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Abstract
A new hybrid method combining differential transformation and Galerkin discretization is proposed to investigate the dynam-
ics of a fluid-conveying straight pipe. Deduction of the governing equation of the pipe under distributed external excitation 
according to the D’Alembert principle is first reviewed. Then it is discretized by the Galerkin method, whose shape functions 
are just the normalized mode functions of the Euler–Bernoulli beam deduced by differential transformation. As a result, 
the expressions of the eigenfunction for flow-induced vibration and steady-state displacement response in the time domain 
for forced vibration are obtained. The validity of the proposed method in numerical analysis of the dynamics of the straight 
pipe under given conditions are verified and compared with existing methods in the published literature. Theoretical imple-
mentation procedures for this hybrid method on dynamic problems of curved pipes are further discussed. The investigation 
can be extended to the study of other relevant problems concerning pipe dynamics, especially when the solution cannot be 
obtained using a single algorithm.

Keywords Fluid-conveying pipe · Dynamics · Hybrid method · Galerkin discretization · Differential transformation method

1 Introduction

As the simplest system characterized by fluid–structure cou-
pling in modern industrial society, fluid-conveying pipes can 
be seen in various contexts, such as oil and gas transport 
(Cabrera-Miranda and Paik 2019), liquid fuel transmission 
(ElNajjar and Daneshmand 2020), solution mining (Kheiri 
2020), ship and marine engineering (Zhu et al. 2019), and 
nuclear systems (Wu et al. 2020). Because of their wide 
application globally, considerable efforts were devoted to 
analyzing the related fluid–structure coupling dynamics in 
the previous century, and a series of valuable achievements 

have been published in authoritative journals. For example, 
Ibrahim studied the mechanics of fluid-conveying pipes used 
in nuclear power plants both theoretically (Ibrahim 2010) 
and practically (Ibrahim 2011), where he discussed vari-
ous problems related to fluid-conveying pipes such as model 
type, dynamic analysis methods, and stability regimes. 
Dehrouyeh-Semnani et al. focused on the nonlinear dynam-
ics of micropipes (Dehrouyeh-Semnani et al. 2017a, b) and 
functionally graded pipes (Dehrouyeh-Semnani et al. 2019), 
where they separately considered the size effect and tem-
perature dependence of material properties for both the pipe 
and inner fluid. With respect to the material for manufac-
turing pipes, Tang et al. successively studied the dynamics 
of fluid-conveying pipes consisting of polymer-like mate-
rial (Tang et al. 2018a), viscoelastic material (Tang et al. 
2018b) or viscoelastic material under time-dependent veloc-
ity (Tang et al. 2022). They also extended the study to the 
nonlinear mechanics of a slender beam made of three-direc-
tional functionally graded materials (Tang et al. 2021) into 
fluid-conveying pipes, with consideration of piezoelectric 
attachments and nonlinear energy sinks (Tang et al. 2023a). 
Furthermore, they studied the vibration suppression prob-
lem related to fluid-conveying pipes (Tang et al. 2023b). 
As pointed out by Padïoussis (2008), the dynamics of pipes 
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conveying fluid has become a model dynamical problem, 
and the knowledge gained can be extended to other dynam-
ics problems across applied mechanics.

With the rapid development of natural science and com-
puting technology, various models have been proposed based 
on beam theory. For example, for a straight pipe-dominant 
piping system, Padïoussis (2008) proposed an integrated 
equation to describe the linear vibration based on previous 
calculations, where he considered various factors affect-
ing the pipe’s transverse motion. This inspired subsequent 
research efforts, and most studies referred to his work. Guo 
et al. (2010) established a linear vibration differential equa-
tion considering the flow model modification factor and 
deduced the specific value of this factor for the internal fluid 
flow with different models. Li and Yang (2014) presented 
a concise mechanical model describing the pipe’s forced 
vibration with consideration of different boundary condi-
tions, and studied its steady-state displacement response in 
the time domain. Zhao and Liu (2023) included the “steady 
combined force” caused by a curved segment by integrat-
ing the Heaviside function into the governing equation of a 
straight pipe. They established the mathematical model of a 
combined straight-curved pipe as a result. For a curved pipe-
dominant piping system, Misra et al. (1988a, b) established 
the linear vibration differential equation and proposed three 
theories (i.e., inextensible, modified inextensible, and exten-
sible theories, respectively) with regard to the pipe’s cen-
terline using finite element method (FEM) calculations and 
experimental validity. On this basis, Zhao and Sun (2017) 
developed the in-plane forced vibration model considering 
the influence of added mass and damping along both axial 
and transverse directions. Hu and Zhu (2018) established a 
dynamic model with the consideration of the pipe configura-
tion and extensibility.

