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Abstract
Vertical rolling is usually arranged before horizontal rolling in continuous hot rolling to control the width precision and improve 
the process quality. Due to the complicated contact and deformation rule, it is significant to establish a method to accurately 
calculate rolling force and edge deformation. A continuous functions model is proposed to describe the edge deformation, 
and the velocity and strain rate fields are derived according to the properties of stream function. The adhesion of the contact 
interface is successfully considered in the analysis of friction. By using Mises yield criterion and Pavlov projection principle, 
the total power functional is obtained. The vertical rolling force and plastic deformation are calculated by the theory of energy 
minimization, and the result is well verified by specific examples. The effects of equipment parameters and slab size on rolling 
force, rolling power and edge deformation are analyzed. The proposed mathematical model successfully applies functional 
analysis to the engineering field, which is helpful for controlling slab shape and optimizing vertical rolling process.

Keywords Vertical rolling process · Rolling force · Edge deformation · Energy method · Functional analysis

1 Introduction

In roughing rolling stage, vertical rolling is usually arranged 
before plain rolling to control the width precision and 
restrain the non-rectangularization of slab. During rolling, 
the deformation (dog-bone deformation) only occurs at the 
slab edge, and the deformation law is very complex. Theo-
retical research on metal forming process has been proven 
to be of great significance in improving production yield 
and quality (Bari and Kumar 2023a). Therefore, in-depth 
research on vertical rolling process is necessary.

Scholars have conducted several experimental research 
on vertical rolling process. Okado et al. (1981) simulated 
vertical rolling by pure lead and firstly proposed the empiri-
cal formulas of four deformation parameters (peak height, 
peak position, edge thickness and deformation length) to 
describe the dog-bone shape. Shibahara et al. (1981) built 

a vertical rolling model through the regression analysis of 
measured value. Based on Shibahara’s results, Tazoe et al. 
(1984) obtained an empirical formula of peak height and 
pointed out that the dog-bone length and the peak position 
are directly proportion to width reduction. Later, the formula 
was modified by Ginzburg et al. (1991), and the result is 
consistent with the plastic mud model put forward by Huis-
man and Huètink (1985). Xiong et al. (1997) developed a 
vertical rolling experiment with the simulation ratio of 10. 
The fitted dog-bone formulas consider the width reduction, 
roller diameter, initial slab thickness and width. However, 
the results are greatly affected by experimental conditions.

With the widespread popularity of computer technology, 
the simulation of vertical rolling process is carried out by 
finite element software. Xiong et al. (2003) obtained the fric-
tion characteristics of 3D contact based on micro-compressi-
ble plastic theory and the simplified Euler formula. By using 
3D elastic–viscoplastic FEM, Forouzan et al. (2009) stud-
ied the sizing press and vertical rolling under heavy width 
reduction. The influences of slab size and width reduction on 
edge deformation and the head and end quality of slab were 
studied. Ruan et al. (2014) used a 3D thermo-mechanical 
coupled rigid–plastic FEM to analyze the non-rectangular 
shape and the evolution rules of wide and heavy plate in hot 
rolling process.
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Theoretical researches have been carried out later. Based 
on plane deformation assumption, Lundberg (1986; 2008) 
and Lundberg and Gustafsson (1993) established a triangular 
velocity field of vertical rolling process considering friction 
and smoothness condition, respectively. Then, the hodograph 
of plastic flow and the torque formulas were obtained. Zhang 
et al. (2018; 2020) drew the slip line field and hodograph of 
edge deformation zone under full adhesive contact, and the 
analytical solutions of mechanics parameters and dog-bone 
shape were deduced. Yun et al. (2012) assumed that the defor-
mation was distributed in the entire width and then established 
a theoretical model with several power functions. Meanwhile, 
some deformation parameters and rolling force were fitted 
according to FEM result. But the slope growth of the high-
power function is too fast, so the predicted deformation zone 
of the dog-bone is often too wide. Li et al. (2016) established 
an upper bound power functional for edge rolling by using 
complex mathematical functions. The edge rolling force and 
torque are calculated by minimizing the power functional. Cao 
et al. (2016) used sine function to describe edge deformation 
and established the energy model by stream function method. 
Simplifying the peak position and the dog-bone length as 1:3 
as well as full sliding assumption of the contact interface, Liu 
et al. (2015; 2016) deduced the total power functional. How-
ever, the dog-bone shapes are more concentrate at the edge, 
which result in the higher dog-bone peak and the predicted 
rolling force. Later, Liu et al. (2020; 2022) built double stream 
function velocity fields to build the numerical and analytical 
model.

