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Abstract
In this study, stresses and deformations of a rotating functionally graded magneto-electro-elastic (FGMEE) disk with non-
uniform thickness considering internal heat generation, convection, and radiation heat transfer were investigated. The power-
law function of the radial coordinate was considered for the properties of the material. Also, the heat conduction and 
convection coefficients are functions of temperature and radius. The heat transfer equation was derived considering thermal 
gradient, convection thermal boundary, heat source, and solar radiation. The differential transformation method (DTM) was 
used for solving the obtained nonlinear differential equation of heat transfer. Then, the equilibrium equation of the disk was 
derived and solved analytically. So, the radial stress, hoop stress, radial deformation, electric and magnetic potential, elec-
tric displacement, and magnetic induction can be obtained. Finally, some numerical examples were presented to examine 
the effects of the heat source, convection heat transfer, temperature dependency, solar radiation, inhomogeneity index, and 
angular velocity on the stress, deformation, electric displacement, and magnetic induction of the disk. The results show the 
tensile radial stress, deformation, electric displacement, and magnetic induction decrease for higher values of source power 
and solar flux intensity, while changes for the higher values of convection coefficient and thermal conductivity are opposite. 
Also, using a non-uniform thickness disk with an outer thickness smaller than the inner thickness can reduce the displace-
ment and electromagnetic potentials.

Keywords  Rotating disk · Functionally graded magneto-electro-elastic · Stress analysis · Variable thickness · Solar 
radiation · Heat source

List of Symbols
ro	� Exterior radius (m)

ri	� Interior radius (m)

T 	� Temperature (K)

Ta	� Ambient air temperature (K)

Tb	� Inner temperature (K)

To	� Outer temperature (K)

k
0
	� Thermal conductivity (W∕mK)

�	� Conduction heat transfer coefficient
�	� Angular speed (Rad∕s)
h
0
	� Convection heat transfer coefficient 

(

W∕m2K
)

Gs	� Solar flux intensity 
(

W∕m2
)

�s	� Absorption coefficient of solar radiation
�	� Emission coefficient of solar radiation
�	� Magnetic potential (A)

Ω	� Thickness profile coefficient
y
0
	� Thickness profile coefficient

ai	� Temperature function coefficients
�	� Inhomogeneity index
a	� Convection coefficient
b	� Convection coefficient
�	� Dimensionless temperature
�	� Dimensionless radius
�r	� Radial stress (Pa)
��	� Hoop stress (Pa)
�z	� Normal stress (Pa)
ur	� Radial displacement (m)

cij	� Elastic constants (GPa)
Dr	� Electric displacement 

(

C∕m2
)

eij	� Piezoelectric coefficients 
(

C∕m2
)

qij	� Piezomagnetic coefficients (N∕Am)

�ij	� Electromagnetic coefficients (Ns∕VC)
�ij	� Dielectric coefficients 

(

C2∕Nm2
)

�i	� Thermal expansion coefficients (1∕K)
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�	� Density 
(

kg∕m3
)

�	� Electric potential (W∕A)

Br	� Magnetic induction (T)
�i	� Thermal modulus 

(

N∕m2K
)

�	� Stefan–Boltzmann constant
H{t}	� DTM transformation coefficients
dij	� Magnetic coefficients 

(

Ns2∕C2
)

�i	� Components of strain
Er	� Components of electric field
pi	� Pyroelectric coefficients 

(

C2∕m2K
)

mi	� Pyromagnetic coefficients (N∕AmK)

1  Introduction

Todays, new materials such as functionally graded materials 
(FGMs), smart materials, smart composites, and nanofluids 
are the focus of many articles (Ahmad et al. 2019; Ahmad 
et al. 2021a, b; Ahmad 2023). FGM is one of these that has 
attracted a lot of attention in recent years and many arti-
cles have been published in this field (Singh and Harsha 
2020; Alibeigloo 2021; Saadatfar et al. 2023a, b; Saadatfar 
et al. 2023a, b). Functionally graded magneto-electro-elas-
tic material is a type of smart composite structure that can 
convert the energy from mechanical to magnetic or electric 
type and vice versa. These materials have many potential 
applications in important industries, such as aerospace, tur-
bine rotor designing, magnetic storage, smart structures, and 
many other fields (Chang et al. 2020; Saadatfar and Zarandi 
2020a, b; Saadatfar 2021a, b; Ly et al. 2022).

Several reported articles investigate the stresses and 
deformation of rotating disks. Sahni and Sahni (2015) 
examined a rotating FGM disk with variable thickness and 
considered external pressure. Thermoelastic analysis of an 
FGM rotating disk has been done by Dai and Dai (2016). 
In this analysis, the thickness and angular speed of the disk 
have been considered to be variable. Hosseini et al. (2016) 
analyzed the stress of rotating FGM nanodisks with variable 
thickness profiles. Rattan et al. (2016) investigated the creep 
behavior of an isotropic disk made of composite. In this 
work, the thermal residual stress has been considered. Dai 
et al. (2017) investigated a rotating functionally graded pie-
zoelectric disk located in a hygrothermal field. Creep analy-
sis of an FGM rotating disk considering the Tresca criteria 
has been done by Khanna et al. (2017). The results of this 
analysis have been compared to von Mises criteria results. 
Thawait et al. (2017) used the element-based material grad-
ing for the elastic analysis of an FGM rotating disk with non-
constant thickness. Bose and Rattan (2018) investigated the 
influence of thermal gradation on the creep behavior of an 
FGM rotating disk. Designing FGM rotating disks by weight 
optimization has been done by Khorsand and Tang (2018). 