Dynamic problems for pipes conveying fluid have been 
analyzed by various approaches, among which the most 
commonly used is FEM. For example, Giacobbi et al. (2012) 
developed a fully coupled computational fluid dynamics 
(CFD) model and a computational structural mechanics 
(CFM) model in ANSYS to simulate experiments and con-
firm experimental results when they studied the dynamics 
of a cantilevered pipe aspirating fluid. Using FEM, Dunst 
et al. (2017) analyzed the vibration amplitudes of pipe in an 
ultrasonic powder transport system. By coupling the ANSYS 
mechanical and FLUENT finite volume solvers, Nikoo et al. 
(2018) developed a coupled CFD-FSI framework to carry 
out 3-D numerical simulations on the effectiveness of using a 
PIP system for VIV suppression of offshore cylindrical com-
ponents. Nevertheless, there still exist limitations for FEM, 
including the high computing cost for changes to various 
system parameters (e.g., transverse and axial sizes, support-
ing type or cross-section shape). To overcome this drawback, 
many numerical methods have been developed to improve 

computational efficiency through improved accuracy, includ-
ing the differential transformation method (DTM) (Mei 
2008; Ni et al. 2011; Yalcin et al. 2009; Chen and Chen 
2009), differential quadrature method (DQM) (Wang et al. 
2007; Wang and Ni 2008; Ni et al. 2014a, b), transfer matrix 
method (TMM) (Koo and Yoo 2000; Zhao and Sun 2018; 
Liu and Li 2011; Wang et al. 2013), and Green’s function 
method (GFM) (Li and Yang 2014; Zhao and Sun 2017; Li 
et al. 2014; Abu-Hilal 2003, 2006). Because of the similarity 
in dynamic behaviors, some methods appropriate for beams 
can be used directly or indirectly on pipes. In this way, many 
valuable achievements have been realized. For example, 
Ni et al. (2011) employed DTM to study the natural fre-
quency as a function of flow velocity of a straight pipe with 
four typical supports (i.e., cantilevered, clamped–clamped, 
clamped–pinned and pinned–pinned, respectively), and they 
also used the method to calculate some critical velocities 
prompting the coupling system to lose stability via different 
types. Wang et al. popularized DQM (Wang et al. 2007) 
and its generalized form (GDQM) (Wang and Ni 2008) into 
the fluid–structure coupling dynamics existing in fluid-con-
veying curved pipe with various boundary conditions and 
external constraints. Koo and Yoo (2000) proposed TMM 
based on dynamic stiffness method and continuity condi-
tions and used it to study the dynamic characteristics of the 
KALIMER (Korea Advanced LIquid MEtal Reactor) inter-
mediate heat transfer system (IHTS) hot leg piping system. 
Their work lays a solid foundation for further pipe-related 
research by TMM. This inspired Zhao and Sun (2018) to 
propose a new TMM based on Laplace transform (L-TMM) 
to study the flow-induced vibration of fluid-conveying 
curved pipe with elastic supports. Abu-Hilal (2003, 2006) 
investigated the forced vibration of the Euler–Bernoulli 
beam with different external conditions by GFM. Subse-
quently, Li and Yang (2014) used the same method to study 
the forced vibration of fluid-conveying straight pipe and 
deduced the analytical expression of steady-state displace-
ment response in the time domain as well.

The Galerkin method is a weighted residual method, 
where the key point lies on the construction of shape func-
tions. It is an efficient tool in deriving an approximate solu-
tion for differential equations, and hence has been widely 
used for solving dynamic problems of fluid-conveying 
straight pipes. For example, Guo et al. (2010) adopted the 
Galerkin method to calculate the stable area of a fluid-con-
veying straight pipe considering a flow model modification 
factor. Kheiri and Padïoussis (2015) analyzed the stability 
of a flexible pin-free cylinder in axial flow via the Galerkin 
method. Abdelbaki et al. successively discretized and solved 
the nonlinear model for a free-clamped cylinder subjected 
to confined axial flow (Abdelbaki et al. 2018) and the non-
linear model for a hanging tubular cantilever simultane-
ously subjected to internal and confined external axial flows 
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(Abdelbaki et al. 2019) using the Galerkin method in MAT-
LAB software. Sazesh and Shams (2019) used the Galerkin 
method to discretize the equation of motion of a cantilever 
pipe conveying fluid under distributed random excitation. 
Dehrouyeh-Semnani et al. employed the method to solve the 
nonlinear dynamics of cantilevered fluid-conveying pipes 
with uniform and nonuniform magnetization under an actu-
ating parallel magnetic field (Dehrouyeh-Semnani 2022) and 
from macro to micro scale (Dehrouyeh-Semnani et al. 2016), 
respectively.

For the Galerkin method, the fundamental requirement 
is that shape functions must satisfy boundary conditions; 
thus, in the majority of published literature, as mentioned 
above, researchers prefer to use analytical normalized mode 
functions of Euler–Bernoulli straight beams [i.e., combina-
tions of trigonometric functions (Guo et al. 2010; Kheiri and 
Païdoussis 2015; Abdelbaki et al. 2018, 2019; Sazesh and 
Shams 2019; Dehrouyeh-Semnani 2022; Dehrouyeh-Sem-
nani et al. 2016)]. However, it is difficult to generalize when 
solving other fluid–structure coupling dynamic problems in 
the same field, i.e., its apparent combinations of trigonomet-
ric functions cannot be easily extended to solve the dynamic 
problems of fluid-conveying curved pipes.