Through the analysis of the above studies, the research on 
vertical rolling force and edge deformation is still insufficient. 
The predicted force and shape are quite different and cannot 
be in good agreement with measurements (Yun et al. 2012; 
Liu et al. 2016). The difficulty of energy method in vertical 
rolling process is to choose suitable deformation curves and 
kinematically admissible velocity field. In this paper, cubic 
function is combined with gamma distribution function to form 
the edge deformation model. The velocity and strain rate fields 
are built based on stream function method. The plastic defor-
mation power and inlet shear power are calculated based on 
Mises yield criterion and the velocity discontinuity. After fully 
considering the adhesion of the contact interface, the friction 
power is calculated by using inner product of collinear prin-
ciple. The total power functional is derived based on the new 
method. Then, the calculated edge shape and rolling force are 
compared with other results, which verified the precision of the 
proposed method. Finally, the effects of slab and equipment 
parameters on mechanical properties and edge deformation 
are studied.

2  Mechanics Model of Vertical Rolling 
Process

2.1  Vertical–Horizontal Rolling Process

The basic process of continuous hot rolling is shown in 
Fig. 1. The vertical rollers are driven by motors with a con-
stant speed �V.The steel slab moves forward and passes 
through the clearance between a pair of vertical rollers at the 
initial velocity v0 . Under the extrusion of the vertical rollers, 
the slab width reduces from W0 to W1 . Then the slab is rolled 
by a pair of horizontal rollers. The slab length increases 
with the decrease in thickness under the compression plastic 
deformation.

2.2  Edge Deformation Model

As shown in Fig. 2, the steel slab occurs non-uniform plas-
tic deformation when rolled by vertical rollers. For the 
high ratio of width to thickness, the deformation is mainly 
restricted at the edge with obvious bulge in the thickness 
direction. Finally, the dog-bone deformation is formed, 
which is exhibited in Fig. 2.

Before analyzing, the assumptions are given as follows:
(1) The microstructure of steel slab and vertical rollers is 

uniform and isotropic. (2) The vertical rollers are rigid bod-
ies. (3) The elastic deformation of the steel slab is ignored. 
The tension and width lose are ignored. (4) The force and 
plastic deformation rules of the steel slab are symmetrical. 
So, a quarter of the deformation zone is analyzed.

As shown in Fig. 2a, the center of entrance cross section 
is selected as the coordinate origin to establish a three-
dimensional coordinate system. H0 represents the initial 
thickness of steel slab. W0 and W1 represent the slab width 
before and after rolling, respectively. The unilateral reduc-
tion Δw =

ΔW

2
=

W0−W1

2
 . R represents the vertical roller 

radius. The projected length of the roller–slab contact arc in 

Fig. 1  Continuous hot rolling process
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rolling direction is l = R sin � . The bite angle is given by 
� = cos−1

(
R−Δw

R

)
 . Half of the width and half of the width 

reduction at any position are wx =
W1

2
+ R −

√
R2 − (l − x)2 

and Δwx =
W0

2
− wx . The contact angle � has the following 

relationship with x direction:

d� = −
dx

R cos�

The first- and second-order derivative equations of wx are:

w��
x
=

R2

[
R2−(l−x)2

] 3
2

Half of the thickness is denoted by h(x, z) . On arbitrary 
cross section along rolling direction, the height and position 
of dog-bone peak are expressed by hbx and lpx , respectively. 
The height of dog-bone edge is expressed by hrx . The length 
of dog-bone zone (plastic deformation zone) is expressed 
by lbx , respectively.

In order to describe and analyze the edge deformation, 
it is essential to use appropriate functions to describe the 
edge shape of slab. In this paper, the dog-bone peak is used 
as the boundary, and the bite zone is divided into zone α 
and zone β.

