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Abstract
To address the issue of incompatible nodal parameters between finite elements of different dimensions, this paper introduces 
a new interpolation formula, named “trial-correction” displacement interpolation, utilizing trilinear and cubic interpolations. 
This interpolation method is applied to construct an 8-node hexahedral solid element (Solid-H8-TC) with rotational degrees 
of freedom, featuring 6 nodal parameters including 3 translational and 3 rotational displacements. The element successfully 
passed the patch test and demonstrated convergence. Subsequent numerical examples show that the Solid-H8-TC element 
achieves a numerical accuracy of over 99% as the mesh is refined. Furthermore, the Solid-H8-TC element can be directly 
combined with shell elements, effectively resolving the compatibility issues of nodal parameters between finite elements of 
different dimensions. Lastly, the trial-correction displacement interpolation method employed in this study exhibits excellent 
scalability and provides a new theoretical basis for finite element analysis of plane, beam, and shell structures.

Keywords  Trail-correction · Hexahedral solid element · Rotational degrees of freedom · Tri-linear interpolation · 
Incompatibility

1  Introduction

The finite element method, as a powerful numerical analysis 
tool, is widely used in numerous fields including modeling 
crack propagation (Nguyen et al. 2022), fluid problems 

(Vu-Huu et  al. 2022), damage identification (Ghannadi 
2023), and thermo-metallo-mechanical analyses (Ling 
2023). At the same time, the finite element method also 
forms one of the foundational theories of CAE software. 
The accuracy of analysis, computational efficiency, and 
software usability are the three key indicators for evaluating 
the performance of CAE software, directly determining its 
practical value in engineering applications (Gao et al. 2019). 
Currently, the theoretical research of the Finite Element 
Method can generally meet the requirements of engineering 
applications in terms of analysis accuracy, and the 
deficiencies in computational efficiency can be compensated 
for by the development of computing devices and parallel 
computing technologies. From a practical perspective, the 
bottleneck in the application of the finite element method 
lies in the usability of the software. For instance, modeling 
the combination of shells and solids as shown in Fig. 1 may 
lead to compatibility issues due to different nodal parameters 
of the elements, potentially resulting in analytical challenges 
if not addressed appropriately (Karpik et al. 2023; Lu et al. 
2023).

Currently, there are two main approaches to solving the 
problem of incompatible nodal parameters in finite elements 
of different dimensions in engineering. The first approach 
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involves adding additional constraints, such as MPC 
constraints, to establish a correspondence between different 
nodal parameters (Lu 2023). The second approach is to 
attach shell or beam elements to solid elements, enabling 
them to be coupled with external beam/shell elements 
at nodes. However, both methods have limitations. The 
first method requires analysts to have a solid theoretical 
foundation and increases the computational complexity of 
the analysis process, while the second method is primarily an 
empirical approximation and lacks strong theoretical support 
(Wang and Shi 2017). Therefore, the existing methods may 
not effectively solve the problem of incompatible nodal 
parameters in finite elements of different dimensions.

The difficulty in resolving the compatibility issues of 
nodal parameters between elements of different dimensions 
in engineering is not merely superficial, but stems from 
the fundamental inadequacy of finite element theory. To 
completely eliminate compatibility issues between elements 
of different dimensions, the most fundamental approach is 
to establish a multidimensional compatible finite element 
system based on unified nodal parameters (Yang et al. 2021).

In previous research on multi-dimensional compatible 
finite element systems, the more mature theoretical systems 
mainly include the absolute nodal coordinate formulation 
(ANCF) (Shabana and Mikkola 2003) and solid elements 
with rotational degrees of freedom.

The ANCF was originally proposed relative to the rotating 
frame of reference formulation of dynamics of multibody 
systems and is a type of finite element system constructed 
using unified nodal parameters (Gerstmayr et al. 2013). 
Although this method theoretically solves the compatibility 
problem between finite elements of different dimensions, 
it expands the nodal parameters of the element to 12, 
resulting in a significant increase in computational time and 
seriously affecting computational efficiency. Furthermore, 
this method’s computational accuracy decreases in situations 
with small deformation fields, such as in microelectronic 
manufacturing equipment (Otsuka et al. 2022).

For traditional solid elements, they only contain 
translational nodal parameters and do not include rotational 

nodal parameters, making it impossible to couple with 
beam, shell, and other elements at nodes. Therefore, adding 
rotational degrees of freedom to solid elements is an intuitive 
approach to solving the compatibility problem.