The purpose of this work is to construct a new hybrid 
method combining DTM and Galerkin discretization, and 
additionally to verify the validity of this method in study-
ing the dynamics of fluid-conveying pipes. DTM herein is 
used to derive the normalized mode functions, while the 
Galerkin technique is used to discretize the governing equa-
tion and deduce the eigenfunction as well as steady-state 
displacement response with the aid of normalized mode 
functions derived by DTM. The rest of the paper is organ-
ized as follows: Governing equations of the fluid-conveying 
straight pipe are deduced using the D’Alembert principle 
and reviewed in Sect. 2. Expressions of eigenfunction and 
steady-state displacement response are obtained using the 
Galerkin method in Sect. 3. Normalized mode functions are 
derived by DTM in Sect. 4, and numerical experiments are 
performed to verify the validity of the proposed method in 
Sect. 5. The method is extended to the study of dynamic 
problems of curved pipes as discussed in Sect. 6, and conclu-
sions are drawn in Sect. 7.

2  A Review of the Deduction of Governing 
Equations Using the D’Alembert Principle

A horizontally placed straight pipe is considered. Figure 1 
shows the force diagram of an element with length of dx, 
where p(x, t) is the distributed force along the pipe axis, Q 
and M represent the shearing force and bending moment at the 
cross-section, respectively, fI denotes the inertia force per unit 
length of the pipe, and ff is the force of the inner fluid acting 
on the pipe per unit length.

If w denotes lateral displacement, x and t are coordinate 
and time, EI represents the pipe’s flexural stiffness, mp and mf 
denote mass per unit length of pipe and fluid, respectively, and 
U is the average velocity of internal inviscid and incompress-
ible fluid in cross-section, then according to the D’Alembert 
principle, equilibrium equations of force and moment (regard-
ing the right-end point) can be written as follows:

Substituting fI(x, t) with mp�
2w∕�t2 and neglecting high 

orders of dx will yield

According to Euler–Bernoulli beam theory, M can be writ-
ten as follows (Koo and Yoo 2000):

The material derivative of inner fluid can be expressed as 
follows (Faal and Derakhshan 2011):

Then ff can be formulated as follows:

With the substitution of Eqs. (3) and (5) into Eq. (2), it will 
become

Some dimensionless parameters can be defined as 
follows:

(1)
p(x, t)dx + Q = Q +

�Q

�x
dx + fI(x, t)dx + ff(x, t)dx

M +
�M

�x
dx = M + Qdx + p(x, t)dx ⋅

dx

2

⎫⎪⎬⎪⎭

(2)�2M

�x2
+ ff(x, t) + mp

�2w

�t2
= p(x, t)

(3)M = EI
�2w

�x2

(4)

a(x, t) =
(
�

�t
+ U

�

�x

)2

w(x, t) = U2 �
2w

�x2
+ 2U

�2w

�x�t
+

�2w

�t2

(5)ff(x, t) = mfa(x, t) = mfU
2 �

2w

�x2
+ 2mfU

�2w

�x�t
+ mf

�2w

�t2

(6)

EI
�4w

�x4
+ mfU

2 �
2w

�x2
+ 2mfU

�2w

�x�t
+ (mf + mp)

�2w

�t2
= p(x, t)

Fig. 1  Mechanical model of the pipe element
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Considering Eq. (7), Eq. (6) can be rewritten as follows:

For convenience, C, P and F are used to indicate 
clamped, pinned and free supporting types, respectively, 
in the following study. For four typical kinds of pipes, 
their dimensionless boundary conditions can be written 
as follows (Ni et al. 2011):

(1)  C–F pipe

(2)  C–C pipe

(3) C–P pipe

(4)  P–P pipe

It should be noted that dimensionless parameters are 
usually the first choice in the following investigation 
unless there exists a special illustration.

3  Deduction by the Galerkin method

Using Galerkin discretization, the solution of Eq. (8) can 
be expressed as follows (Guo et al. 2010; Kheiri and Paï-
doussis 2015; Abdelbaki et al. 2018, 2019; Sazesh and 
Shams 2019; Dehrouyeh-Semnani 2022; Dehrouyeh-Sem-
nani et al. 2016):

where �n(�) denotes the nth shape function and qn(�) is 
the nth general coordinate, and N represents the number of 
shape functions.

