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Abstract
In the classical linear viscoelastic framework, materials exhibit more significant creep and stress relaxation at high tempera-
tures, making thermoviscoelastic analyses of materials essential in the design of some polymers. In this paper, a new gen-
eralized thermo-viscoelastic model is developed by introducing the Kelvin-Voigt theory of viscoelasticity, and the transient 
response of an elastic rod under the action of a magnetic field and a moving heat source is investigated in the context of the 
three-phase lag heat conduction model and the Eringen nonlocal theory. The Kelvin-Voigt model is used to characterize the 
viscoelastic behaviour of the rod, and the analytical solution is obtained by the Laplace transform and its numerical inverse 
transform to show the distribution trends of temperature, displacement, and stress of the rod in a graphical way. The effects 
of time, moving heat source speed, delay time, memory-dependent effects, viscosity, nonlocal effects, and magnetic field on 
temperature, displacement, and stress are also discussed in detail.

Keywords Memory-dependent derivatives · Three-phase lag model · Magneto-thermo-elasticity · Viscosity · Nonlocal · 
Laplace transform

1 Introduction

The classical theory of thermoelasticity assumes that ther-
mal waves propagate at infinite velocity, however, this is 
contrary to the experimental observation that thermal 
waves propagate at finite velocity. To eliminate this differ-
ence, Lord and Shulman (1967) made the first revision of 
the classical thermoelastic theory. They introduced the flux 
rate expression into the Fourier's law of heat conduction 
equation, making it a heat transfer equation with hyperbolic 
properties, which ensures that the heat wave propagates at 
a finite velocity. Subsequently, several scholars introduced 
a series of generalized thermoelasticity theories, namely, 
Green and Lindsay (1972) thermoelasticity theory, Green 
and Naghdi (1991, 1992, 1993) thermoelasticity theory, 
two-phase lag thermoelasticity theory (Tzou 1995a), and 
three-phase lag thermoelasticity theory (Choudhuri 2007).

However, the lag behaviour within the heat conduction of 
solids deserves the attention of researchers when studying 
some practical problems. Especially during transient pro-
cesses of solid heating, the number of slips is particularly 
small or the heat flow is very large (Singh et al. 2020). The 
three-phase lag model has important research value in prob-
lems such as heat conduction and heat diffusion. Zhang et al. 
(2021) used a three-phase lag model to analyse the thermoe-
lastic response of biological tissues subjected to tempera-
ture loading. Zenkour (2022) discussed thermal diffusion 
vibrations in an infinite medium utilizing a three-phase lag 
G-N model. Abd-Elaziz et al. (2022) analysed the effect of 
diffusion and rotation on porous thermoelastic media in the 
context of a three-phase lag thermoelastic model.

With the wide application of fractional order calculus in 
various scientific fields such as viscoelasticity, bioengineer-
ing, and mechanics, scientists have gradually developed a 
strong interest in it (Ezzat 2011, 2013, 2016a, 2018; Stani-
sauskis et al. 2022; Ali and Katoch 2023; Abouelregal et al. 
2022). Wang and Li (2011) proposed memory-dependent 
derivatives (MDD) inspired by fractional order derivatives. 
Compared with the fractional order derivative, the MDD 
can describe the memory effect more accurately and express 
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its physical meaning more intuitively. Subsequently Ezzat 
et al. developed a generalised thermo-viscoelastic model 
with MDD (Ezzat et al. 2014) and a magneto-thermo-vis-
coelastic model with dual-temperature MDD (Ezzat and EI-
Bary 2016b).