Previous researchers have conducted extensive research 
on solid elements with rotational degrees of freedom. Yunus 
et al. (1991) and Pawlak et al. (1991) were the first to propose 
hexahedral elements (HEX8R and HEX8RX) and tetrahedral 
elements (TET4R and TET4RX) with rotational degrees of 
freedom, and these elements’ performance was better than 
that of elements with only translational degrees of freedom 
under the same shape, as demonstrated by the patch test. 
Sze and Ghali (1993) and Sze and Pan (2000) introduced 
a hybrid eight-node brick element (HBR) with rotational 
degrees of freedom and a hybrid stress four-node tetrahedral 
element (HT4R18 and HT4R14) based on Allman (1984) 
displacement interpolation. In recent years, Hua and To 
(2007) proposed a mixed variational principle and derived 
two simple and effective tetrahedral finite elements with 
rotational degrees of freedom. Meftah et al. (2013) proposed 
a new three-dimensional 6-node solid element (SFR6) based 
on the concept of space fiber rotation (SFR). Then, Meftah 
et al. (2015) proposed total Lagrangian formulations for 
hexahedral elements (SFR8 and SFR8I) based on the SFR 
concept, improving accuracy in linear elasticity problems. 
However, the coordinating element SFR8 is too rigid and 
yields values far beyond the reference solution. Zouari et al. 
(2018) established updated Lagrangian formulations for two 
8-node hexahedral elements with rotational DOF based on 
Meftah, achieving higher numerical accuracy in analysis 
than total Lagrangian formulations. Nodargi et al. (2016) 
proposed a mixed tetrahedral element(HWT4R14) with 
rotational degrees of freedom for large-displacement analysis 
of inelastic structures. Boujelben and Ibrahimbegovic (2017) 
established an eight-node solid element with rotational 
degrees of freedom using reasonable variational formulas 
and a non-conforming mode method. Shang et al. (2020, 
2021) developed an 8-node hexahedral solid element with 
rotational DOF using the modified couple stress theory, 
exhibiting high accuracy and insensitivity to mesh distortion.

In the past three decades, extensive research has been 
conducted by scholars to improve the accuracy of hexahedral 
solid elements. Simo et al. (1993) proposed an improved 
version of assumed enhanced strain tri-linear elements, 
which can better simulate 3D finite deformation problems. 
Long et al. (1999a, b) introduced a novel natural coordinate 
system, which comprises four coordinate components, 
known as the quadrilateral area coordinate method (QACM). 
Li et al. (2008) proposed the hexahedral volume coordinate 
method (HVCM) to address orientation defects caused by 
non-local coordinate systems, leading to the development 
of three new incompatible 8-node hexahedral elements 
(HVCC8, HVCC8-ES, and HVCC8-EM). While showing 

Fig. 1   Shell-solid hybrid model
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better performance and insensitivity to mesh distortion than 
conventional isoparametric elements, these elements failed 
to strictly pass the constant stress/strain patch test, requiring 
further discussion on their convergence. Hadjesfandiari and 
Dargush (2011) proposed a new theory of solid mechanics 
- the theory of coupled stress. Hu et al. (2019) introduced 
the 8-node nonconforming solid element H8i9, which 
is simple to compute and provides similar calculated 
values to the reference solution for large deformations or 
moderate mesh coarseness. Zhou et al. (2017) developed 
the 8-node, 24-DOF hexahedral element US-ATFH8 using 
the virtual work principle. Established in a locally oblique 
coordinate system, this element exhibits a linear relationship 
with Cartesian coordinates and does not require a Jacobi 
determinant for stiffness matrix calculation, making it 
insensitive to mesh distortion. Krysl (2016) proposed the 
solid element H8 MSGSO based on the optimization of 
stabilization energy, which retains good accuracy even with 
coarse mesh, although it typically requires more than two 
layers of elements in the thickness direction.

As an important component of multidimensional 
compatible finite element systems, this paper proposes an 
8-node solid element (Solid-H8-TC) with rotational degrees 
of freedom based on the “trial-correction” displacement 
interpolation method. The proposed Solid-H8-TC element 
has six nodal parameters, including three translational and 
rotational displacements. The displacement field of the 
Solid-H8-TC element is trialed using trilinear interpolation 
and then corrected using cubic interpolation. The second 
section of this paper provides a theoretical derivation of 
the trial-correction displacement interpolation and verifies 
its convergence through the patch test. The third section 
mainly uses a series of numerical examples to verify the 
performance (convergence, accuracy, compatibility and 
application in orthotropic composite materials) of the Solid-
H8-TC element. Finally, conclusions are drawn in the fourth 
section.