The designed disks have been examined under thermome-
chanical loads. Considering the rule of mixture, the stress 
and deformation of an FGM rotating disk have been ana-
lyzed by Madan et al. (2018). Hayat et al. (2018) examined 
the flow of a nanofluid due to a rotating disk. In this analysis, 
the influences of chemical reaction and heat generation have 
been considered and the final ordinary differential equation 
has been solved using homotopy analysis method. Hosseini 
et al. (2019) studied rotating FGM micro/nanodisks consid-
ering a variable thickness profile. Li et al. (2019) studied 
the transient response of a rotating turbine disk experimen-
tally. In this examination, the thermal loading management 
strategy has been used. Madan et al. (2019) investigated the 
limit of angular speed of a rotating disk made of functionally 
graded material using temperature-dependent/independent 
mechanical properties. The deformation of a rotating com-
posite disk due to the thermal gradient has been analyzed by 
Kaur et al. (2020). Saadatfar and Zarandi (2020a, b) exam-
ined the mechanical behaviors of a rotating annular plate 
made of FGPM considering variable thickness. Sondhi et al. 
(2020) analyzed the stress and deformation of an FGM disk 
with variable thickness considering orthotropic structure and 
rotation. Ahmad et al. (2021a, b) modeled the effect of the 
magnetic field on a rotating disk flow considering heat trans-
fer. The effects of angular deceleration on the behaviors of 
multilayer disks made of functionally graded material have 
been investigated by Eldeeb et al. (2021). Responses of an 
FGPM cylinder considering hygrothermal loading have been 
examined by Saadatfar (2021a, b). Saber and Abd_Elsalam 
(2022) presented a theoretical model for the investigation of 
the performance of FGM rotating disks.

There are many works on stress analysis of FGMEE struc-
tures in the literature. Akbarzadeh and Chen (2012) analyzed 
FGMEE rotating cylinders resting on an elastic foundation. 
The considered cylinders were analyzed under hygrothermal 
loading. Gupta and Singh (2016) modeled the creep of an 
FGM rotating disk mathematically considering the variable 
thickness. Dai and Dai (2017) analyzed a rotating FGMEE 
disk in thermal environment. Dai et al. (2019) examined a 
porous FGMEE disk in hygrothermal environment and ana-
lyzed its mechanical behaviors. Ebrahimi et al. (2019) stud-
ied the effect of porosity on dynamic characteristics of the 
heterogeneous FGMEE plates. Investigation of influences 
of porosity, thickness profile, and rotational acceleration on 
the behaviors of an FGMEE rotating disk has been done by 
Saadatfar et al. (2021). The analyzed disk was located in a 
constant magnetic field. Zhang et al. (2022) studied the static 
and dynamic behaviors of FGMEE shells and plates. Zhou 
et al. (2022) analyzed the static behaviors of inhomogeneous 
FGMEE plates in thermal environment. The element-free 
Galerkin method has been used in this analysis.

The literature review shows stress analysis of rotating 
variable thickness FGMEE disks with a convection heat 
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transfer, an internal heat source, and solar radiation for the 
case that heat convection and conduction coefficients are 
dependent on temperature and radius has not been analyzed. 
So, the novelties of this article are considering conduction 
and convection heat transfer coefficients as functions of 
temperature and radius, and considering the effects of heat 
transfer including the conduction, convection, solar radia-
tion, and internal heat source. The power-law function of the 
radius was considered for material properties. The obtained 
nonlinear differential equation was solved using DTM. Then, 
the equilibrium equation was derived and solved analyti-
cally to achieve stresses, displacement, electric and magnetic 
potential distributions.

2 � Thermal Equations

In this article, a variable thickness FGMEE disk has been 
considered as shown in Fig. 1. The rotation of the disk is 
around its Z-axis. Four types of heat transfer phenomena 
are considered: conduction, convection, internal heat gen-
eration, and solar radiation. Regarding symmetry and plane 
stress conditions, nonzero components of displacement and 
temperature are functions of radius. A power-law function of 
the radius has been used for the thickness profile of the disk:

2.1 � Thermal Equations Derivation

In thermal analysis, there are four methods for heat 
exchange, which are heat conduction, heat convection, inter-
nal heat generation, and solar radiation. It is important to 
mention that convective and conductive heat transfer coef-
ficients change with temperature and radius. According to 
the energy balance equation, we have (Incropera et al. 1996):

(1)h(r) = y0r
−Ω.

where

For the simplification, the following variable change 
is considered:

where Tb and Ta are the inner radius temperature of the disk 
and ambient air temperature, respectively. The expression 
(αsGsdAs) indicates the amount of solar radiation received by 
the disk. Also, the expression (εσ(T4− Ta

4)dAs) refers to the 
reflected radiation of the disk. Using the introduced param-
eters and simplifying, Eq. (2) can be written as:

The obtained differential equation (Eq. (8)) is a sec-
ond-order type. Therefore, it will be important to use two 
boundary conditions:

According to the introduced boundary conditions, 
the internal and external temperature of the disk will be 
constant.

2.2 � Solution of Nonlinear Thermal Differential 
Equation

The well-known DTM was used for solving the nonlinear 
heat transfer differential equation in Eq. (8). This method 
creates a polynomial analytical approach for differential 

(2)
d
dr

(

KAc
dT
dr

)

dr − h
(

T − Ta
)

dAs

+ �sGsdAs − ��
(

T4 − T4
a
)

dAs + q̇dV = 0.

(3)K = k0r
� (1 + ��),

(4)h = h0�
Γ(a + b�r),

(5)q̇ = q0
(

1 + e0𝜃
)

.

(6)� =
T − Tb

Ta − Tb
,

(7)� =
r − ri

ro − ri
.