By substituting Eq. (13) into Eq. (8), it becomes

(7)

� =
x

L
� =

w

L
� =

mf

mf + mp

u = UL

√
mf

EI

� =
t

L2

√
EI

mf + mp

f (�, �) =
L3

EI
p(x, t)

(8)
�4�

��4
+ u2

�2�

��2
+ 2u

√
�
�2�

����
+

�2�

��2
= f (�, �)

(9)�(0, �) = ��(0, �) = ���(1, �) = ���(1, �) = 0

(10)�(0, �) = ��(0, �) = �(1, �) = ��(1, �) = 0

(11)�(0, �) = ��(0, �) = �(1, �) = ���(1, �) = 0

(12)�(0, �) = ���(0, �) = �(1, �) = ���(1, �) = 0

(13)�(�, �) =

N∑
n=1

�n(�)qn(�)

where

By multiplying each shape function and integrating the 
result in � ∈[0, 1], Eq. (14) becomes

where

Equation (15) can be rewritten by its matrix form as fol-
lows (Zhao and Liu 2023):

where the subscript denotes the order of matrix or vector.

3.1  Eigenfunction for Flow‑Induced Vibration

If fN×1 = 0 , the flow-induced vibration differential equation 
will be obtained as follows (Zhao and Liu 2023):

The solution of Eq. (17) can be expressed as follows:

where � = ΩL2
√

mf+mp

EI
 represents the system’s characteris-

tic variable.
With the introduction of Eq. (18) into Eq. (17), the result 

will be

To obtain a non-trivial solution of q0, the determinant 
must be equal to zero, i.e.,

Solving Eq. (20) will yield the results of eigenvalues 
�i ( i = 1, 2, 3,… ,N  ). In addition, its real part ( Re(�i) ) 
represents the ith natural frequency of the pipe, while the 
imaginary part ( Im(�i) ) is related to the damping, with 
the damping ratio being � = −Im(�i)∕Re(�i) (Païdoussis 
2008).

(14)
N∑
n=1

(kqn + gq̇n + mq̈n) = f (𝜉, 𝜏)

k =
d4�n

d�4
+ u2

d2�n

d�2
, g = 2u

√
�
d�n

d�
, m = �n

(15)

N∑
n=1

(Kmnqn + Gmnq̇n +Mmnq̈n) = fm, m = 1, 2, 3,… ,N

Kmn = ∫ 1

0
�m

�
d4�n

d�4
+ u2

d2�n

d�2

�
d�, Gmn = 2u

√
� ∫ 1

0
�m

d�n

d�
d�

Mmn = ∫ 1

0
�m�nd�, fm = ∫ 1

0
�mf (�, �)d�

(16)KN×NqN×1 + GN×N q̇N×1 +MN×N q̈ N×1 = fN×1

(17)KN×NqN×1 + GN×N q̇N×1 +MN×N q̈ N×1 = 0

(18)q = q0 exp(i��)

(19)
[
K + i�G − �2M

]
q0 = 0

(20)
|||K + i�G − �2M

||| = 0
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3.2  Steady‑State Displacement Response for Forced 
Vibration

A complex period excitation can be approximated by 
finite harmonic terms by using Fourier series (Zhao and 
Sun 2017). Hence, for a concentrated harmonic excita-
tion normal to the pipe axis characterized by a single fre-
quency, p(x, t) can be written in complex form as follows 
(Li and Yang 2014):

where F0, A and Ω denote the amplitude, coordinate, and 
frequency of the excitation, respectively.

According to Eq.  (7), the dimensionless form of 
Eq. (21) is

where

Under this condition, the solution of Eq. (22) can be 
expressed as follows:

Substituting Eqs. (22)–(23) into Eq. (16) will yield

where f = f0
[
�1(a),�2(a),… ,�N(a)

]T.
Thereby, with the combination of Eqs. (13), (23)–(24), 

the steady-state displacement response in the time domain 
can be written as follows:

By taking into account Sects. 3.1 and 3.2, it is clear 
that K, G, M and f are all directly related to shape func-
tions. Then we can determine �n(�) , which is the research 
goal in this study.

4  Normalized Mode Functions Using DTM

Detailed illustration of DTM can be seen in Ni et al. (2011); 
therefore, it can be used directly here. For a homogeneous 
Euler–Bernoulli straight beam, its equation of motion can 

(21)p(x, t) = F0�(x − A) exp(iΩt)

(22)f (�, �) = f0�(� − a) exp(i��)

f0 =
L2

EI
F0, a =

A

L
, � = ΩL2

√
mf + mp

EI

(23)q = q0exp(i��)

(24)q0 =
[
K + i�G − �

2
M
]−1

f

(25)
�(�, �) = Re

{
�

[
K + i�G − �

2
M
]−1

f

}
cos(��)

− Im

{
�

[
K + i�G − �

2
M
]−1

f

}
sin(��)

be achieved directly by ignoring the fluid-related terms and 
excitation as in Eq. (8).

The solution of Eq. (26) can be expressed as follows:

where � = ΩL2
√

mp

EI
 is the dimensionless characteristic vari-

able, with mp, L, and EI having the same meanings as with 
the straight pipe mentioned in Eqs. (6)–(7).