2 � Theory Formulization

Figure 2 illustrates the rotation angle of a solid element. In 
the case of a rigid element, angles �x1 and �x2 are identical, as 
depicted in Fig. 2a. As a result, any of these rotations can be 
utilized to define the rotation angle of rigid rotation, denoted 
as �x . In the same way, the true rotation angles �y and �z can 
be expressed as follows:

For the deformable element, angles �x1 and �x2 exhibit 
different values as shown in Fig. 2b, and its true rotation 
angle �x is expressed as the Eq. 2 shown below. Similarly, we 
can obtain the following conclusion: the true rotation angles 
�y and �z can be determined as follows:

In order to construct the shape functions, the physical 
coordinate system of an 8-node hexahedral element shown 
in Fig. 3a is represented by the natural coordinate system 
shown in Fig. 3b, and the coordinate transformation can be 
described as:

where xe , ye and ze are vectors of nodal coordinates along 
the x-, y- and z-axes, respectively, and N(�, �, �) is the 
matrix of shape function, which can be obtained by using 
the following formula:

(1)

�x = �x1 =
�w

�y
= �x2 = −

�v

�z

�y = �y1 =
�u

�z
= �y2 = −

�w

�x

�z = �z1 =
�v

�x
= �z2 = −

�u

�y

.

(2)

�x =
1

2

(

�x1 + �x2
)

=
1

2
(
�w

�y
−

�v

�z
)

�y =
1

2

(

�y1 + �y2
)

=
1

2

(

�u

�z
−

�w

�x

)

�z =
1

2

(

�z1 + �z2
)

=
1

2

(

�v

�x
−

�u

�y

)

.

(3)
x(�, �, �) = �(�, �, �)�e
y(�, �, �) = �(�, �, �)�e
z(�, �, �) = �(�, �, �)�e

,

Fig. 2   Definition of true 
rotation angle

(a) Rotation angle of a rigid cell (b) Rotation angle of a deformable cell
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where (�i, �i, �i) represents the natural coordinates of node i.

2.1 � Displacement Interpolation

Each node pi ( i = 1 ∼ 8 ) in the hexahedral element has six 
nodal parameters, which are three translational displacements 
ui , vi and wi three true rotation angles �i

x
 , �i

y
 and �i

z
 . These nodal 

parameters can be utilized by the displacement fields u(�, �, � ) , 
v(�, �, � ) and w(�, �, � ) for interpolation.

This paper presents a new idea of constructing a trial-
correction interpolation formula for establishing the 
interpolation of the displacement fields, in which the 
displacement fields u(�, �, � ) , v(�, �, � ) and w(�, �, � ) are a 
combination of a trial term (superscript t) and a correction 
term (subscript c), i.e.

where ut(�, �, � ) , vt(�, �, � ) and wt(�, �, � ) can be represented 
as:

and �e is the nodal parameter vector, can be stated as:

(4)
N(�, �, �) = [n1, n2, n3, n4, n5, n6, n7, n8]

ni =
1

8
(1 + �i�)(1 + �i�)(1 + �i�)

.

(5)
u(�, �, � ) = ut(�, �, � ) + uc(�, �, � )

v(�, �, � ) = vt(�, �, � ) + vc(�, �, � )

w(�, �, � ) = wt(�, �, � ) + wc(�, �, � )

,

(6)
ut(�, �, � ) = �(�, �, � )�e = �t

u
(�, �, � )�e

vt(�, �, � ) = �(�, �, � )�e = �t
v
(�, �, � )�e

wt(�, �, � ) = �(�, �, � )�e = �t
w
(�, �, � )�e

,

(7)�e =
[

�1 �2 �3 �4 �5 �6 �7 �8
]T

�i =
[

ui vi wi �
x
i
�
y

i
�z
i

] .

The shape functions �t
u
(�, �, � ) , �t

v
(�, �, � ) and �t

w
(�, �, � ) 

are constructed in the following manner:

Equation (2) provides a method to calculate the true rotation 
angle induced by the trial term, given by:

(8)

�t
u
(�, �, � ) =

[

�t
u1

�t
u2

�t
u3

�t
u4

�t
u5

�t
u6

�t
u7

�t
u8

]

�t
ui
=
[

ni 0 0 0 0 0
]

�t
v
(�, �, � ) =

[

�t
v1

�t
v2

�t
v3

�t
v4

�t
v5

�t
v6

�t
v7

�t
v8

]

�t
vi
=
[

0 ni 0 0 0 0
]

�t
w
(�, �, � ) =

[

�t
w1

�t
w2

�t
w3

�t
w4

�t
w5

�t
w6

�t
w7

�t
w8

]

�t
wi
=
[

0 0 ni 0 0 0
]

.