(8)

(

Ta − Tb
)

(

ro − ri
)2 ⋅

d
d�

{

y0(1 + ��)
(

ri + �
(

ro − ri
))�+1−Ω d�

d�

}

−
h0
k0

�Γ(� − 1)
(

Ta − Tb
)(

ri + �
(

ro − ri
))(

a + b�
(

ri + �
(

ro − ri
)))

+
(

ri + �
(

ro − ri
))

(

�sGs

k0
− ��

k0

(

(

�
(

Ta − Tb
)

+ Tb
)4 − T4

a

)

)

+
q0y0
k0

(

ri + �
(

ro − ri
))1−Ω(1 + e0�

)

= 0.

(9)r = ri ∶ � = 0 → T = Tb ∶ � = 0,

(10)r = ro ∶ � = 1 → T = To ∶
(

Ta − Tb
)

� + Tb = To.

Fig. 1   Schematic of the rotating FGMEE disk
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equations. DTM is an iterative procedure for gaining ana-
lytical Taylor series solutions for differential equations. The 
necessary functions of this method are presented in Appen-
dix. Now, the final differential transformation of Eq. (8) can 
be expressed as:

where

where δ is the Dirac delta function and x, k, w, v, and r are 
the sigma boundaries used in the DTM method. The trans-
formed boundary conditions can be expressed as:

(11)

{ k
∑

x=0

x
∑

v=0
H1[v](��[x − v] + �(x − v))((k − x + 1)�[k − x + 1])

}

+

{ k
∑

x=0

x
∑

v=0
H2[v]((x − v + 1)�[x − v + 1])((k − x + 1)�[k − x + 1])

}

−

{ k
∑

x=0

x
∑

v=0
H3[v](��[x − v] + �(x − v))((k − x + 1)�[k − x + 1])

}

+

{ k
∑

x=0

x
∑

v=0
H4[v](��[x − v] + �(x − v))((k − x + 1)(k − x + 2)�[k − x + 2])

}

−

{ k
∑

x=0

x
∑

v=0

v
∑

r=0

r
∑

w=0
H7[w]�[r − w]�[v − r]�[x − v](�[k − x] − �(k − x))

}

+
{

H5[k]
}

−

{ k
∑

x=0

x
∑

v=0

v
∑

r=0

r
∑

w=0
H6[w]

((

Ta − Tb
)

�[r − w] + Tb�(r − w)
)((

Ta − Tb
)

�[v − r] + Tb�(v − r)
)

((

Ta − Tb
)

�[x − v] + Tb�(x − v)
)((

Ta − Tb
)

�[k − x] + Tb�(k − x)
)}

+
{

T4
aH6[k]

}

+

{ k
∑

x=0
H8[x]

(

�(k − x) + e0�[k − x]
)

}

= 0.

(12)

H1[t] = y0
Ta − Tb
(

ro − ri
) (� + 1)

(

ri + t
(

ro − ri
))�−Ω

,

H2[t] = y0�
Ta − Tb
(

ro − ri
)2

(

ri + t
(

ro − ri
))�−Ω+1

,

H3[t] = y0Ω
Ta − Tb
(

ro − ri
)

(

ri + t
(

ro − ri
))�−Ω

,

H4[t] = y0
Ta − Tb
(

ro − ri
)2

(

ri + t
(

ro − ri
))�−Ω+1

,

H5[t] =
�sGs

k0

(

ri + t
(

ro − ri
))

,

H6[t] =
��

k0

(

ri + t
(

ro − ri
))

,

H7[t] =
h0

k0

(

Ta − Tb
)(

ri + t
(

ro − ri
))(

a + b�
(

ri + t
(

ro − ri
)))

,

H8[t] =
y0q0

k0

(

ri + t
(

ro − ri
))1−Ω

.

(13)
�[0] = 0,

�[1] = �0.

In the next step, the coefficients of the main dimension-
less temperature function will be obtained using the iterative 
procedure; such as:

Finally, we have:

Now, substituting θ and η, the temperature function was 
derived as:

(14)

�[2] = −1
2r�+1i

{�r�+1i �2 + r�+1i Ω� − r�i roΩ� − r�+1i ��

+ r�i ro�� − r�+1i � + r�i ro� +

(

ro − ri
)2

(

Ta − Tb
)

y0

��
k0

T4
a r

Ω+1
i

−

(

ro − ri
)2

(

Ta − Tb
)

y0

��
k0

T4
b r

Ω+1
i +

(

ro − ri
)2

(

Ta − Tb
)

q0
k0
ri

+

(

ro − ri
)2

(

Ta − Tb
)

y0

�sGs

k0
rΩ+1i }.

(15)

�(�) =

U
∑

i=1

�[i].�i = �0 + �1� + �2�
2 + �3�

3 + �4�
4 + �5�

5.

(16)T(r) = a0 + a1r + a2r
2 + a3r

3 + a4r
4 + a5r

5.
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3 � Stress Field Equations

3.1 � Basic Equations

Stress–strain relations of FGMEE disk can be expressed as 
(Saadatfar 2019; Saadatfar et al. 2021):

Considering the plane stress condition, we have:

Replacing Eq.  (22) in Eqs. (17), (18), (20), and (21) 
yields to:

where

For simplicity, all of the material properties are supposed 
to change based on a power-law function:

(17)�r = c11�rr + c12��� + c13�zz − e11Er − q11Hr − �1T ,

(18)�� = c12�rr + c22��� + c23�zz − e12Er − q12Hr − �2T ,

(19)�z = c13�rr + c23��� + c33�zz − e13Er − q13Hr − �3T ,

(20)Dr = e11�rr + e12��� + e13�zz + �11Er + �11Hr + p1T ,

(21)Br = q11�rr + q12��� + q13�zz + �11Er + d11Hr + m1T .