Introducing Eq. (27) into Eq. (26) will yield

Referring to Ni et al. (2011), the differential transforma-
tion of Eq. (28) can be written as follows:

where n0 denotes the n0th iteration in DTM.
If a C–F pipe is taken as an example, then the differential 

transformation of its dimensionless boundary conditions can 
be written as follows:

where N0 denotes the number of iterations.
Then, combining Eqs. (30) and (29), the recurrence rela-

tions of Y(n) can be formulated as follows:

The final expression can be written as follows:

where Y = {Y(2), Y(3)}T , and if N0 is an integer multiple 
of 4, we will have

(26)
�4�

��4
+

�2�

��2
= 0

(27)�(�, �) = y(�) exp(i��)

(28)y(4) − �2y = 0

(29)Y(n0 + 4) =
�2

∏4

j=1
(n0 + j)

Y(n0)

(30)

Y(0) = Y(1) =

N0∑
n0=0

n0(n0 − 1)Y(n0)

=

N0∑
n0=0

n0(n0 − 1)(n0 − 2)Y(n0) = 0

(31)
{

Y(4m) = 0

Y(4m + 1) = 0
, m = 0, 1, 2,…

(32)

{
Y(4m + 2) =

2!

(4m+2)!
�2mY(2)

Y(4m + 3) =
3!

(4m+3)!
�2mY(3)

, m = 0, 1, 2,…

(33)AY = 0

(34)
A11 =

∑ N0

4
−1

j=0

1

(4j)!
�2j, A12 = 3

∑ N0

4
−1

j=0

1

(4j+1)!
�2j

A21 =
∑ N0

4
−1

j=1

1

(4j−1)!
�2j, A22 = 3

∑ N0

4
−1

j=0

1

(4j)!
�2j
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To obtain non-trivial Y, the determinant of A should be 
equal to zero, i.e., |A| = 0 . The natural frequencies ωn ( n = 
1, 2, 3, … , N) can be worked out by DTM or seen in Ni et al. 
(2011). Then, after back substitution, the system’s mode 
functions will be obtained as follows:

For the other three kinds of pipes, similar results can be 
deduced and written as follows:

(1)  C–C pipe

(2)  C–P pipe

(3)  P–P pipe

Although Eqs. (34)–(35) are obtained on the condition 
that N0 is an integer multiple of 4, in fact, as long as N0 
is large enough, this result will always be obtained just by 
discarding the last few items.

In general, normalized mode functions are our subject, 
and they can be obtained by:

where ŷn(𝜉)(n = 1, 2, 3, …, N) are just the undetermined 
�n(�) in Eq. (13).

It is commonly considered that higher-order natural fre-
quencies contribute little to the system’s dynamics. As a 
result, most researchers mainly focus on the first few natural 
frequencies, meaning that N is not a large number here. In 
addition, in the next section, DTM-Galerkin will be used for 
convenience to indicate the proposed hybrid method com-
bining DTM and Galerkin discretization.

(35)

yn(�) =

N0

4
−1�

j=0

�
2j
n

(4j + 2)!
�4j+2 −

∑ N0

4
−1

j=0

�
2j
n

(4j)!

∑ N0

4
−1

j=0

�
2j
n

(4j+1)!

N0

4
−1�

j=0

�
2j
n

(4j + 3)!
�4j+3

(36)

yn(�) =

N0
4 −1
∑

j=0

�2j
n

(4j + 2)!
�4j+2 −

∑

N0
4 −1
j=0

�2j
n

(4j+2)!

∑

N0
4 −1
j=0

�2j
n

(4j+3)!

N0
4 −1
∑

j=0

�2j
n

(4j + 3)!
�4j+3

(37)

yn(�) =

N0
4 −1
∑

j=0

�2j
n

(4j + 2)!
�4j+2 −

∑

N0
4 −1

j=0
�2j
n

(4j+2)!

∑

N0
4 −1

j=0
�2j
n

(4j+3)!

N0
4 −1
∑

j=0

�2j
n

(4j + 3)!
�4j+3

(38)

yn(�) =

N0
4 −1
∑

j=0

�2j
n

(4j + 1)!
�4j+1 −

∑

N0
4 −1

j=0
�2j
n

(4j+1)!

∑

N0
4 −1

j=0
�2j
n

(4j+3)!

N0
4 −1
∑

j=0

�2j
n

(4j + 3)!
�4j+3

(39)ŷn(𝜉) =
yn(𝜉)

∫ 1

0
||yn(𝜉)||d𝜉

5  Numerical Results

Dai et al. put DTM into the analysis practice of dynam-
ics of a fluid-conveying straight pipe in Ni et al. (2011), 
where they concluded that N0 = 60 can output sufficiently 
accurate results with little time cost, and with increasing N0, 
the precision increases but more computing time is needed. 
Therefore, in order to balance accuracy and efficiency, N0 is 
directly chosen as 80 in the following calculations, and then 
determination of N is the only problem left.

5.1  Determination of N

Numerical experiments should be performed to find the 
appropriate value of N. During this process, DTM and GFM 
are chosen as the verification standards in calculating natural 
frequency and steady-state displacement response, respec-
tively, since:

(1) DTM has been verified to be of high efficiency and high 
precision in solving a homogeneous differential equa-
tion with high order in Mei (2008), Ni et al. (2011), 
Yalcin et al. (2009) and Chen and Chen (2009).