Fig. 3   8-node hexahedral 
element

(a) Physical coordinate system (b) Natural coordinate systeml

Fig. 4   Interpolation basis functions for displacement correction terms 
in hexahedral solid elements
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where �t
x
(�, �, �) , �t

y
(�, �, �)and �t

z
(�, �, �) are specified as:

Equation (3) provides a way to compute the partial 
derivatives in Eq. (10), which can be expressed as follows:

and �(�, �, � ) is the Jacobi matrix.
Thus, for the six parameters of node, it is not difficult to 

arrive at the following expression:

here, �i , �i and �i represent the natural coordinates of node 
pi , and the correction terms uc

i
 , vc

i
 , wc

i
 , �c

xi
 , �c

yi
 and �c

zi
 must 

satisfy the following conditions:

with �c
xi

 , �c
yi

 and �c
zi
 given as:

(9)

�t
x
=

1

2

(

�wt

�y
−

�vt

�z

)

= �t
x
(�, �, �)�e

�t
y
=

1

2

(

�ut

�z
−

�wt

�x

)

= �t
y
(�, �, �)�e

�t
z
=

1

2

(

�vt

�x
−

�ut

�y

)

= �t
z
(�, �, �)�e

,

(10)

�t
xi
(�, �, �) =

[

�t
xi,1

�t
xi,2

�t
xi,3

�t
xi,4

�t
xi,5

�t
xi,6

�t
xi,7

�t
xi,8

]

�t
xi,j

=

[

0 −
�nj

2�z

�nj

2�y
0 0 0

]

�t
yi
(�, �, �) =

[

�t
yi,1

�t
yi,2

�t
yi,3

�t
yi,4

�t
yi,5

�t
yi,6

�t
yi,7

�t
yi,8

]

�t
yi,j

=

[

�nj

2�z
0 −

�nj

2�x
0 0 0

]

�t
zi
(�, �, �) =

[

�t
zi,1

�t
zi,2

�t
zi,3

�t
zi,4

�t
zi,5

�t
zi,6

�t
zi,7

�t
zi,8

]

�t
zi,j

=

[

−
�nj

2�y

�nj

2�x
0 0 0 0

]

.

(11)

⎡

⎢

⎢

⎢

⎣

�ni

�y
�ni

�x
�ni

�z

⎤

⎥

⎥

⎥

⎦

= �−1
�

� � �
�

⎡

⎢

⎢

⎢

⎣

�ni

��
�ni

��
�ni

��

⎤

⎥

⎥

⎥

⎦

.

(12)

ut
i
(�, �, � ) = ut

(

�i, �i, �i
)

= ui
vt
i
(�, �, � ) = vt

(

�i, �i, �i
)

= vi
wt
i
(�, �, � ) = wt

(

�i, �i, �i
)

= wi

�t
xi
= �t

x

(

�i, �i, �i
)

= �t
x

(

�i, �i, �i
)

�e
�t
yi
= �t

y

(

�i, �i, �i
)

= �t
y

(

�i, �i, �i
)

�e

�t
zi
= �t

z

(

�i, �i, �i
)

= �t
z

(

�i, �i, �i
)

�e

,

(13)

uc
i
= ui − ut

i
= 0

vc
i
= vi − vt

i
= 0

wc
i
= wi − wt

i
= 0

�c
xi
= �xi − �t

xi
= �c

xi
�e

�c
yi
= �yi − �t

yi
= �c

yi
�e

�c
zi
= �zi − �t

zi
= �c

zi
�e

,

Using trinomial cubic interpolation to express uc(�, �, � ) , 
vc(�, �, � )and wc(�, �, � ):

here, �(�, �, � ) represents a row vector composed of 32 
interpolation basis functions with filled cells as shown 
in Fig.  4. And � , � , � are the vectors of undetermined 
coefficients.

In order to find the undetermined coefficients � , � and � at 
node pi , the following equations are established:

(14)

�c
xi
=
[

�c
xi,1

�c
xi,2

�c
xi,3

�c
xi,4

�c
xi,5

�c
xi,6

�c
xi,7

�c
xi,8

]

�c
xi,j

=

[

0
dnj

2dz
−

dnj

2dy
nj
(

�i, �i, �i
)

0 0

]

�c
yi
=

[

�c
yi,1

�c
yi,2

�c
yi,3

�c
yi,4

�c
yi,5

�c
yi,6

�c
yi,7

�c
yi,8

]

�c
yi,j

=

[

−
dnj

2dz
0

dnj

2dx
0 nj

(

�i, �i, �i
)

0

]

�c
zi
=
[

�c
zi,1

�c
zi,2

�c
zi,3

�c
zi,4

�c
zi,5

�c
zi,6

�c
zi,7

�c
zi,8

]

�c
zi,j

=

[

dnj

2dy
−

dnj

2dx
0 0 0 nj

(

�i, �i, �i
)

]

.