(22)

�z = 0 ⇒ �zz = −
c13

c33
�rr −

c23

c33
��� +

e13

c33
Er +

q13

c33
Hr +

�3

c33
T .

(23)�r = c�
11

�u

�r
+ c�

12

u

r
+ e�

11

��

�r
+ q�

11

��

�r
− ��

1
T ,

(24)�� = c�
12

�u

�r
+ c�

22

u

r
+ e�

12

��

�r
+ q�

12

��

�r
− ��

2
T ,

(25)Dr = e�
11

�u

�r
+ e�

12

u

r
− ��

11

��

�r
− ��

11

��

�r
+ p�

1
T ,

(26)Br = q�
11

�u

�r
+ q�

12

u

r
− ��

11

��

�r
− d�

11

��

�r
+ m�

1
T .

(27)

c′11 = c11 −
c213
c33

, c′12 = c12 −
c13c23
c33

, c′22 = c22 −
c223
c33

,

e′11 = e11 −
c13e13
c33

, e′12 = e12 −
c23e13
c33

, q′11 = q11 −
c13q13
c33

,

q′12 = q12 −
c23q13
c33

, �′1 = �1 −
c13�3
c33

, �′2 = �2 −
c23�3
c33

,

m′
1 = m1 +

�3q13
c33

, d′11 = d11 +
q213
c33

, �′11 = �11 +
e213
c33

,

�′11 = �11 +
e13q13
c33

, p′1 = p1 +
e13�3
c33

.

where P is the material constant. Finally, the nonzero terms 
of the equilibrium equation of the rotating FGMEE disk are 
(Saadatfar 2021a, b):

Also, the electrostatic and magnetostatic equations are in 
the following form:

The solution of Eqs. (30) and (31) can be introduced as:

where A1 and A2 are unknown constants. According to Eqs. 
(32) and (33), we can recognize the electric and magnetic 
potential equations as:

where

Using Eqs. (34) and (35), the stress equations become 
simpler:

(28)P = Pr� .

(29)
�
(

h(r)�r
)

�r
+ h(r)

(�r − ��)

r
+ h(r)�r�2 = 0.

(30)
�
(

h(r)Dr

)

�r
+

h(r)Dr

r
= 0,

(31)
�
(

h(r)Br

)

�r
+

h(r)Br

r
= 0.

(32)

Dr =
A1

r−Ω+1
= e�

11

�u

�r
+ e�

12

u

r
− ��

11

��

�r
− ��

11

��

�r
+ p�

1
T ,

(33)

Br =
A2

r−Ω+1
= q�

11

�u

�r
+ q�

12

u

r
− ��

11

��

�r
− d�

11

��

�r
+ m�

1
T .

(34)
��(r)

�r
= L1

�u

�r
+ L2

u

r
+ L3

A2

r�−Ω+1
− L5

A1

r�−Ω+1
+ L4T ,

(35)

��(r)

�r
= P1

�u

�r
+ P2

u

r
+ P3

A1

r�−Ω+1
− P5

A2

r�−Ω+1
+ P4T .

(36)

L1 =
e�
11
d�
11

− q�
11
��
11

d�
11
��
11

− �
�2

11

, L2 =
e�
12
d�
11

− q�
12
��
11

d�
11
��
11

− �
�2

11

, L3 =
��
11

d�
11
��
11

− �
�2

11

,

L4 =
p�
11
d�
11

− m�
1
��
11

d�
11
��
11

− �
�2

11

, L5 =
d�
11

d�
11
��
11

− �
�2

11

,

P1 =
q�
11
��
11

− ��
11
e�
11

d11��
�
11

− �
�2

11

, P2 =
q�
12
��
11

− ��
11
e�
12

d�
11
��
11

− �
�2

11

, P3 =
��
11

d�
11
��
11

− �
�2

11

,

P4 =
m�
1
��
11

− ��
11
p�
1

d�
11
��
11

− �
�2

11

, P5 =
��
11

d�
11
��
11

− �
�2

11

.

(37)
�r = C1r

� �u

�r
+ C2r

� u

r
+ C3

A2

r−Ω+1
+ C4

A1

r−Ω+1
+ C5r

�T − ��
1
r2�T ,
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where:

Substituting Eqs. (37) and (38) in Eq. (29) yields:

where:

(38)
�� = E1r

� �u

�r
+ E2r

� u

r
+ E3

A2

r−Ω+1
+ E4

A1

r−Ω+1
+ E5r

�T − ��
2
r2�T .

(39)
C1 = c�

11
+ e�

11
L1 + q�

11
P1, C2 = c�

12
+ e�

11
L2 + q�

11
P2, C3 = e�

11
L3 − q�

11
P5,

C4 = q�
11
P3 − e�

11
L5, C5 = e�

11
L4 + q�

11
P4,

(40)
E1 = c�

12
+ e�

12
L1 + q�

12
P1, E2 = c�

22
+ e�

12
L2 + q�

12
P2, E3 = e�

12
L3 − q�

12
P5,

E4 = q�
12
P3 − e�

12
L5, E5 = e�

12
L4 + q�

12
P4.

(41)
�2u

�r2
+

M
1

r

�u

�r
+

M
2

r2
u = M

3
r
�−1

T +M
4

T

r
+
(

M
6
r
� −M

5

)�T

�r
+M

7

A
2

r�−Ω+2

+M
8

A
1

r�−Ω+2
−M

13
r.