Gamma distribution function in statistics is the product of 
power function and exponential function. It has both extreme 
value and the property of exponential function and can well 
describe the slow change of thickness between dog-bone 
peak and rigid zone. Thus, in zone α ( 0 < z < wx − lpx ), half 
of the slab thickness is expressed as:

The cubic curve function has a simple form and is 
easy to integrate. It has been applied to describe the edge 

� = sin
−1

(
l − x

R

)

w�
x
= −

l − x√
R2 − (l − x)2

= − tan�

(1)h� = h0 +
ah0Δwx

lpx

(
wx − z

lpx

)2

e
−2

(
wx−z

lpx

)

deformation of vertical rolling process and has been 
proven to have high accuracy (Liu et al. 2022). In zone β 
( wx − lpx < z < wx ), half of the slab thickness is expressed 
by cubic function:

where a and b are the undetermined parameters, cm is the 
coefficient related to friction factor m

In previous researches, the friction factor of roller–slab 
contact is generally between 0.2 and 0.8, and the calcu-
lated 

(
hr − h0

)/(
hb − h0

)
 is 0.3–0.75 (Okado et al. 1981; 

Xiong et  al. 1997; Shibahara et  al. 1981). Accord-
ing to the relationship between the friction factor and (
hr − h0

)/(
hb − h0

)
 , a simplified rule is assumed as:

When the friction factor m = 1 , the slab and the vertical 
roller are in full adhesion without any relative sliding, that 
is cm = 0 . Substituting into Eq. (2) yields:

According to plane deformation assumption and con-
stant volume, the FEM established by Yun et al. (2012) 
shows that the maximum variation is less than 3%. Thus, 
in every cross section, there is:

Substituting Eqs. (1) and (2) and the coefficient b into 
Eq. (4), there is:

(2)

h� = h0 +
ah0Δwx

e2lpx
−

bcmh0Δwx

lpx

[
2

(
wx − z

lpx

)3

− 3

(
wx − z

lpx

)2

+ 1

]

(3)cm =

⎧⎪⎨⎪⎩

−2
�
m −

1

2

�2

+
1

2
m ∈

�
0,

1

2

�

2

�
m −

1

2

�2

+
1

2
m ∈

�
1

2
, 1

�

b =
a

e2

(4)Δwxh0 = ∫
wx−lpx

0

(
h� − h0

)
dz + ∫

wx

wx−lpx

(
h� − h0

)
dz

Fig. 2  Plastic deformation in 
vertical rolling process

(a) 3D drawing of deformation zone      (b) Formation of dog–bone cross section 
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Then, the expressions of dog-bone model can be written 
as follows:

Then, the dog-bone deformation model only contains one 
unknown parameter lpx . For edge rolling process, the peak 
position of dog-bone lpx in bite zone can be simplified as a 
constant (Yun et al. 2012).

2.3  Velocity Field and Strain Rate Field of Plastic 
Flow

The stream function method is widely used to analyze plas-
tic deformation. The premise of this method is the princi-
ple of volume invariance. Firstly, a differential equilibrium 
equation is established based on the relationship between 
volume flow components, and then the plastic flow field is 
determined through integration and the boundary conditions. 
The plastic flow in bite zone is shown in Fig. 3. ds and dS 
represent the front and back lateral width of the infinitesimal 
element in length direction, respectively, and w(x, z) repre-
sents the function of lateral displacement.

According to the properties of stream function:

a =
4e2

9 − 2cm

(5)h� = h0 +
4e2h0Δwx(
9 − 2cm

)
lpx

(
wx − z

lpx

)2

e
−2

(
wx−z

lpx

)

(6)

h� =h0 +
4h0Δwx

(

9 − 2cm
)

lpx

−
4cmh0Δwx
(

9 − 2cm
)

lpx

[

2
(

wx − z
lpx

)3

− 3
(

wx − z
lpx

)2

+ 1

]

Based on the incompressibility of plastic flow, the speed in 
rolling direction is:

Substituting Eq. (8) into Eq. (7), and considering when 
𝜕w

𝜕z
≪ 1 , �w∕�z

1+�w∕�z
≈

�w

�z
 , then:

The velocity in rolling direction and width direction has the 
following relationship:

Substituting Eq. (9) into Eq. (10) yields:

According to Cauchy equation:

Substituting Eqs. (9) and (11) into Eq. (12) and noticing 
when y = 0 , vy = 0 , the velocity in thickness direction can be 
obtained by solving the differential equation:

For vertical rolling, the rolling velocity can be approxi-
mately regarded as constant:

The lateral displacement can be obtained by substituting 
Eq. (14) into Eq. (9):

Substituting Eqs. (5) and (6) into Eq. (15) and considering 
the boundary condition w�

(

wx − lpx
)

= w�
(

wx − lpx
) , there are:

(7)
�w

�z
=

ds − dS

dS

(8)vx =
v0h0

h

dS

ds

(9)vx =
v0h0

h

(
1 −

�w

�z

)

(10)
vz

vx
=

�w

�x

(11)vz =
v0h0

h

(
1 −

�w

�z

)
�w

�x

(12)�̇�y =
𝜕vy

𝜕y
= −

𝜕vx

𝜕x
−

𝜕vz

𝜕z

(13)
vy =v0h0y

{(

�w
�z

− 1
)[

�
�x

(1
h

)

+ �
�z

(1
h

)�w
�x

]

+1
h

(

�w
�z

�2w
�x�z

+ �w
�x

�2w
�z2

)}

(14)vx = v0

(15)w =

z

∫
0

(
1 −

h(x, z)

h0

)
dz

Fig. 3  Plastic flow diagram
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The above formulas satisfy the boundary condition:

Through further calculation, the velocity and strain rate 
fields in zone α and zone β are obtained:

(16)

w� = −
e2Δwx(
9 − 2cm

)
[
2

(
wx − z

lpx

)2

+ 2

(
wx − z

lpx

)
+ 1

]
e
−2

(
wx−z

lpx

)

(17)
w� =

4Δwx
(

9 − 2cm
)

(

wx − z
lpx

− 9
4

)

+
2cmΔwx
(

9 − 2cm
)

[

1 −
(

wx − z
lpx

)4

+ 2
(

wx − z
lpx

)3

− 2
(

wx − z
lpx

)

]

w�

(
x,wx

)
= −Δwx

(18)

⎧
⎪⎨⎪⎩

v�x = v0

v�y =
v0y

h0

�h�

�x
=

4e2v0 tan�y

(9−2cm)lpx

�
u2 + 2

Δwx

lpx
u2 − 2

Δwx

lpx
u
�
e−2u

v�z = v0
�w�

�x
= −

e2v0 tan�

9−2cm

�
2u2 + 4

Δwx

lpx
u2 + 2u + 1

�
e−2u

(19)

⎧⎪⎨⎪⎩

�̇�𝛼x = 0

�̇�𝛼y =
v0

h0

𝜕h𝛼

𝜕x
=

4e2v0 tan𝜙

(9−2cm)lpx

�
u2 + 2

Δwx

lpx
u2 − 2

Δwx

lpx
u
�
e−2u

�̇�𝛼z = −
v0

h0

𝜕h𝛼

𝜕x
= −

4e2v0 tan𝜙

(9−2cm)lpx

�
u2 + 2

Δwx

lpx
u2 − 2

Δwx

lpx
u
�
e−2u

(20)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�̇�xy = �̇�yx =
1
2

(

�vx
�y

+
�vy
�x

)

=
v0y
2h0

�2h�
�x2

=
4e2v0 tan2 �y
(

9 − 2cm
)

l2px
e−2u

[

2u2 − 2u +
Δwx

lpx

(

2u2 − 4u + 1
)

]

−
v0w′′

xxy
2h0 tan�

�h�
�x

�̇�xz = ��zx =
1
2

(

�vx
�z

+
�vz
�x

)

= 1
2
v0

�2w�

�x2

=
e2v0

18 − 4cm
e−2u

[

w′′
x
(

2u2 + 2u + 1
)

+
Δwxw′′

xx − 2 tan2 �
lpx

4u2

−
8Δwx tan2 �

l2px

(

u2 − u
)

]

�̇�yz = �̇�zy =
1
2

( �vy
�z

+
�vz
�y

)

=
v0y
2h0

�2h�
�x�z

=
4e2v0 tan�Δwxy
(

9 − 2cm
)

l3px
e−2u

(

2u2 − 4u + 1
)

+
4e2v0 tan�y
(

9 − 2cm
)

l2px
e−2u

(

u2 − u
)

(21)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

v�x = v0

v�y =
v0y

h0

�h�

�x
=

4cmv0 tan�y

(9−2cm)lpx

�
1

cm
− 2u3 − 3u2 + 1 +

6Δwx

lpx

�
u2 − u

��

v�z = v0
�w�

�x
=

2cmv0 tan�

9−2cm�
1

cm

�
2u − 2

Δwx

lpx
−

9

2

�
+1 − u4 + 2u3 − 2u +

Δwx

lpx

�
4u3 − 6u2 + 2

��

(22)

