation of viscous phenomena is essen-
tial for accurately forecasting the performance and dura-
bility of resonators in real-world scenarios.

•	 The revised DPL theory of thermoelasticity, which 
integrates a thermal conductivity model, demonstrates 
efficacy in accurately modelling these effects.

•	 Increasing the rigidity of the foundation improves the 
regulation of heat within the microplate, resulting in an 
even distribution of temperature and perhaps decreasing 
the occurrence of concentrated thermal stress.

•	 The rigidity of the Winkler foundation has a substantial 
impact on the dynamic behavior of the microplate. 
Increased stiffness results in enhanced resistance to 
deformation and more even distribution of load and 
temperature.

•	 A stiffer foundation minimizes localized bending 
moments, enhancing the durability and reliability of the 
structure.

•	 The displacement initially decreases with the amount 
of external mechanical force at some points near the 
outer surface while it increases at other points inside the 
surface.

•	 When the microplate is subjected to external forces, 
the energy generated by the mechanical stress can be 
converted into heat within the microplate material. 
This temperature increase is due to the dissipation of 
mechanical energy as heat energy inside the microplate.

•	 Increased loading can lead to a decrease in bending 
resistance, which in turn affects stability. Furthermore, 
increased mechanical stresses result in a larger total 
displacement, which has a significant impact on the 
structural integrity.

•	 These findings are crucial for the development and 
improvement of micro-electromechanical systems 
(MEMS), which necessitate accurate management of 
mechanical and thermal reactions.

•	 In the future, the model can be expanded to encompass 
nonlinear systems. Additional inquiry and empirical 
examination in this domain may also result in progress in 
the development and improvement of resonator systems.
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