(42)

M1 =
(� − Ω + 1)C1 + C2 − E1

C1

, M2 =
(� − Ω)C2 − E2

C1

,

M3 =
(2� − Ω + 1)��

1
− ��

2

C1

, M4 =
E5 − (� − Ω + 1)C5

C1

, M5 =
C5

C1

,

M6 =
��
1

C1

, M7 =
E3

C1

, M8 =
E4

C1

, M13 =
��2

C1

.

Substituting the temperature function (Eq.  (16)) in 
Eq. (41) gives:

We can write the solution of Eq. (43) in the following 
form:

where:

(43)

�2u

�r2
+

M1

r

�u

�r
+

M2

r2
u =

(

M3a0
)

r�−1 +
(

M3a1 +M6a1
)

r�

+
(

M3a2 + 2M6a2
)

r�+1 +
(

M3a3 + 3M6a3
)

r�+2 +
(

M3a4 + 4M6a4
)

r�+3

+
(

M3a5 + 5M6a5
)

r�+4 +
(

M4a0
)

r−1 +
(

M4a1 −M5a1
)

+
(

M4a2 − 2M5a2 −M13

)

r +
(

M4a3 − 3M5a3
)

r2 +
(

M4a4 − 4M5a4
)

r3

+
(

M4a5 − 5M5a5
)

r4 +M7

A2

r�−Ω+2
+M8

A1

r�−Ω+2
.

(44)u = B1r
m1 + B2r

m2 + B3r
�+1 + B4r

�+2 + B5r
�+3 + B6r

�+4 + B7r
�+5 + B8r

�+6

+ B9r + B10r
2 + B11r

3 + B12r
4 + B13r

5 + B14r
6 + B15A2r

−�+Ω + B16A1r
−�+Ω,

(45)
m1 =

1

2

(

−
(

M1 − 1
)

+

√

(

M1 − 1
)2

− 4M2

)

,

m2 =
1

2

(

−
(

M1 − 1
)

−

√

(

M1 − 1
)2

− 4M2

)

.
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B1 and B2 are unknown constants. By Substituting 
Eq. (44) in Eqs. (34) and (35), and integrating, the electric 
and magnetic potential functions can be obtained as:

(46)

B
3
=

M
3
a
0

(� + 1)2 +
(

M
1
− 1

)

(� + 1) +M
2

,B
4
=

(

M
3
+M

6

)

a
1

(� + 2)2 +
(

M
1
− 1

)

(� + 2) +M
2

,

B
5
=

(

M
3
+ 2M

6

)

a
2

(� + 3)2 − (� + 3) +M
1
(� + 3) +M

2

, B
6
=

(

M
3
+ 3M

6

)

a
3

(� + 4)2 +
(

M
1
− 1

)

(� + 4) +M
2

,

B
7
=

(

M
3
+ 4M

6

)

a
4

(� + 5)2 − (� + 5) +M
1
(� + 5) +M

2

, B
8
=

(

M
3
+ 5M

6

)

a
5

(� + 6)2 − (� + 6) +M
1
(� + 6) +M

2

,

B
9
=

M
4
a
0

M
1
+M

2

, B
10

=

(

M
4
−M

5

)

a
1

2 + 2M
1
+M

2

, B
11

=

(

M
4
− 2M

5

)

a
2
−M

13

6 + 3M
1
+M

2

,

B
12

=

(

M
4
− 3M

5

)

a
3

12 + 4M
1
+M

2

, B
13

=

(

M
4
− 4M

5

)

a
4

20 + 5M
1
+M

2

, B
14

=

(

M
4
− 5M

5

)

a
5

30 + 6M
1
+M

2

,

B
15

=
M

7
(

1 −M
1

)

(� − Ω) + (−� + Ω)2 +M
2

, B
16

=
M

8
(

1 −M
1

)

(� − Ω) + (−� + Ω)2 +M
2

.

(47)

�(r) =

(

L
1
m

1
+ L

2

)

B
1

m
1

r
m1 +

(

L
1
m

2
+ L

2

)

B
2

m
2

r
m2 +

(

L
1
(� + 1) + L

2

)

B
3

� + 1
r
�+1

+

(

L
2
+ L

1
(� + 2)

)

B
4

� + 2
r
�+2 +

(

L
2
+ L

1
(� + 3)

)

B
5

� + 3
r
�+3 +

(

L
2
+ L

1
(� + 4)

)

B
6

� + 4
r
�+4

+

(

L
2
+ L

1
(� + 5)

)

B
7

� + 5
r
�+5 +

(

L
2
+ L

1
(� + 6)+

)

B
8

� + 6
r
�+6 +

((

L
1
+ L

2

)

B
9
+ L

4
a
0

)

r

+

((

2L
1
+ L

2

)

B
10
+ L

4
a
1

)

2
r
2 +

((

3L
1
+ L

2

)

B
11
+ L

4
a
2

)

3
r
3 +

((

4L
1
+ L

2

)

B
12
+ L

4
a
3

)

4
r
4 +

((

5L
1
+ L

2

)

B
13
+ L

4
a
4

)

5
r
5

+

((

6L
1
+ L

2

)

B
14
+ L

4
a
5

)

6
r
6 −

((

L
2
− L

1
(� − Ω)

)

B
15
A
2
+
(

L
2
− L

1
(� − Ω)

)

B
16
A
1

)

� − Ω
r
−�+Ω

−
L
3
A
2

� − Ω
r
−�+Ω +

L
5
A
1

� − Ω
r
−�+Ω + Z

1
,

Table 1   Material properties

Parameter Value Parameter Value

c11(GPa) 151 e13 −2.5

c12 53 q11(N∕Am) 345

c13 120 q12 265

c22 151 q13 265

c23 120 �(kg∕m3) 7750

c33 215 �11
(

C2∕Nm2
)

5.8 × 10
−9

�r(1∕K) 6 × 10
−6 p1

(

C2∕m2K
)