⎧⎪⎨⎪⎩

�̇�𝛽x = 0

�̇�𝛽y =
v0

h0

𝜕h𝛽

𝜕x
=

4cmv0 tan𝜙

(9−2cm)lpx

�
1

cm
− 2u3 + 3u2 − 1 +

6Δwx

lpx

�
u2 − u

��

�̇�𝛽z = −
v0

h0

𝜕h𝛽

𝜕x
= −

4cmv0 tan𝜙

(9−2cm)lpx

�
1

cm
− 2u3 + 3u2 − 1 +

6Δwx

lpx

�
u2 − u

��

(23)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇�𝛽xy = �̇�𝛽yx =
1

2

�
𝜕vx

𝜕y
+
𝜕vy

𝜕x

�
=
v0y

2h0

𝜕2h𝛽

𝜕x2

=
2cmv0y

9 − 2cm

⎡⎢⎢⎢⎢⎢⎣

w��
x

lpx

�
2u3 − 3u2 + 1 −

1

cm

�
−

tan2 𝜙Δwx

l3
px

(12u − 6)

+

�
2 tan2 𝜙 − Δwxw

��
x

l2
px

��
6u2 − 6u

�

⎤⎥⎥⎥⎥⎥⎦
�̇�𝛽xz = �̇�𝛽zx =

1

2

�
𝜕vx

𝜕z
+
𝜕vz

𝜕x

�
=
1

2
v0
𝜕2w𝛽

𝜕x2

=
cmv0

9 − 2cm

⎡⎢⎢⎢⎢⎣

2w��
x

cm

�
−u +

Δwx

lpx
+

9

8

�
− 4n2

tan2 𝜙

lpx
− w��

x

�
1 − u4 + 2u3 − 2u

�

+
2 tan2 𝜙 − Δwxw

��
xx

lpx

�
4u3 − 6u2 + 2

�
−

12Δwx tan
2 𝜙

l2
px

�
u2 − u

�

⎤⎥⎥⎥⎥⎦
�̇�𝛽yz = �̇�𝛽zy =

1

2

�
𝜕vy

𝜕z
+
𝜕vz

𝜕y

�
=
v0y

2h0

𝜕2h𝛽

𝜕x𝜕z

=
12cmv0 tan𝜙y�
9 − 2cm

�
l2
px

�
u2 − u −

Δwx

lpx
(2u − 1)

�
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In the formulas, u =
wx−z

lpx
.

Taking the boundary conditions in Eqs. (18) and (21), 
there are:

At the entrance cross section: v�y(0, 0, z) = v�y(0, 0, z) = 0.
At the exit cross section: v�y(l, y, z) = v�y(l, y, z) = 0 , 

v�z(l, y, z) = v�z(l, y, z) = 0.
At  the boundary of  zone α  and zone  β : 

v�x
(
x, y,wx − lpx

)
= v�x

(
x, y,wx − lpx

)
= v0

v�z
(
x, y,wx − lpx

)
= v�z

(
x, y,wx − lpx

)
According to Eqs. (19) and (22), the incompressible prop-

erty is satisfied:

2.4  Total Power Functional

The total power functional of vertical rolling process is 
obtained by using the first variation principle of rigid–plas-
tic material:

where Ni , Ns and Nf represent plastic deformation power, 
shear power and friction power, respectively.

Based on Mises yield criterion, the plastic deformation 
power is:

v�y
(
x, y,wx − lpx

)
= v�y

(
x, y,wx − lpx

)

�̇�𝛼x + �̇�𝛼y + �̇�𝛼z = 0, �̇�𝛽x + �̇�𝛽y + �̇�𝛽z = 0

(24)J∗ = Ni + Ns + Nf

(25)

Ni=∭
V

D
�
Eij

�
dV =

�
2

3
𝜎s ∭

V

�
�̇�ij�̇�ijdV

=
4
√
6

3
𝜎s ∫

l

0
∫

wx−lpx

0
∫

h𝛼

0

�
�̇�2
ax
+ �̇�2

𝛼y
+ �̇�2

𝛼z
+ 2�̇�2

𝛼xy
+2�̇�2

𝛼xz
+2�̇�2

𝛼yz
dydzdx

+
4
√
6

3
𝜎s ∫

l

0
∫

wx

wx−lpx
∫

h𝛽

0

�
�̇�2
𝛽x
+ �̇�2

𝛽y
+ �̇�2

𝛽z
+ 2�̇�2

𝛽xy
+2�̇�2

𝛽xz
+2�̇�2

𝛽yz
dydzdx

At the exit section, there is no shear power because of the 
continuous velocity field. At entrance section, the disconti-
nuity of velocity exists and the shear power can be expressed 
as:

(26)

Ns=∫S0

�s
||Δvs||dS=4�s

w0

∫
0

h0

∫
0

√(
vy
||x=0

)2
+
(
vz
||x=0

)2
dydz

where �s=�s∕
√
3 is the shear yield stress.