In recent years, some scholars have carried out a series of 
studies combining phase lag and memory-dependent models. 
Ezzat et al. (2017a) established a dual-phase lag generalised 
thermoelasticity model with MDD. Sarkar and Mukhopad-
hyay (2021) discussed thermal viscoelastic interactions in 
infinite space subject to moving heat sources using a gener-
alized thermal viscoelastic dual-phase lag model with mem-
ory-related derivatives. Kumar et al. (2023) mathematically 
analysed a micropolar generalized thermoelastic plate with a 
three-phase lag model based on memory-related derivatives. 
Kaur et al. (2022) investigated the reflection and refraction 
of plane waves at the imperfect boundary between two dis-
similar transversely isotropic piezo-thermoelastic (PT) solid 
half-spaces with diffusion and two-temperature using the 
three-phase lag thermal diffusion model of MDD. Tiwari 
et al. (2021) investigated the nonlocal behaviour of a piezoe-
lectric half-space subjected to a magnetic field in the context 
of a three-phase lag heat conduction theory with memory-
related derivatives by introducing a nonlocal theory.

It is well known that micron- and nanoscale structured 
materials have received widespread attention due to their 
excellent multifunctionality (Odegard et al. 2002). For some 
high-performance nanostructures such as nanoelectrome-
chanical systems, accurate analysis of the intrinsic stress, 
strain, and heat conduction is essential during design or 
safe transportation (Kambali et al. 2017; Yu et al. 2016; 
Dehrouyeh-Semnani 2017, 2018, 2021). However, the char-
acteristic sizes of nanostructured materials are so small that 
the intrinsic properties of nanoscale structured materials 
differ significantly from block materials (Li et al. 2014). To 
bridge this gap, scholars have proposed the following mod-
els of continuum media mechanics: strain gradient elastic-
ity theory (Lam et al. 2003), coupled stress theory (Yang 
et al. 2002), and nonlocal elasticity theory (Eringen 2002). 
Among them, the nonlocal theory proposed by Eringen is 
more widely used. Pranavi et al. (2022) used Eringen's non-
local theory for the analysis of functional gradient beams, 
plates, and shells and presented the nature of nonlocal 
moduli and their internal length scale dependence. Yang 
and Chen (2020) proposed a generalized uncoupled nonlo-
cal thermal viscoelastic theory based on Eringen's nonlocal 
theory and applied it to finite plate 1D analysis subjected to 
thermal shock.

Studies have found that many materials that do not exhibit 
viscoelasticity at room temperature, or have insignificant 
viscoelasticity, both exhibit significant viscoelasticity at 
high temperatures. In engineering applications, large ther-
mal stresses can be effectively avoided and the strength of 

structures can be improved by analyzing the thermo-viscoe-
lastic behaviour of materials. Therefore, it is important to 
consider the viscoelastic behaviour of such materials when 
studying or designing them (Guo et al. 2022a). With the 
wide application of ultra-fast heating techniques in viscoe-
lastic materials, the analysis of thermal stresses in viscoe-
lastic materials has gradually become an important topic of 
interest for researchers in areas such as polymer science and 
the plastics industry (Abouelregal and Ahmad 2021; Ezzat 
et al. 2022a, 2022b, 2022c; Guo et al. 2021, 2022b; Li et al. 
2019, 2021, 2023).

This paper aims to construct a new model of three-phase 
lag thermoviscoelasticity incorporating memory-depend-
ent derivative by introducing Kelvin-Voigt viscoelasticity 
model. The model is applied to the analysis of the transient 
response of an elastic rod under the action of a magnetic 
field and a moving heat source. Modification of the classi-
cal theory of elasticity using Eringen's theory of nonlocal 
elasticity, taking into account size effects. The model is an 
improvement of the conventional coupled thermoelastic the-
ory. Analytical solutions for temperature, displacement and 
stress are obtained by solving the governing equations by 
Laplace integral transform and its numerical inverse trans-
form. The effects of time, heat source velocity, magnetic 
field, viscosity, and memory-dependent effects on the physi-
cal quantities inside the rod were investigated. The results 
of this work have certain reference value for the research 
of nonlocal material science researchers, low-temperature 
physicists and new material designers.