(2) GFM can derive an analytical solution of a non-homo-
geneous differential equation in closed form, as shown 
in Li and Yang (2014), Zhao and Sun (2017), Li et al. 
(2014) and Abu-Hilal (2003, 2006).

With respect to natural frequency, if � = 0.5 and a C–F 
pipe is taken as the research object, then the first four natural 
frequencies under different flow velocities can be numeri-
cally derived, and the results are shown in Table 1.

Table 1 reveals that as N increases, the results obtained 
by DTM-Galerkin are increasingly close to those of DTM, 
and when N increases to 8, the results of these two methods 
are in good agreement.

With respect to the steady-state displacement response, if 
the parameters are chosen as � = 0.5 , f0 = 1.0 , a = 0.5 , and 
� = 15.0 , then the amplitude of steady-state displacement 
response (denoted by ηmax) at � = 0.8 of a C–F pipe can be 
calculated by GFM and DTM-Galerkin simultaneously, and 
the results are shown in Table 2.

Table 2 reveals that as N increases, the results of DTM-
Galerkin are increasingly close to those of GFM, and when 
N increases to 8, the results of these two methods are very 
close to each other.

With the combination of Tables 1 and 2, it can be found 
that when N = 8 , the results of DTM-Galerkin accord well 
with those of existing methods; therefore, N = 8 will be the 
first choice in the following calculations in this section.
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5.2  Validity of the Current Method in Flow‑Induced 
Vibration

5.2.1  Natural Frequency as a Function of Flow Velocity

If the mass ratio is taken as � = 0.262 , then calculations on 
the first four natural frequencies are performed and Fig. 2 
shows the results. It is noteworthy that four curves composed 
of different markers correspond to the results by DTM, and 
four solid curves are obtained by DTM-Galerkin.

Figure 2 shows the variation in the first four natural fre-
quencies following flow velocity, and the results of these two 
methods accord well with each other, revealing the effective-
ness of DTM-Galerkin in calculating natural frequencies.

5.2.2  Modal Displacement Patterns of a P–P Pipe Under 
Different Flow Velocities

As was noted by Païdoussis (1998), the study of modal dis-
placement patterns under different flow velocities is help-
ful in explaining the impact mechanism of flow velocity on 
the pipe’s conservative property; therefore, with the aid of 
DTM-Galerkin, modal displacement patterns of a P–P pipe 
under different flow velocities are shown in Fig. 3 along 
with the results by Païdoussis (1998), where uc is equal to 
� for a P–P pipe (Ni et al. 2011; Païdoussis 1998).

From Fig. 3 it can be seen that the results by DTM-
Galerkin accord well with those by Païdoussis (1998), 

Table 1  First four natural frequencies under different flow velocities

Flow veloc-
ity

Mode DTM-Galerkin solution DTM solu-
tion (Ni et al. 
2011)N = 4 N = 6 N = 8

u = 1.0 Re(�1) 3.3238 3.3237 3.3237 3.3237
Re(�2) 21.7668 21.7659 21.7659 21.7659
Re(�3) 61.3587 61.3592 61.3593 61.3593
Re(�4) 120.8506 120.5544 120.5538 120.5538

u = 2.0 Re(�1) 2.6928 2.6913 2.6912 2.6912
Re(�2) 20.9584 20.9560 20.9560 20.9560
Re(�3) 60.3479 60.3420 60.3418 60.3418
Re(�4) 120.2853 119.5078 119.5070 119.5070

u = 3.0 Re(�1) 1.2430 1.2275 1.2273 1.2273
Re(�2) 19.5930 19.5925 19.5925 19.5925
Re(�3) 58.6766 58.6323 58.6317 58.6317
Re(�4) 119.3724 117.7568 117.7542 117.7542

Table 2  Amplitude of steady-state displacement response at � = 0.8

Flow velocity DTM-Galerkin solution GFM solution

N = 4 N = 6 N = 8

u = 0 0.0055358 0.0055261 0.0055256 0.0055256
u = 1.0 0.0070878 0.0070860 0.0070818 0.0070817
u = 2.0 0.0105839 0.0105929 0.0105890 0.0105892
u = 3.0 0.0149214 0.0148995 0.0149029 0.0149027
u = 4.0 0.0192730 0.0191659 0.0191877 0.0191875

Fig. 2  First four natural 
frequencies Re(�) versus flow 
velocity u by DTM-Galerkin 
and DTM
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confirming that the Coriolis term [ 2u
√
�

�2�

����
 in Eq. (8)] 

makes the system gyroscopic conservative, rather than just 
conservative (Païdoussis 1998) from the view of numerical 
calculation.