In vertical rolling process, the plastic deformation and 
the relative motion between roller and slab lead to extremely 
complicated tangential force and displacement on the con-
tact interface. In the 3D rolling model proposed by Lian 
et al. (1984), the contact surface is divided into sliding zone 
and deformation stagnation zone (adhesion zone).

There is an initial displacement of sliding friction on the 
contact interface. Only when the calculated velocity discon-
tinuity Δvf  becomes larger than the initial velocity discon-
tinuity Δvc , the sliding and the friction power exist. The 
friction shear stress in the adhesive zone is assumed to be 
proportional to the displacement as:

According to the empirical formula obtained from the 
experiments of hot plain rolling (Shchepinsky 1987), the 
length of adhesion zone is given by:

For plain rolling, the adhesion zone is located on both 
sides of the neutral point. Differently in vertical rolling, the 
linear velocity of the roller surface is consistent with the 
rolling speed of the slab. From the above principle, the point 
with the same velocity of vertical roller and slab is located 
at the exit section, that is, the adhesion zone only exists on 

(27)�f=m�s
Δvf

Δvc

(28)lc = 0.2mRl

single side of the neutral point. So, the length of adhesion 
zone can be rewritten as:

In the sliding zone, the friction factor is constant and the 
friction shear stress is:

(29)lc = 0.1mRl

(30)�f = m�s
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On the sliding interface, the friction shear stress and the 
velocity discontinuity are collinear vectors. The friction 
power is:

where Δvt =
v0

cos�
− vR is the tangential velocity discontinu-

ity on the interface.
Substituting Eqs. (25), (26) and (31) into Eq. (24), the 

expression of total power functional changes into:

The calculation procedure of energy model is shown in 
Fig. 4. When known the geometry size and movement speed 
of steel slab and rollers, the physical parameters of material, 
the width reduction and the friction factor, the total power 
functional are defined by the only undetermined constant 

(31)

Nf = ∫Sf

|||�f
|||
|||Δvf

||| cos
(
�f ,Δvf

)
ds

= 4m�s ∫
l−lc

0
∫

hrx

0

√(
vy
|||z=wx

)2

+ Δv2t sec�dydx

(32)

J∗ =
4
√
6

3
𝜎s ∫

l

0
∫

wx−lpx

0
∫

h𝛼

0

�
�̇�2
ax
+ �̇�2

𝛼y
+ �̇�2

𝛼z
+ 2�̇�2

𝛼xy
+2�̇�2

𝛼xz
+2�̇�2

𝛼yz
dydzdx

+
4
√
6

3
𝜎s ∫

l

0
∫

wx

wx−lpx
∫

h𝛽

0

�
�̇�2
𝛽x
+ �̇�2

𝛽y
+ �̇�2

𝛽z
+ 2�̇�2

𝛽xy
+2�̇�2

𝛽xz
+2�̇�2

𝛽yz
dydzdx

+4𝜏s ∫
w0

0
∫

h0

0

��
vy
��x=0

�2
+
�
vz
��x=0

�2
dydz + 4𝜏f ∫

l−lc

0
∫

hrx

0

��
vy
���z=wx

�2

+ Δv2t sec𝜙dydx

parameter lpx (Zhang 2016). Continuously changing the 
unknown parameter lpx , numerical calculation is carried out 
by using MATLAB to solve the corresponding total power 
functional until lpx = w1 . The minimum of total power J∗

min
 

is selected as the actual solution based on minimum energy 
principle. The rolling torque M and the rolling force per unit 
slab thickness F0 are determined by the following equation 
(Zhang et al. 2014):

where � is the arm factor. In this paper, it is selected as 0.44 
(Qi and Wang 2012).