2  Eringen's Theory of Nonlocal Elasticity

In the theory of nonlocal elasticity, the stress–strain relation-
ship is (Eringen 2002):

where, �ij is the nonlocal stress tensor, �ij is the local stress 
tensor, eij is the classical local strain tensor, ui

(
�
′
)
 is the 

local displacement component, � and � are Lamé constants, 
|� − �

�| denotes the distance in Euclidean space. The nonlo-
cal kernel function �∗

(
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�|
)
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strain at point �′ in the elastomer on the stress at point �.
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(1)�ij(�) = ∫
V

�∗
(||� − �

�||
)
τij
(
�
�
)
dV

(
�
�
)

(2)�ij
(

�′) = 2�eij
(

�′) +
[

�ekk
(

�′) − ��
(

�′)]�ij, i, j = 1, 2, 3

(3)eij
(
�
�
)
=

1

2

[
�ui

(
�
�
)

�x�
j

+
�uj

(
�
�
)

�x�
i

]



Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 

1 3

where, e0 is the material constant, ∇2 is the Laplace function, 
and e0a is the nonlocal parameter.

3  Basic Equation of the Problem

In the present problem, we consider the initial magnetic field 
H in the elastic rod, as well as the induced magnetic field h, 
the induced electric field E and the Lorentz force F = J × H. 
For linear thermoelasticity, we take smaller values for h and 
E. However, due to the Lorentz force, half of the particles on 
the rod will be displaced through the displacement vector u. 
The Maxwell equation is:

where, J denotes the current density, �0 and �0 denote the 
magnetic and electrical permeability. The motion equation 
is set up through the magnetic field defined in Maxwell’s 
equations:

When considering Kelvin-Voigt type viscoelasticity, the 
relationship between stress and strain is

where, �0 , �0 and �0 are viscoelastic parameters, and 
�e =

(
3�e + 2�e

)
�t , �0 =

(
3�e�0 + 2�e�0

)
�t∕�e , �t is the 

coefficient of linear thermal expansion.
Substituting Eqs. (4) into (10) yields:

The relationship between strain and displacement is given 
by:
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(
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)2
∇2]�ij
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(12)eij =
1

2

(
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Ezzat et al. (2015) notated the memory-dependent deriva-
tive Fourier's law of heat conduction as:

where, qi is the heat flux component, K is the thermal con-
ductivity, �,i is the heat flux component. Simplifying Eq. (13) 
to the heat conduction equation of LS type (Lord and Shul-
man 1967):

where, � is the density, T0 is the reference temperature, CE is 
the constant strain-specific heat, �� is the time factor. Fou-
rie's law of three-phase lag with memory-dependent deriva-
tives in isotropic and homogeneous media is (Mondal et al. 
2019):

where, K is the thermal conductivity, K∗ is the additional 
material constant, �� is the delay time of the temperature 
gradient, �� is the delay time of the thermal displacement 
gradient, �q is the delay time of the heat flow vector.

When the heat source is present, Eq. (15) can be simpli-
fied to the heat equation of the three-phase lag model as:

4  Formulation of the Problem

In this paper, a nonlocal thermo-viscoelastic rod of length l 
(0 ≤ x ≤ l) is studied. The rod is assumed to be subjected to 
a moving heat source and a magnetic field, where the initial 
magnetic field is H with component (0, 0, H0 ). In addition, 
the induced magnetic and induced electric fields are h = (0, 
0, h) and E = (0, E, 0), respectively. The dynamics of a rod 
can be viewed as a one-dimensional problem. Assuming that 
the length of the rod is along the positive direction of the 
x-axis, its physical field depends only on time t  and space 
x . Therefore, the displacement component has the follow-
ing form:
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According to Maxwell's system of equations, the mag-
netic and electric fields in the one-dimensional case can be 
written as:

Equations (9), (11) and (16) can be simplified as:

where, � = 1 +
�2
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Fig. 1  The values of temperature � and stress � are comparison with those of Bayones et al. (2023). a temperature distribution, b stress distribu-
tion

After omitting the primes, the Eqs. (21–23) can be taken 
in the following dimensionless form:
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where
K∗ =

CE[�e+2�e+(�e�0+2�e�0)s]
4
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2
e
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K
 , 
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0
=
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�
,and V = c0∕c . The mobile heat source can take 

the following dimensionless form:

Since the ends of the rod are fixed and insulated, the 
boundary conditions can be written as:

Ezzat et al. (2014) used the definition of a selection kernel 
function to reflect the memory effect (instantaneous rate of 
change depending on the past state):
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where, a and b are constants.

5  Solving Method

The Laplace transform is defined as shown below:

Using the Eq. (33), we perform Laplace transform on 
Eqs. (27) and (28), and then obtain:
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Fig. 2  Effect of MDD and viscosity in the absence of magnetic field at t = 1 . a temperature distribution, b displacement distribution, and c stress 
distribution
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where, A = 1 +
(

�e�0+2�e�0

�e+2�e

)
s , C =

(
1 + �0s

)
 , D =

�

�x
.

Applying Laplace transform to memory dependent deriv-
ative, we get

The expression of the function G(s,�) is:
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Applying the Laplace transform of Eqs. (36–29) yields:
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 in Eq. (38), the heat conduction equation in the 

Laplace transform domain, when not affected by memory-
dependent effects, is obtained as follows:
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Fig. 3  Effect of MDD and viscosity in the absence of magnetic field at � = 1 . a temperature distribution, b displacement distribution, and c stress 
distribution
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When K∗ = 0 , we can obtain the heat conduction equation 
for the dual-phase lag:

For the LS model (as a special case of the dual-phase lag 
model with �� = 0 and retaining the first term of �q ), Eq. (38) 
can be written as:

In the Laplace transformation domain, the boundary condi-
tion for this problem is:

(40)

[
1 + s�q +
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q
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2

][
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]
= D2�

(42)u(x, t)||x=0,l = 0,
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= 0

6  Solution in the Laplace Transform Domain

Combining Eqs. (34) and (38), and eliminating � , it follows 
that:

where
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The general solution of u(x, s) is expressed in the following 
form:
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(
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Fig. 4  Effect of MDD and viscosity in the presence of magnetic field at t = 1 . a temperature distribution, b displacement distribution, and c 
stress distribution
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where u5 = m3

/[
(s∕�)

4
− m1(s∕�)

2
+ m2

]
 , k1 and k2 are the 

roots of the characteristic equation k4 − m1k
2 + m2 = 0 . The 

expression of the characteristic root is:

Similarly, the general solution for �(x, s) and �(x, s) takes 
the following form:
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Substituting Eqs. (44), (46) and (47) into (34) and (35), 
respectively, it follows that:
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Fig. 5  Effect of MDD and viscosity in the presence of magnetic field at � = 1 . a temperature distribution, b displacement distribution, and c 
stress distribution
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Now, applying the boundary condition (42) to deter-
mine ui(i = 1, 2, 3, 4) , bringing the boundary condition into 
Eqs. (44) and (46) yields:

By solving Eq. (50), we can obtain:
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7  Laplace Inverse Transform

To obtain the distribution of temperature, displacement, and 
stress in the physical domain, Laplace inverse transformations 
of � , u , and � are required. Since the expressions for � , u , 

(51)
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Fig. 6  Effect of magnetic field and viscosity in the presence of memory-dependent effects at t = 1 . a temperature distribution, b displacement 
distribution, and c stress distribution
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and � are complex, we use the Riemann-sum (Tzou 1995b) 
approximation method for its numerical inverse transforma-
tion. With the help of this method, any function f (x, s) in the 
Laplace domain can be transformed into the time domain with 
the following equation:

where, Re is the real part, i is the imaginary unit. To be able 
to converge faster, a large number of numerical experiments 
have shown that � needs to satisfy the relation �t ≈ 4.7 
(Tzou 1995b).