5.2.3  Eigenvalue of a C–F Pipe as a Function of Flow 
Velocity Under Different Mass Ratios

In order to clearly see variations in eigenvalues of fluid-
conveying pipes following flow velocity, it is helpful to 
use an    Argand       diagram. The first four eigenvalues 
of a C–F pipe as functions of flow velocity under different 
mass ratios are then presented as shown in Fig. 4, where 
flow velocities have all been marked by black dots with 
specific values. In addition, results by Païdoussis (1998) 
are given for comparison.

As shown by Fig. 4, the results by DTM-Galerkin show 
good accordance with those by Païdoussis (1998) within 
the computing range of flow velocity, which reveals that 
DTM-Galerkin is effective in the current investigation.

5.2.4  Critical Velocities Under Given Conditions

The critical velocity for divergence (denoted by ucd) cor-
responds to Re(�i) = Im(�i) = 0 , and the critical velocity 
for flutter (denoted by ucf) corresponds to Re(�i) ≠ 0 and 
Im(�i) = 0 (Païdoussis 2008). Obeying this principle, some 

calculations are performed on critical velocities and Table 3 
shows the results.

As Table 3 shows, the results by DTM-Galerkin accord 
well with those in Païdoussis (1998); therefore, the correct-
ness of DTM-Galerkin in calculating critical velocities is 
guaranteed.

5.2.5  Critical Velocity for Flutter of a C–F Pipe as a Function 
of Mass Ratio

Variation in critical velocity for flutter following the mass 
ratio is another key research point for a C–F pipe, and Fig. 5 
shows both the scatter results for ucf as a function of β by 
DTM-Galerkin and the theoretical curve obtained by Paï-
doussis (1998).

As Fig. 5 shows, it is clear that the results, especially 
those at inflection points, e.g., � ≈ 0.3 , 0.65, 0.7, 0.85, or 
0.93, by DTM-Galerkin are nearly identical to the theoreti-
cal curve (Païdoussis 1998) within the calculation range of 
mass ratio, further confirming the validity of DTM-Galerkin.

5.2.6  Critical Natural Frequency for Flutter of a C–F Pipe 
as a Function of Mass Ratio

As mentioned in the first sentence of Sect. 5.2.4, if flutter 
instability occurs, Re(�i) ≠ 0 and Im(�i) = 0 , the eigenval-
ues will degenerate to real numbers, namely the natural fre-
quencies of a pipe. Then, using the same labeling protocol as 
ucf, ωcf can be used to denote the critical natural frequency 
for flutter below. As a simple example, the critical natural 
frequency for flutter of a C–F pipe as a function of mass 
ratio by DTM-Galerkin is shown in Fig. 6, where the theo-
retical curve obtained by Païdoussis (1998) is also given for 
comparison.

As depicted by Fig. 6, the scatter results for ωcf calcu-
lated by DTM-Galerkin perfectly match the theoretical curve 
(Païdoussis 1998) over the computing range of mass ratio, 
confirming the validity of DTM-Galerkin once again.

5.3  Validity of the Method in Calculating 
Steady‑State Displacement Response

If � = 0.262 , u = 1.868 , f0 = 0.686 , � = 12.167 and a = 0.5 , 
then DTM-Galerkin and GFM are used for comparison 
to calculate the amplitude of steady-state displacement 
response for all four kinds of pipes, and the results are shown 
in Fig. 7.

Regardless of the supporting formats, Fig. 7 shows that 
the results of these two methods accord well with each 
other, confirming the effectiveness of DTM-Galerkin in 
calculating the steady-state displacement response.

Fig. 3  Variation in modal forms of the fundamental mode of a P–P 
pipe of vanishing flexural rigidity during a period of oscillation
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Fig. 4  First four eigenvalues of 
a C-F pipe versus flow velocity 
under different mass ratios
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6  Further Discussion: Implementation 
of the Current Method 
for Fluid‑Conveying Curved Pipes

Inspired by the above investigation, we can naturally gen-
eralize our research objective to curved pipes with both 
ends rigidly supported (i.e., C–C, C–P, P–P pipes), for 
which the dimensionless in-plane governing equation can 
be written as follows (Zhao and Sun 2017):

with

where w denotes tangential displacement, R is the constant 
radius of the centerline, Θ is the angle coordinate and θop 
is the opening angle of the pipe, mf and mp denote the mass 
per unit length of the fluid and pipe, respectively, the inner 
fluid flows with constant velocity U modeled by plug flow, 
EI represents the flexural stiffness, t is time, and F represents 
the excitation along the radial direction.

By the same manner as described in Sects. 3 and 4, the 
expressions of eigenfunction and steady-state displace-
ment response by the proposed DTM-Galerkin will also 
be finally obtained, and a brief description will be given 
below. As Sects. 3 and 4 show, the core of DTM-Galerkin 
lies in the determination of normalized mode functions; 
therefore, to avoid repetition, some important intermediate 
results are given directly.