(15)
uc(�, �, � ) = �(�, �, � )�

vc(�, �, � ) = �(�, �, � )�

wc(�, �, � ) = �(�, �, � )�

,
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with the subscripts � , � , � , x, y and z representing the 
corresponding partial derivatives. Supposing that the 
correction terms uc(�, �, � ) , vc(�, �, � ) and wc(�, �, � ) exhibit 
stiffness characteristic at nodes, i.e:

Based on Eq. (13), it does not fail to re-express Eq. (15) as 
follows:

where

(16)

⎡

⎢

⎢

⎢

⎣

�
(

�i, �i, �i
)

��
(

�i, �i, �i
)

��
(

�i, �i, �i
)

��
(

�i, �i, �i
)

⎤

⎥

⎥

⎥

⎦

� =

⎡

⎢

⎢

⎢

⎢

⎣

uc
(

�i, �i, �i
)

uc�
(

�i, �i, �i
)

uc�
(

�i, �i, �i
)

uc�
(

�i, �i, �i
)

⎤

⎥

⎥

⎥

⎥

⎦

=
[

1 0
0 �

(

�i, �i, �i
)

]

⎡

⎢

⎢

⎢

⎢

⎣
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(

�i, �i, �i
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⎥

⎥

⎥

⎦
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⎢

⎣
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⎦
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⎡
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⎢

⎢

⎢

⎣
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)
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(
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)
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(
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�i, �i, �i
)

⎤

⎥

⎥

⎥

⎥

⎦

=
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1 0
0 �
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�i, �i, �i
)
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⎡
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⎢

⎢

⎢

⎣
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�i, �i, �i
)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

�
(

�i, �i, �i
)

��
(

�i, �i, �i
)
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(

�i, �i, �i
)
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(

�i, �i, �i
)

⎤

⎥

⎥

⎥

⎦

� =

⎡

⎢

⎢

⎢

⎢

⎣
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)
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�

(
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)
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�

(

�i, �i, �i
)
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�

(
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Substituting Eq. (19) into Eq. (16), which are as follows:

Rewriting as simultaneous equations, Eq. (20) can be 
converted into:

where

By solving Eq. (21), the interpolation coefficients can be 
given as:

Substituting Eq. (23) into Eq. (15), which are as follows:

Consequently, the shape functions are not difficult to arrive 
at the following expressions:
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Substituting Eqs. (6), (24) and (25) into Eq. (5), and the 
following equation are obtained:

2.2 � Stiffness Matrix

The elemental strain components can be obtained by 
taking the derivative of the displacement, and the strains 
can be defined as:

where the strain matrices Bt and Bc correspond to, 
respectively, the trial and correction terms, which are 
specified as:

then one may calculate the partial derivatives with respect 
to x, y, and z as:
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The overall strain matrix B is expressed as:

Based on the derived strain matrix B , the stiffness matrix �e 
of the solid element can be calculated as follows:

where Vc is the integration domain of the element, and � is 
the material constant matrix.

2.3 � Patch Test

The patch test (Wang 2001; Macneal and Harder 1985) 
represents an important approach for evaluating the quality 
and convergence of finite element models. It plays a critical 
role in ensuring the accuracy and reliability of engineering 
design and analysis.

The displacement fields are set as shown in Table 1. 
Taking �x as an example, by substituting the node 
coordinates of nodes pi into the displacement function, the 
nodal displacement can be determined as follows:
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Table 1   Displacement fields for 
constant strains

Displacements �x �y �z �yz �xz �xy

u(x, y, z) a0 + a1x 0 0 0 a0 + a1y a0 + a1z

v(x, y, z) 0 b0 + b1y 0 b0 + b1x 0 b0 + b1z

w(x, y, z) 0 0 c0 + c1z c0 + c1x c0 + c1y 0

Fig. 5   Cantilever beam model for orthotropic material testing
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According to Eq. (33), it does not fail to prove that:

Bring Eq. (34) into Eq. (24) to get:

Thus, the displacement fields are then given by:
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(34)
�u�e = 0
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.

(35)
uc(�, �, � ) = 0

vc(�, �, � ) = 0
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.

(36)
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.

From the above derivation, it can be seen that the Solid-
H8-TC element is equivalent to the classical isoparametric 
element when �x is constant. Similarly, the same conclusion 
can be drawn when the stress in other directions is constant. 
Consequently, the Solid-H8-TC element can pass the patch 
test.