8  Numerical Results and Discussion

In this subsection, our main purpose is to illustrate the numeri-
cal results of the analytical expressions for each physical quan-
tity after Laplace inverse transformation. Here, we consider 
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e�t

t

[
1

2
f (x, �) + Re
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f
(
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in�

t

)
(−1)n

]

the material properties of copper with the following relevant 
material parameters (Ezzat et al. 2017b):

8.1  Numerical Verification

In Sect. 1, we simplify the model of this paper to that of 
Bayones et al. (2023) to verify the accuracy of the proposed 
model.

K = 386N∕Ks, �t = 1.78 × 10−5K−1, CE = 383.1m2∕K,
� = 8954kg∕m3, T0 = 293K,

�0 =
10−9
36�

C2/Nm2, e0a = 0.045, �q = 0.05s,

�� = 0.07s, �� = 0.09s, Q0 = 10, l = 10,

�e = 3.86 × 1010Nm−1, �e = 7.76 × 1010Nm−1,

�0 = 0.1s, �0 = 0.05s, H0 =
10−7
4�

Am−1

Fig. 7  Effect of magnetic field and viscosity in the presence of memory-dependent effects at � = 1 . a temperature distribution, b displacement 
distribution, and c stress distribution
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In this section, we have chosen to compare the present 
study with Bayones et al. (2023) in the absence of viscosity 
and magnetic fields. From Fig. 1 we can see that when the 
material study parameters, boundary conditions, and study 
objects are the same as in Bayones et al. (2023), the distri-
butions of dimensionless temperatures and dimensionless 
stresses in Fig. 1 are the same as in Bayones et al. (2023).

Next, the paper is divided into the following five subsec-
tions that discuss the variation of dimensionless temperature, 
displacement and stress for each case.

8.2  Effect of Viscosity and MDD in the Absence 
of a Magnetic Field

In Sect. 2, the first case (Fig. 2) we study the effects of MDD 
and viscosity, when no magnetic field is present and time 
remains constant. From Fig. 2 we can see that the speed of 
the moving heat source plays an important role in all distri-
butions. At the same time, due to the increase in the speed 
of the moving heat source, the time to release heat per unit 
length of the rod is shorter, so less heat is released, and the 

temperature inside the rod decreases. As the temperature 
inside the rod decreases, the thermal expansion and deforma-
tion of the rod are reduced, and therefore the displacement 
and compressive stress in the rod are subsequently reduced. 
However, since the ends are fixed, this results in the greatest 
deformation from thermal expansion near the rod end. As 
a result, the displacements and compressive stress achieve 
their maximum values close to the end of the rod. In addition 
to this, we can see from Fig. 2 that the temperature inside the 
rod decreases in the presence of memory-dependent effect 
as compared to the case where memory-dependent effect 
is not present. On the contrary, when viscosity is present, 
the temperature inside the rod increases, and the thermal 
expansion deformation and thermal compressive stresses of 
the rod increase consequently.

In the second case (Fig. 3), we investigated the effects of 
MDD and viscosity, when no magnetic field is present and 
the velocity of the moving heat source remains constant. 
From Fig. 3 we can see that time plays an equally important 
role in all distributions. With the velocity held constant, the 
longer the time the slower the heat source and the deeper the 

Fig. 8  Effect of delay time �� in absence of magnetic field at t = 2 , � = 2 . a temperature distribution, b displacement distribution, and c stress 
distribution
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region of thermal disturbance develops in the rod. Therefore, 
the temperature increases with time. However, due to the 
action of the applied heat source, thermal expansion and 
deformation occur in the rod. With the increase of time, the 
thermal expansion and deformation inside the rod increase, 
and the displacement becomes larger. Since the ends of the 
rod are fixed, the compressive stress in the rod increases with 
the displacement. It is also clear from Fig. 3 that tempera-
ture, displacement, and stress are all reduced when mem-
ory-dependent effect are present compared to when they are 
absent. On the contrary, the presence of viscosity increases 
the value of the physical quantity in the rod.