(40)
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√
mf
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,

� =
t

R2

√
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mf + mp

, f (�, �) =
R3

EI

�F(Θ, t)

�Θ

Table 3  Critical velocities of 
four kinds of pipes under given 
conditions

Supporting type Mode Instability type DTM-Galer-
kin solution

Ref. 
Païdoussis 
(1998)

C-F ( � = 0.5) 3rd mode Flutter 9.321 ≈ 9.3

C–C ( � = 0.5) 1st mode Divergence 6.283 2�

1st & 2nd modes Coupled-mode flutter 9.299 ≈ 9.3

C–P  ( � = 0.5) 1st mode Divergence 4.491 ≈ 4.49

1st & 2nd modes Coupled-mode flutter 7.774 -
P–P  ( � = 0.1) 1st mode Divergence 3.142 �

2nd mode Divergence 6.283 2�

1st & 2nd modes Païdoussis coupled-mode flutter 6.382 ≈ 6.38

Fig. 5  Critical velocity for flutter ucf of a C-F pipe versus mass ratio β 

Fig. 6  Critical natural frequency for flutter ωcf of a C-F pipe versus 
mass ratio β 
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6.1  Normalized Mode Functions by DTM

The Euler–Bernoulli curved beam is used as the mechani-
cal model deducing the normalized mode functions. Then, 
by neglecting fluid-related items, Eq. (40) degenerates 
into:

Equation (42) is just the in-plane governing equation 
of the Euler–Bernoulli curved beam. Its solution can be 
expressed as follows:

where � = ΩR2

√
mp

EI
 is the dimensionless characteristic 

variable, with mp, R, and EI having the same meaning as the 
curved pipe mentioned in Eqs. (40)–(41).

Substituting Eq. (43) into Eq. (42) and applying the 
DTM principle to this problem will yield the recursion 
formula written as follows:

(42)
�6�

��6
+ 2�2

op

�4�

��4
+ �4

op

(
�2�

��2
+

�4�

��2��2

)
− �6

op

�2�

��2
= 0

(43)�(�, �) = y(�) exp(i��)

(44)

Y(n1 + 6) = −
2�2

op∏6

i=5
(n1 + i)

Y(n1 + 4)

−
�4
op
(1 − �2)

∏6

i=3
(n1 + i)

Y(n1 + 2) −
�6
op
�2

∏6

i=1
(n1 + i)

Y(n1)

where n1 denotes the n1th iteration in DTM.
If a C–C curved pipe is taken as an example, then dif-

ferential transformations of its boundary conditions can 
be written as follows:

With the combination of Eqs. (44) and (45), and after 
further manipulations, the result can be expressed in 
matrix form as follows:

where Aij (i, j = 1, 2, 3) are functions of ω and 
Y = {Y(3), Y(4), Y(5)}T.

By solving |A| = 0 , the natural frequencies ωn(n = 1, 
2, 3, …, N) will be derived; in addition, Y(4) and Y(5) as 
functions of Y(3) can be obtained simultaneously. There-
fore, the mode functions will be obtained after substituting 
the natural frequencies and Y(3), Y(4), Y(5) into

(45)

Y(0) = Y(1) = Y(2) =

∞∑
n1=0

Y(n1) =

∞∑
n1=1

n1Y(n1)

=

∞∑
n1=2

n1(n1 − 1)Y(n1) = 0

(46)AY = 0

(47)yn(�) =

N1∑
n1=0

�n1Y(n1, �n)

Fig. 7  Amplitude of steady-
state displacement response 
ηmax versus coordinate ξ by 
DTM-Galerkin and GFM
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Normalizing yn(�) will yield

where Y(3) is eliminated naturally and ŷn(𝜃)(n = 1, 2, 3, …, 
N) are just the results as expected.

6.2  Deduction by Galerkin Method

The solution of Eq. (40) can be written as follows:

where qn(�) is the nth general coordinate, and N represents 
the number of normalized mode functions.

By the same procedures as Eqs. (14)–(16), a similar result 
will be obtained as follows:

where

The next steps for Eqs. (17)–(25) are the same as with the 
straight pipes, so there is no need to repeat them.

7  Conclusions

A new hybrid method combining differential transforma-
tion and Galerkin discretization is proposed for the first time 
to study the dynamics of fluid-conveying pipes, and some 
important conclusions are drawn as follows.

(1) The proposed method combines the advantages of 
DTM in deducing mode functions and the Galerkin 
method in discretizing partial differential equations, 
thus demonstrating high accuracy and efficiency in 
solving governing equations of fluid-conveying straight 
pipes.

(2) The same steps as those used for straight pipes can 
be taken for curved pipes, revealing that the proposed 
method can be easily extended to curved pipes.
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∫ 1

0
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0

ŷmf (𝜉, 𝜏)d𝜉

(3) The study combining DTM and Galerkin discretization 
can be extended to develop other hybrid algorithms, 
especially for the combination of the method that can 
deduce mode functions [e.g., VIM (Li and Yang 2017)] 
and the Galerkin method.

(4) For further study, the application of the proposed 
method may be extended to the analysis for nonlinear 
static and dynamic responses of pipes conveying fluid.
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