3 � Numerical Examples

3.1 � Cantilever Beam Test

In order to study the efficiency of the Solid-H8-TC element 
in the field of orthotropic materials, a cantilever beam 
as shown in Fig.  5 was tested with a length of L = 6.0 
and a rectangular cross-section (b = 0.1, h = 2b) . One 
end was fixed while a unit upward load was applied to 
the other end. Table  2 presents the computation time 
and normalized tip displacement results for isotropic 
materials (E = 1.0 × 107,m = 0.3) , orthotropic materials 
(E1 = 4E2 = 5E3 = 1.0 × 107,G12 = G13 = 5G23

= 3.846 × 106,m12 = m13 = 0.3,m23 = 0.05)  u n d e r 

different meshes. The results are compared with classical 
isoparametric elements, and the corresponding line plot is 

Fig. 6   The normalized displacement at the end of the cantilever beam 
in orthotropic material testing

Table 2   Normalized results of 
dimensionless tip displacement 
of cantilever beam and its 
calculation time

Single mesh size Element Isotropic Orthotropic

Displacement Time(s) Displacement Time(s)

1× 0.2× 0.1 Solid-H8-TC 0.262 0.117 0.271 0.096
Isoparametric 0.093 0.031 0.094 0.034

0.5× 0.2× 0.1 Solid-H8-TC 0.615 0.151 0.646 0.154
Isoparametric 0.283 0.041 0.291 0.043

0.2× 0.2× 0.1 Solid-H8-TC 0.983 0.161 0.941 0.340
Isoparametric 0.664 0.090 0.708 0.067

0.1× 0.1× 0.1 Solid-H8-TC 0.992 11.15 0.985 11.25
Isoparametric 0.965 1.670 0.956 1.652

0.05× 0.05× 0.05 Isoparametric 0.992 33.95 0.977 32.286

Fig. 7   Cook’s skew beam problem: load, dimensions and 2 × 2 × 2 
mesh
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shown in Fig. 6. The reference value of the tip displacement 
under the two materials is 0.1081 (Meftah et al. 2015).

It can be observed from Table 2 that the Solid-H8-TC 
element has higher accuracy and faster convergence 
rate compared to the Isoparametric element, regardless 
of whether the material is isotropic or orthotropic. For 
isotropic materials, when the individual mesh size of 
Solid-H8-TC element is 0.1× 0.1× 0.1, its accuracy can 

reach 99.2%, while the isoparametric element requires a 
mesh size of 0.05× 0.05× 0.05 to achieve this accuracy. 
As for the computation time, at the same mesh size, the 
isoparametric element has lower calculation time than the 
Solid-H8-TC element. However, when the displacement 
accuracy reaches 99.2%, the Solid-H8-TC element 
only takes 11.15s, much a lower than the isoparametric 
element’s 33.95s.

Table 3   Results of Cook’s 
problem in dimensionless form

Mesh density Element �Amax �Bmin vc

2×2×2 Isoparametric 0.0706 −0.0689 10.92
Abaqus C3D8 0.0898 −0.0628 10.23
Wilson-H8 (Wilson et al. 1973) 0.1443 −0.1752 22.14
HVCC8 (Li et al. 2008) 0.2136 −0.1845 25.09
H8i9 (Hu et al. 2019) 0.1727 −0.2215 29.03
Solid-H8-TC 0.0936 −0.3311 17.47

4×4×4 Isoparametric 0.1343 −0.1514 17.32
Abaqus C3D8 0.1700 −0.0628 18.74
Wilson-H8 (Wilson et al. 1973) 0.2165 −0.2236 22.94
HVCC8 (Li et al. 2008) 0.2217 −0.2052 23.83
H8i9 (Hu et al. 2019) 0.2145 −0.2040 24.90
Solid-H8-TC 0.1867 −0.2231 21.16

8×8×8 Isoparametric 0.1978 −0.1879 21.52
Abaqus C3D8 0.2115 −0.1721 21.90
Wilson-H8 (Wilson et al. 1973) 0.2420 −0.2103 23.43
HVCC8 (Li et al. 2008) 0.2322 −0.2022 23.66
H8i9 (Hu et al. 2019) 0.2315 −0.2036 24.06
Solid-H8-TC 0.2163 −0.2131 22.85

16×16×16 Isoparametric 0.2218 −0.2024 23.11
Abaqus C3D8 0.2272 −0.1917 22.92
Wilson-H8 (Wilson et al. 1973) 0.2416 −0.2072 23.61
HVCC8 (Li et al. 2008) 0.2340 −0.2025 23.66
H8i9 (Hu et al. 2019) 0.2355 −0.2037 23.92
Solid-H8-TC 0.2275 −0.2089 23.46