8.3  Effect of Viscosity and MDD in the Presence 
of a Magnetic Field

In Sect. 3, the first case (Fig. 4) demonstrates the effect of 
MDD and viscosity, when the magnetic field is present and 
time is kept constant. From Fig. 4 we can see that as the 
speed of the moving heat source increases, the temperature 

inside the rod gradually increases, which leads to an increase 
in the thermal expansion and deformation of the rod, and a 
gradual increase in the displacement and stress in the rod. 
Similarly, it is evident from Fig. 4 that the MDD predicts 
smaller temperatures, displacements, and stresses when a 
magnetic field is present. Conversely, the presence of vis-
cosity has a tendency to increase the distribution of physi-
cal quantities within the rod compared to the absence of 
viscosity.

In the second case (Fig. 5), we investigated the effect of 
MDD and viscosity when the magnetic field is present and 
the speed of the moving heat source is kept constant. From 
Fig. 5, it can be seen that temperature, displacement and 
strain show a positive correlation with time, respectively. It 
is also evident that smaller physical field distributions can 
be obtained when MDD are present. In addition, the pres-
ence of viscosity is able to obtain a larger physical quantity.

Fig. 9  Effect of delay time �� in the absence of magnetic field at t = 2 , � = 2 . a temperature distribution, b displacement distribution, and c stress 
distribution
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8.4  Effect of Viscosity and Magnetic Field 
in the Presence of MDD

In Sect. 4, for the first case (Fig. 6) we investigate the influ-
ence of the magnetic field and viscosity on each physical 
quantity when there is a memory-dependent effect and time 
is kept constant. From Fig. 6 we can see that faster heat 
source speeds result in smaller temperatures. This is because 
in as the speed of the moving heat source increases, the time 
per unit length of the rod to release heat is short, the less heat 
the rod releases, the smaller the rod temperature rises. Due 
to the decrease in rod temperature, the thermal expansion 
deformation of the rod becomes smaller, and the displace-
ment and hot compressive stress in the rod also decrease. 
We can also see from Fig. 6 that the presence of an applied 
magnetic field has no significant effect on the tempera-
ture. In addition, it is not difficult to see that the presence 
of magnetic fields has a significant effect on displacement 
and stress. Compared to the absence of a magnetic field, the 
presence of a magnetic field can significantly reduce the 
displacement and thermal stress within the rod. Similarly, 

from Fig. 6, it is clear that the presence of viscosity tends to 
significantly increase the physical quantity in the rod com-
pared to the absence of viscosity.

In the second case (Fig. 7), we study the effect of the 
magnetic field and viscosity when the MDD is present and 
the speed of the moving heat source is kept constant. From 
Fig. 7, we can clearly see that the heat absorbed by the unit 
rod increases at longer times, and the thermal expansion and 
deformation in the rod increases, so the displacement and 
thermal compressive stresses in the rod increase. As can be 
seen in Fig. 7, when the speed of the moving heat source is 
constant, the variation of the temperature inside the rod is 
almost unaffected by the magnetic field. However, the pres-
ence of magnetic field significantly affects the displacement 
and thermal stress inside the rod. The presence of magnetic 
field was able to obtain smaller displacements and thermal 
stresses. On the contrary, the presence of viscosity has a 
tendency to increase the physical quantity under study.

Fig. 10  Effect of delay time �q in absence of magnetic field at t = 2 , � = 2 . a temperature distribution, b displacement distribution, and c stress 
distribution
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8.5  Impact of Delay Time

In Sect. 5, we examine the effects of three delay times in 
memory-dependent TPL models, as shown in Figs. 8, 9 and 
10. From Figs. 8, 9 and 10 we can clearly see that in all the 
distributions, the variation of the delay time has a significant 
effect on the distribution of each physical field.