−2.5 × 10
−5

�� 15 × 10
−6 �11(Ns∕VC) 2.82 × 10

−9

�z 15 × 10
−6 m1(N∕AmK) 2.5 × 10

−5

e11
(

C∕m2
)

7.5 d11
(

Ns2∕C2
)

95 × 10
−6

e12 −2.5 �
(

N∕A2
)

8.85 × 10
−6

Table 2   Used parameters for the FGMEE disk

Parameter Value Parameter Value

ro 0.25(m) k0 20(W∕mK)

ri 0.05(m) h0 25
(

W∕m2K
)

Ta 278(K) q0 1
(

kW∕m3
)

Tb 313(K) a 4

To 288(K) b 4

y0 0.03 � 0.6

Ω 0.25 Γ 3

� 50�(Rad∕s) �s 0.5

e0 4 Gs 950
(

W∕m2
)

� 4 � 0.5
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(48)

�(r) =

(

P1m1 + P2

)

B1

m1

rm1 +

(

P1m2 + P2

)

B2

m2

rm2 +

(

P1(� + 1) + P2

)

B3

� + 1
r�+1

+

(

P2 + P1(� + 2)
)

B4

� + 2
r�+2 +

(

P2 + P1(� + 3)
)

B5

� + 3
r�+3 +

(

P2 + P1(� + 4)
)

B6

� + 4
r�+4

+

(

P2 + P1(� + 5)
)

B7

� + 5
r�+5 +

(

P2 + P1(� + 6)
)

B8

� + 6
r�+6 +

((

P1 + P2

)

B9 + P4a0
)

r

+

((

2P1 + P2

)

B10 + P4a1
)

2
r2 +

((

3P1 + P2

)

B11 + P4a2
)

3
r3

+

((

4P1 + P2

)

B12 + P4a3
)

4
r4 +

((

5P1 + P2

)

B13 + P4a4
)

5
r5

+

((

6P1 + P2

)

B14 + P4a5 + P6b5
)

6
r6 −

((

P2 − P1(� − Ω)
)

B15A2 +
(

P2 − P1(� − Ω)
)

B16A1

)

� − Ω
r−�+Ω

−
P3A1

� − Ω
r−�+Ω +

P5A2

� − Ω
r−�+Ω + Z2.

where, Z1 and Z2 are unknown coefficients. Since the radial 
displacement is known, the radial and hoop stresses can be 
calculated using Eqs. (44) in (37) and (38):

(49)

�
r

=
(

C
1
m

1
+ C

2

)

B
1
r
�+m

1
−1 +

(

C
1
m

2
+ C

2

)
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2
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2
−1

+
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(� + 1)C
1
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2

)
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− ��

1
a
0

)
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+
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(� + 2)C
1
+ C

2

)

B
4
− ��

1
a
1

)

r
2�+1

+
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(� + 3)C
1
+ C

2

)

B
5
− ��

1
a
2

)

r
2�+2

+
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(� + 4)C
1
+ C

2

)

B
6
− ��

1
a
3

)
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2�+3

+
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(� + 5)C
1
+ C

2

)

B
7
− ��

1
a
4

)
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2�+4

+
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(� + 6)C
1
+ C
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)
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− ��

1
a
5

)

r
2�+5 +

(

B
9

(

C
1
+ C
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+ C
5
a
0

)

r
�

+
(
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(

2C
1
+ C

2
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+ C
5
a
1

)
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�+1 +

(
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(

3C
1
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5
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2

)
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+
(
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4C
1
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+ C
5
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3
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�+3 +

(
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13

(

5C
1
+ C

2

)

+ C
5
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4
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�+4

+
(
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14

(

6C
1
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2
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+ C
5
a
5

)
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�+5 +

((

C
2
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1

)
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15

+
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)
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1
B
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)
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4

A
1

r−Ω+1
,

Fig. 2   Validation of results in thermal analysis
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So, there are six unknown coefficients (B1, B2, A1, A2, Z1, 
Z2) that can be evaluated using the mechanical, electrical, and 
magnetic boundary conditions. Here, the boundary conditions 
are considered as:

(50)

�� =
(

E1m1 + E2

)

B1r
�+m1−1 +

(

E1m2 + E2

)

B2r
�+m2−1 +

((

(� + 1)E1 + E2

)

B3 − ��
2
a0
)

r2�

+
((

(� + 2)E1 + E2

)

B4 − ��
2
a1
)

r2�+1 +
((

(� + 3)E1 + E2

)

B5 − ��
2
a2
)

r2�+2

+
((

(� + 4)E1 + E2

)

B6 − ��
2
a3
)

r2�+3 +
((

(� + 5)E1 + E2

)

B7 − ��
2
a4
)

r2�+4

+
((

(� + 6)E1 + E2

)

B8 − ��
2
a5
)

r2�+5 +
(

B9

(

E1 + E2

)

+ E5a0
)

r�

+
(

B10

(

2E1 + E2

)

+ E5a1
)

r�+1 +
(

B11

(

3E1 + E2

)

+ E5a2
)

r�+2

+
(

B12

(

4E1 + E2

)

+ E5a3
)

r�+3 +
(

B13

(

5E1 + E2

)

+ E5a4
)

r�+4

+
(

B14

(

6E1 + E2

)

+ E5a5
)

r�+5 +
((

E2 − (� − Ω)E1

)

A2B15 +
(

E2 − (� − Ω)E1

)

A1B16

)

rΩ−1

+ E3

A2

r−Ω+1
+ E4

A1

r−Ω+1
.

(51)
r = ri ⇒ �r = 0 , � = �i , � = �i,

r = ro ⇒ �r = 0 , � = �o , � = �o.