Reference solution (Li 
et al. 2008)

0.2362 −0.2023 23.96

Fig. 8   Maximum principal stress at point A of Cook’s problem Fig. 9   Minimum principal stress at point B of Cook’s problem
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The proposed Solid-H8-TC element uses a trial-correction 
displacement interpolation format. Based on the 8-node 
hexahedral element with rotational degrees of freedom, an 
additional correction term obtained by cubic polynomial 
interpolation is added. Although this addition increases the 
calculation time of a single element, it effectively improves 
the convergence rate and numerical accuracy of the element.

3.2 � Cook’s Skew Beam Problem

Figure 7 displays the example of a skewed beam proposed 
by Cook and Saunders (1984), which has its left side fixed 
and is subjected to a shear distribution load on the right 
side. Table 3 presents the calculated results of the maximum 
principal stress at point A, the minimum principal stress at 
point B, and the vertical deflection at point C. In addition, 
this paper cited existing studies (Wilson et al. 1973; Li et al. 
2008; Hu et al. 2019) and plotted three line charts in Figs. 8, 
9 and 10.

As shown in line charts 8, 9 and 10, it is evident that the 
HVCC8 element exhibits the best performance in terms of 
principal stress and deflection. However, when the mesh is 
not coarse, the Solid-H8-TC element proposed in this paper 
demonstrates numerical performance similar to that of the 
HVCC8 element. Moreover, for the minimum principal 
stress, the numerical values computed by the Solid-H8-TC 
element in this paper gradually increase with the refinement 
of the mesh and ultimately approach the reference solution. 
This feature enhances the reliability of the Solid-H8-TC 
element for practical engineering applications.

The HVCC8 element, constructed by Li et al. (2008) 
using the hexahedral volume coordinate method (HVCM), 
can address directional defects and maintain high accuracy 
even in the case of mesh distortion. In contrast, the Solid-
H8-TC element proposed in this paper is constructed in 
the local natural coordinate system and leverages the 
introduction of a correction term to improve its performance. 
Furthermore, the Solid-H8-TC element passed the patch test 
and demonstrated good convergence, enabling it to obtain 
numerical solutions approaching the reference solution 
under conditions of fine mesh.

3.3 � Thin Curved Beam

MacNea (Macneal and Harder 1985) proposed a thin 
curved beam, as depicted in Fig. 11, with an inner radius of 
R = 4.12 , the thickness of h = 0.2 , the width of t = 0.1 , the 
Young’s modulus is E = 1.0 × 107 , and the Poisson’s ratio 
is � = 0.3 . The right side of the beam is fixed on the ground, 
and the left side is subjected to a unit out-of-plane shear 

Fig. 10   Vertical deflection at point C of Cook’s problem

Fig. 11   Bending of the thin curved beam

Table 4   Normalized 
displacement of each element 
in bending of the thin curved 
beam test

Number Isoparametric Abaqus C3D8 Wilson-H8 HVCC8 Solid-H8-TC

2 0.006 0.006 0.107 1.043 0.018
4 0.032 0.033 0.717 1.015 0.099
6 0.073 0.077 0.935 1.012 0.214
8 0.125 0.136 0.984 1.011 0.338
16 0.361 0.471 1.009 1.012 0.730
20 0.464 0.664 1.010 1.012 0.858
30 0.618 1.155 0.999
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load P = 1 . The exact solution for the downward deflection 
at point A under this loading is 0.08734 (Li et al. 2008). 
Table 4 summarizes the normalized downward deflections 
at point A, and comparative data are presented in the point 
diagram. 12.

As indicated by Fig. 12, the HVCC8 element exhibits 
the best performance. The Solid-H8-TC element proposed 

in this paper demonstrates higher accuracy than the Abaqus 
C3D8 and classical isoparametric elements. Furthermore, 
the Solid-H8-TC element passes the patch test, and its 
accuracy approaches the true solution as the mesh is refined.

3.4 � Engineering Application

In this section, the compatibility between the Solid-
H8-TC element and the shell element was verified using 
the rigid-flexible coupling positioning stage(RFCPS). 
Figure 13 depicts the physical model of the RFCPS, which 
primarily consists of three parts: the working stage, the 
stiff frame, and the flexure hinge set. A series of flexure 
hinges connects the worktable to the frame. RFCPS uses the 
elastic deformation of the flexure hinge to make up for the 
positioning inaccuracy of the rigid frame, enabling nano-
level positioning and meeting the precision positioning 
requirements of the semiconductor industry.