From Fig. 8 we can see that the physical field inside the 
rod varies with the delay time of the temperature gradient 
�� . As the delay time of the temperature gradient increases, 
the temperature and compressive stresses in the rod increase. 
From Fig. 9 we can clearly see that the physical quantities 
inside the rod fluctuate significantly with the delay time of 
the thermal displacement gradient �� . As the delay time of 
the heat displacement gradient increases, the physical quan-
tity inside the rod decreases significantly. On the contrary, 
we can see from Fig. 10 that the physical quantity inside the 
rod increases significantly with the increase of the delay time 
of the heat flow vector �q.

8.6  Impact of Nonlocal Effects

For Sects. 2–5 (Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10) we take 
e0a = 0 , i.e., the local thermoelasticity model. In Sect. 6, we 
study the effect of nonlocal effects when there is no memory-
dependent effect, viscosity, and magnetic field (the nonlocal 
parameter e0a is taken to be 0.045).

In this section, in the first case we study the influence of 
nonlocal effects under different moving heat sources. From 
Fig. 11 we can clearly see that the physical quantities in the 
rod increase with the speed of the moving heat source. In 
addition, from Fig. 11 we can also see that the values of dis-
placements and stresses in the nonlocal elasticity theory are 
smaller than those under the local theory. In addition to this, 
we can also observe that there is almost no difference in the 
distribution of temperature under the influence of nonlocal 
effects. This is due to the fact that we have introduced the 
nonlocal terms into the constitutive equations rather than 
into the heat conduction equations, and hence there is no 
significant difference in the temperature distribution within 
the rod.

Fig. 11  The influence of non-local effects, in the absence of magnetic field and memory-dependent effects at t = 1 , � = 1 . a temperature distribu-
tion, b displacement distribution, c stress distribution
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In the second case, we investigate the influence of non-
local effects when time is different. From Fig. 12 we can 
clearly see that the physical quantities in the rod change sig-
nificantly with increasing time. As time increases, the values 
of temperature, displacement and stress in the rod gradually 
increase. What is also evident is that non-local effects have 
little effect on the change in temperature. In addition, the 
values of displacements and stresses are smaller under the 
non-localised theory as compared to the localised theory.

9  Conclusions

In this paper, the thermoelastic response of a viscoelastic rod 
subjected to a magnetic field and thermal shock is analysed 
using the Kelvin-Voigt viscoelastic model, three-phase lag 
heat transfer model, and the Eringen nonlocal theory. The 
control equations of the problem are solved by using the 
Laplace transform and the inverse numerical transformation, 

and the dimensionless temperature, displacement and stress 
are obtained and displayed graphically. The results show 
that:

(1) Moving heat source velocity and time had a signifi-
cant effect on all distributions. At smaller moving heat 
source velocities and larger times, the physical quanti-
ties in the rods increased significantly.

(2) Magnetic fields and non-local effects have almost no 
effect on temperature, but significantly affect displace-
ment and thermal stresses. The presence of magnetic 
field significantly reduces the displacement and stress 
in the rod. On the contrary the presence of non-local 
effects significantly enhances the displacement and 
stress in the rod.

(3) The presence of viscosity has a tendency to increase 
the distribution of physical quantities within the rod 
compared to the absence of viscosity.

Fig. 12  Influence of non-local effects in the absence of magnetic fields and memory-dependent effects at t = 1 , � = 1 . a temperature distribution, 
b displacement distribution, and c stress distribution
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(4) Memory-dependent effects reduce the distribution of 
the physical quantities considered compared to the 
absence of memory-dependent effects.

(5) Changes in the three delay times of the memory-
dependent TPL model will have different effects on all 
distributions.
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