3  Numerical Research

3.1  Validation of the Model

The dog-bone shape at outlet predicted by the presented 
model is compared with several results. As shown in Fig. 5a, 
the presented model predicted a lower and wider dog-bone 
than sine (Liu et al. 2015) and double parabolic (Liu et al. 
2016) function model. The presented shape is more uni-
form than that of global weighted model (Yang et al. 2022), 
which seems that the global weighted velocity field is not 
very applicable when the width reduction is small. The pre-
dicted length of dog-bone is closer to the value predicted by 
Yun et al. (2012). Compared with other theoretical and fitted 
(Okado et al. 1981; Xiong et al. 1997) results in Fig. 5c, the 
dog-bone peak position ( lpx ) obtained by presented model 
is closer to the experimental result (Shibahara et al. 1981) 
with a less error of hr∕hb value (within 0.5%). In addition, 
the presented curve is more accurate in describing the end 

part of dog-bone deformation, and the calculated length of 
plastic deformation zone ( lbx ) is rather credible. However, 
the predicted height of dog-bone peak is higher than the 
other result. This is due to the assumption of plane deforma-
tion, which neglects the metal flow along rolling direction. 

(33)J∗
min

= 2M
vR

R
= 4h0l�F0�V

Fig. 4  Flowchart of the calculation
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The comparison of rolling force shows that the calculated 
values are very close to the results obtained by Yun et al. 
(2012) and Lundberg (2008), and the error is less than 7%. In 
Fig. 5b, when the width reduction rate is small, the predicted 
rolling force of global weighted model is sharply smaller 
than other results. It seems that the presented model is more 
reasonable.

It is effective to validate the theoretical model through 
experiments (Bari and Kumar 2023a, b). The vertical roll-
ing experiments are performed on a small rolling mill in 
laboratory. The radius of vertical rollers is 50 mm. Pressure 
sensors are installed at the vertical rollers on both sides, 
respectively, to measure the total rolling force. Heavy strain 
hardened copper specimens and precipitation hardened alu-
minum specimens are selected as experimental material. By 
continuous casting, the materials are made into 25-mm thick 
plates, and then cold rolled to 8 and 6 mm to avoid strain 

Fig. 5  Comparison of edge shape and rolling force predicted by several models

Table 1  Parameters of materials and processes

Materials Shear yield 
stress �s (MPa)

Half of thick-
ness h0 (mm)

Width reduction 
rate Δw∕w0(%)

Cu 217 4.275 1.83
4.3 1.83
4.2 2.17
4.2 2.67

Cu 181 3.095 3.58
3.125 3.67
3.13 3.83
3.1 4.25

Al 170 2.975 2.5
3.025 4.08
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hardening during further deformation. And thus, it would 
be approximately ideally plastic during edge rolling experi-
ment. The length and width of slabs are 300 mm and 60 mm, 
respectively. The shear yield strength of the materials was 
determined by a simple tensile test (EN 10002) (Lundberg 
1993;2008).

When the width reduction rate is selected between 1.8 
and 4.25%, the rolling force predicted by the presented 
model is compared with 10 groups of experiments (Li 
et al. 2016). Table 1 shows the mechanics and process 
parameters of the experimental materials. Figure 6 shows 
that the total error of the presented values compared with 
measurements is less than 14%. When the width reduc-
tion rate is small, the presented model performs better. 
As the width reduction rate increasing, the numerical 
results become slightly higher than the experimental val-
ues, which can be explained that the plane deformation 
assumption ( vx = v0 ) predicted a bigger edge deformation.

3.2  Dog‑bone deformation

Based on the above calculation method, the edge defor-
mation was calculated with the value of Δw

w0

= 0.01 − 0.05 , 
h0

w0

= 0.08 − 0.16 , R

w0

= 0.65 − 1.05 , m = 0.3 − 0.7 . The 
relationship between the cross section of dog-bones at 
outlet and the rolling parameters is shown in Fig. 7. The 
predicted peak position is compared with the results pre-
dicted by Xiong et al. (1997). All the parameters were 
non-dimensionalized. In the study of width reduction rate, 
thickness, width and roller radius, the friction factors are 
given as 0.3 (Byon et al. 2018) uniformly.