The simplified model is shown in Fig. 14, where the 
flexible hinge is represented by shell elements. The driving 
force F is applied at the center of the working stage, while 
the outer side of the rigid frame is restricted by a preset 
limit. The model has a Young’s modulus of E = 72000MPa 
and a Poisson’s ratio of � = 0.3 . To facilitate comparison, 
the Abaqus element (a combination of C3D20R and S4R 
elements in hybrid modeling) was introduced. The data 

Fig. 12   Normalized displacement line graph of each element in 
bending of the thin curved beam test

Fig. 13   Rigid-flexible coupling positioning stage model

Fig. 14   Analytical model of rigid-flexible coupling positioning stage

Table 5   The maximum displacement of the working stage along the 
direction of the force

Reference solution: 1.024

Mesh length (mm) Solid-H8-TC Abaqus

4 1.029 0.997
5 1.027 0.969
8 1.022 0.989
10 1.010 0.767
15 1.010 0.010

Fig. 15   Line graph of maximum displacement along the direction of 
applied force on the working stage
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for the Solid-H8-TC element and the Abaqus element are 
presented in Table. 5, and a line graph is plotted in Fig. 15.

It can be seen from the point-fold Fig. 15 that the Solid-
H8-TC element performs better than the Abaqus element. 
Moreover, the Solid-H8-TC element exhibits relatively 
good numerical accuracy even when the mesh size is 15 
mm. Additionally, as the mesh is refined continuously, the 
numerical accuracy of the Solid-H8-TC element approaches 
the reference solution (The reference solution of RFCPS 
obtained by discretizing it using a C3D8 mesh with a size 
of 1 mm in the Abaqus software) more closely.

The following reasons may explain the outcome of the 
appeal. Firstly, The Solid-H8-TC element can be directly 
integrated with the shell element, eliminating the need 
for additional shell elements at the joints, as is required 
by the Abaqus C3D8 element. This not only simplifies 
the modeling process but also ensures compatibility and 
minimizes the risk of potential issues. Additionally, the 
displacement field of the Solid-H8-TC element employs a 
trial-correction interpolation scheme, which significantly 
enhances the element’s performance.

4 � Conclusions

To address the issue of incompatibility between nodal 
parameters of elements of different dimensions, this paper 
utilizes trilinear and cubic interpolations to propose a 
new interpolation formula, namely the “trial-correction” 
displacement interpolation, and applies it to construct the 
Solid-H8-TC element. A series of numerical examples and 
comparisons were conducted to evaluate the performance of 
the Solid-H8-TC element, revealing the following findings: 

(1)	 The Solid-H8-TC element successfully passed rigorous 
patch tests, indicating its capability to accurately 
capture fundamental physical phenomena. Moreover, 
in terms of numerical accuracy, the element achieves a 
numerical precision of over 99% as the mesh is refined.

(2)	 Distinguishing itself from many other finite elements, 
the Solid-H8-TC element possesses a unique advantage 
in that it can directly combine with shell elements 
without requiring additional constraint conditions, 
thereby resolving the compatibility issues of nodal 
parameters between finite elements of different 
dimensions. Engineering application experimental data 
also demonstrate that when the Solid-H8-TC element is 
mixed with shell elements, the normalized numerical 
result at a mesh length of 15 mm is 1.010, significantly 
surpassing Abaqus’ 0.010.

In addition, the experimental-corrected interpolation 
formula proposed in this paper is a highly parameterized 

interpolation formula with excellent scalability, making 
it very suitable as a theoretical basis for studying various 
types of elements (including plane, beam, shell, etc.). In 
the engineering application experiments of this paper, 
the traditional shell element with corner nodes is used 
in conjunction with the Solid-H8-TC element. If the 
interpolation proposed in this paper is used to construct shell 
elements, it may enhance compatibility and potentially yield 
superior results. This powerful feature provides researchers 
with greater flexibility in selecting the correct interpolation 
method for their analysis needs, enabling them to optimize 
their analysis processes and obtain more accurate results.

Despite the notable advantages of the Solid-H8-TC 
element, it also faces some common challenges in 
hexahedral mesh generation. For instance, generating 
hexahedral meshes for complex geometric shapes can be 
challenging. Additionally, the limitation of the Solid-H8-TC 
element lies in its higher number of nodes, which can lead 
to increased computational costs when analyzing with fine 
meshes. Nevertheless, the proposed Solid-H8-TC element 
will serve as a robust tool for constructing high-performance 
hexahedral finite element models.
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