4 � Results and Discussion

Several numerical examples were considered in this part to 
disclose the effects of different parameters on the distribution 
of stresses, displacement, electric and magnetic potentials, and 
temperature. The used material constants are given in Table 1. 
Otherwise is states, the used parameters in the numerical 

Fig. 3   Validation of the stress and deformation results
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Fig. 4   Effect of the inhomoge-
neity index
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Fig. 5   Influence of the different profiles of thickness
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examples are as Table 2. The following dimensionless param-
eters were used in the results:

(52)

R =
r − ri

ro − ri
, �∗

r,�
=

�r,�

c11
, u∗

r
=

ur

ri
, �∗ =

�
√

�11∕c11

ro
,

�∗ =
�
√

d11∕c11

ro
, D∗

r
=

Dr
√

c33�11
, B∗

r
=

Br
√

c33�
.

4.1 � Validation

4.1.1 � Thermal Analysis

Since there are no comparable results in the literature, to vali-
date the accuracy of the solution method used for the heat 
transfer equation, a numerical solution was performed using 
the FlexPDE software for the heat transfer equation. According 
to Fig. 2, the results show good agreement.

Fig. 6   Influence of the thickness 
profile coefficient
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4.1.2 � Stress Analysis

The obtained results for radial stress, hoop stress and radial 
displacement of the FGMEE disk were compared with the 
reported research about static behaviors of an FGM disk. 
The used material constants are listed in Refs. (Çallioğlu 
et al. 2011) and (Dai and Dai 2016). The obtained results 
have a good accuracy according to Fig. 3.

4.2 � Effective Parameters Investigation

The influences of key parameters on the radial and circum-
ferential stresses, radial deformation, electric and mag-
netic potentials, and temperature were analyzed in this 
section.

Fig. 7   Influence of the tempera-
ture difference
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4.2.1 � Grading Index

The inhomogeneity index is the first parameter to disclose 
its influence. Figure 4 illustrates the effects of the inho-
mogeneity index on the response of the disk. As shown, 
the outward radial displacement, radial stress, absolute 
hoop stress, and temperature reduce by an increase in the 
inhomogeneity index, whereas the electric potential and 
magnetic potential increase for a higher grading index. 
So, by selecting the proper grading index, the stress and 
displacement can be controlled.

4.2.2 � Different Profiles of Thickness

For the next example, the effect of the inner and outer thick-
ness of the disk was disclosed. The findings can be observed 
in Fig. 5. Regarding Fig. 5, the outward displacement, elec-
tric potential, magnetic potential, maximum of electric dis-
placement, and maximum of magnetic induction are smaller 

for the case ho < hi comparison with the case ho > hi. Also, 
the positive circumferential stress at the interior radius has a 
smaller value, and negative hoop stress at the exterior radius 
has a higher absolute value for the case ho < hi comparison 
with the case ho > hi. It should be noted that FGMEEs usu-
ally have brittle behavior. So, high tensile hoop stress can 
increase the chance of crack growth and must be avoided. 
Also, the graphs show that changes in the inner and outer 
thickness have a slight effect on the radial stress. Generally, 
Fig. 5 shows that using a non-uniform thickness disk with an 
outer thickness smaller than the inner thickness can reduce 
the radial displacement, maximum tensile hoop stress, and 
electromagnetic potentials.

4.2.3 � Thickness Coefficient

The changes in the stresses, radial displacement, and electro-
magnetic potentials for different thickness coefficients were 
investigated in this example. Figure 6 shows a higher value 

Fig. 8   Effect of the angular 
velocity
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of the thickness coefficient leads to a reduction in radial 
displacement, electric potential, magnetic potential, electric 
displacement, and magnetic induction. Also, the graph of 

hoop stress shifts down for a higher thickness coefficient. 
As shown, the radial stress shows no significant change for 
different thickness coefficients. Moreover, the temperature 

Fig. 9   Effect of solar radiation coefficients on the temperature distributions
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increases at the same radius for a higher thickness index. It 
should be noted that higher thickness coefficients mean disks 
with thicker thickness.

4.2.4 � Temperature Difference

In the next example, the effect of temperature difference was 
explored. Figure 7 shows the influence of the temperature 

Fig. 10   Effect of internal heat generation coefficients on the temperature distributions
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difference between the inside and outside of the disk on 
stresses, displacement, electric and magnetic potentials, and 
electric and magnetic displacement. As shown, the radial 
stress, outward deformation, electric potential, magnetic 

potential, electric displacement, and magnetic induction 
increase for the higher temperature difference. Moreo-
ver, there are two points through the thickness in which 
the circumferential stress shows no change by a change in 

Fig. 11   Effect of convection heat transfer coefficients on the temperature distributions
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temperature difference. The trend of changes before and 
after these two points is in contrast with the trend of changes 
between them. Also, the maximum tensile circumferential 
stress increases for a higher temperature difference.

4.2.5 � Angular Velocity

Figure 8 indicates the influence of the angular speed on the 
stress behavior of the disk. As observed, higher angular 
speed results in higher radial stress and deformation. The 
rate of change is incremental. Also, the tensile hoop stress at 
the interior radius increases, and compressive circumferen-
tial stress at the exterior radius decreases for higher angular 
speed. Since these smart materials show brittle behavior, a 
high tensile circumferential stress can yield crack growth. 
So, the high tensile hoop stress must be avoided. In addi-
tion, in the second half of thickness, the temperature graph 
shows an increase in temperature for a higher angular speed. 
It should be noted that the convection heat transfer is a func-
tion of angular velocity according to Eq. (4). Therefore, 
this effect is observed due to the effect of convection heat 
transfer.