Figure 7a shows that with the width reduction rate 
increasing, the deformation zone becomes larger and 
extends obviously. Accordingly, hb and hr increase as 
well as the dog-bone peak moves inward. The influence 

of initial thickness is similar to width reduction rate, as 
shown in Fig. 7c and d. The increase of initial thickness 
enlarges the deformation extent and area, which let lb and 
lp linear rise approximately. It is worth to note that in 
Fig. 7e, with the decrease of h0∕w0 , hr∕h0 and hb∕h0 rise, 
while the peak moves outward, which indicates that the 
deformation will be more concentrated at the edge. In 
other words, it will aggravate the non-uniform deforma-
tion. The deformation area extends inward slightly and 
the peak has a small decrease with the increase of verti-
cal roller radius, as Fig. 7g and h shown. The expansion 
of the interface will enhance the resistance along rolling 
direction, and the movement tendency toward the center 
of width becomes stronger. It can be seen in Fig. 7i and j 
that the effect of friction factor on dog-bone deformation 
is limited and mainly concentrated in zone β.

3.3  Rolling Power and Rolling Force

The comparison of presented function model and sine DSF 
Model (Liu et al. 2018) in the proportion of three kinds of 
power in total power is exhibited in Fig. 8. It can be seen 
that plastic deformation power is dominant (more than 60%). 
The second one is shear power, and friction power is the 
minimum. Further analysis found that the presented model 
predicted a less proportion of friction power, which can be 
attributed to the consideration of adhesion zone. The com-
parison model assumes that the entire contact interface is in 
sliding condition and generates friction power while in the 
presented model, the adhesion within the contact zone is 
considered. In the adhesion zone, there is no sliding; thus, 
no friction power exists, which results in a smaller predicted 
friction power (Lian et al. 1984; Chen et al. 2018).

Figure 9 shows the ratio of several power in total power 
varies with rolling parameters. In Fig. 9a, with the increase 
of width reduction rate, plastic deformation zone becomes 
larger, while the increase of the entrance shear plane and 
the contact interface is smaller. So, the proportion of plas-
tic deformation power increases obviously. The increase of 
slab thickness sharply enlarges the contact interface and 
the entrance shear plane, which increases the proportion of 
friction power and shear power, as shown in Fig. 9b. From 
Fig. 9c, the increase of radius makes the deformation expands 
slightly to the width center, resulting in a minor increase of 
deformation power. As shown in Fig. 9d, the growth of fric-
tion factor increases the friction power, while the proportion 
of deformation power and shear power changes slightly.

The change of rolling force with rolling parameters is 
shown in Fig. 10. The increase of width reduction rate and 
slab thickness cause the expansion of deformation region 
and the obvious rise of rolling force, as Fig. 10a and b 
shows, respectively. As shown in Fig. 10c, the increase of 

Fig. 6  Comparison of rolling force obtained by presented model and 
measurement
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Fig. 7  Effects of a, b Δw∕w
0
 

c, d h
0
 e, f h

0
∕w

0
 g, h R i, j m 

on dog-bone shape and peak 
position
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vertical roller radius expands the deformation zone and the 
contact interface, which result in a minor increase of rolling 
force. In Fig. 10d, the increase of friction factor leads to a 
growth of rolling force. However, the change range of rolling 
force is tiny, which can be attributed to the limited propor-
tion of friction power in total power.

4  Conclusions

1. This is a crossover study on both mathematic and 
mechanics. Based on the incompressibility and rigid–
plastic of the steel slab, a combination of theory and 
engineering is carried out to analyze the vertical rolling 

Fig. 8  The proportion of powers calculated by a presented model and b sine DSF model

Fig. 9  Effects of a Δw∕w
0
 b h

0
 c R d m on power ratio in total power
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process. A new model called gamma distribution–cubic 
function dog-bone model is put forward and the veloc-
ity and strain rate fields are derived according to stream 
function method. According to the first variation prin-
ciple of rigid–plastic material and fully considering the 
adhesion and sliding of the friction interface, the total 
power functional is given. The proposed model can be 
applied for accurate prediction of the dog-bone deforma-
tion at the edge and rolling force.

2. The developed method is compared with several models 
and the reliability is well verified by experiment results. 
On this basis, the influences of several process parameters 
on rolling power, rolling force and dog-bone shape are dis-
cussed. The increase of slab thickness and width reduction 
rate leads to a significant expansion of edge deformation. 
The height of dog-bone decreases and moves inward, which 
can lighten the non-uniform edge deformation by increas-
ing the ratio of thickness to width or changing the rollers 
with larger radius. The effect of friction factor on dog-bone 
shape is slight. Plastic deformation power accounts for 

the largest proportion in total power, and friction power 
accounts for the least. The width reduction rate and initial 
slab thickness have considerable impacts on power propor-
tion and rolling force. By comparison, the effects of vertical 
roller radius and friction factor are rather smaller.
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