4.2.6 � Solar Radiation

For the next parameter, changes in the mechanical response 
due to solar radiation are illustrated in Fig. 9. Here, we have: 
Tb = 303(K), To = 288(K), k0 = 4.5(W/mK), h0 = 0, ω = 20 
π(Rad/s), and β = 3. The graph shows that the tensile radial 
stress, radial deformation, electric displacement, and mag-
netic induction decrease for higher values for coefficients Gs 
and αs. Also, it results in more reduction in the temperature 
distribution graph. However, the coefficient ε exhibits an 
opposite effect on stresses, displacement, temperature, elec-
tric displacement, and magnetic induction. Besides, there 
exist two points in which the circumferential stress is inde-
pendent of solar radiation. Also, the location of maximum 
hoop stress changes from inside radius to a point between 
these two fixed points for higher values for coefficients Gs 
and αs.

4.2.7 � Internal Heat Generation

The effects of the internal heat source were disclosed 
in the next example. Here, we have: Tb = 303(K), 
To = 288(K), k0 = 4.5(W/mK), h0 = 0, ω = 20π(Rad/s), and 
β = 3. The internal heat generation is temperature depend-
ent according to Eq. (5). So, the power of the heat source 
depends on two parameters q0 and e0 that are investigated 
in Fig. 10. Concerning Fig. 10, the tensile radial stress, 
radial deformation, electric displacement, and magnetic 
induction decrease for higher source powers. Moreover, 

the location of maximum tensile hoop stress changes from 
the inside radius to a radius through the thickness. Also, 
more reduction can be observed in the temperature distri-
bution for the higher values of source power. According 
to Fig. 10, the temperature dependency coefficient e0 has 
reverse effects in comparison with power source q0.

4.2.8 � Convection Heat Transfer

The influence of convection heat transfer was disclosed in 
this part. In this case, we have: Tb = 303(K), To = 288(K), 
k0 = 4.5(W/mK), ε = 0.1, αs = 0.8, and β = 3. According to 
Eq. (4), the convection heat transfer constant is temperature-
dependent, and it depends on three parameters h0, b, and 
a. The effects of these constants are indicated in Fig. 11. 
According to Fig. 11, the radial stress, outward deforma-
tion, electric displacement, and magnetic induction increase 
for the higher values of h0, a, and b. Also, it results in an 
increase in the maximum tensile hoop stress at the inner 
radius. Furthermore, less reduction can be observed in the 
temperature distribution for the higher values of h0, a, and b.

4.2.9 � Conduction Heat Transfer

The effect of heat conduction constant and heat conduction 
temperature dependency should be investigated in the next 
example. Here, Tb = 303(K), To = 288(K), h0 = 0, ε = 0.1, 
and αs = 0.8. According to Eq. (3), the thermal conductiv-
ity constant is temperature-dependent, and it depends on 
two constants k0 and β. Figure 12 shows the effects of these 
two constants. As observed, the tensile radial stress, radial 
displacement, electric displacement, and magnetic induc-
tion increase for a higher conductivity constant k0. Besides, 
the location of maximum hoop stress changes from a point 
through the thickness to the interior radius for a higher con-
ductivity constant. Also, less reduction can be observed in 
the temperature distribution graph for the higher values of 
the conductivity constant. Figure 12 indicates that the effects 
of temperature dependency constant β are opposite to the 
effects of conductivity constant k0.

5 � Conclusions

The thermoelastic response of a rotating functionally graded 
magneto-electro-elastic disk with non-constant thickness 
was investigated considering internal heat generation, con-
vection, and radiation heat transfer. The heat conduction 
and convection coefficients are functions of temperature 
and radius. The differential transformation method was used 
for solving the obtained nonlinear differential equation of 
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heat transfer. Then, the equilibrium equation of the disk was 
derived and solved analytically. The radial stress, circum-
ferential stress, radial deformation, electric and magnetic 
potential, electric displacement, and magnetic induction can 

be obtained. The following findings can be expressed based 
on the results:

•	 The displacement, radial stress, absolute hoop stress, and 
temperature reduce by an increase in the inhomogeneity 

Fig. 12   Effect of conduction heat transfer coefficients on the temperature distributions
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index, whereas the electric potential and magnetic poten-
tial increase for the higher grading indexes.

•	 Using a non-uniform thickness disk with an outer thick-
ness smaller than the inner thickness can reduce the 
radial displacement, maximum tensile hoop stress, and 
electromagnetic potentials.

•	 The radial stress, displacement, electric and magnetic 
potentials, electric displacement, and magnetic induc-
tion increase for the higher temperature difference.

•	 The tensile radial stress, radial deformation, electric dis-
placement, and magnetic induction decrease for higher 
values of coefficients of solar flux intensity and absorp-
tion coefficient of solar radiation. However, the emission 
coefficient exhibits an opposite effect.

•	 The tensile radial stress, radial deformation, electric dis-
placement, and magnetic induction decrease for higher 
source powers. Also, the location of maximum tensile 
hoop stress changes from the inside radius to a radius 
through the thickness. The temperature dependency coef-
ficient has reverse effects in comparison with the power 
source.

•	 The radial stress and displacement, electric displacement, 
and magnetic induction increase for the higher values of 
the convection coefficients.

•	 The tensile radial stress, radial displacement, electric dis-
placement, and magnetic induction increase for a higher 
conductivity constant. Also, the location of maximum 
hoop stress changes from a point through the thickness 
to the interior radius for a higher conductivity constant. 
The effects of the temperature-dependency constant are 
opposite to the effects of the conductivity constant.

Appendix

The basic functions used in the DTM are defined as (Zhou 
1986; Chen and Ho 1996):

See Table 3.
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