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Abstract

A new hybrid method combining differential transformation and Galerkin discretization is proposed to investigate the dynam-
ics of a fluid-conveying straight pipe. Deduction of the governing equation of the pipe under distributed external excitation
according to the D’Alembert principle is first reviewed. Then it is discretized by the Galerkin method, whose shape functions
are just the normalized mode functions of the Euler—Bernoulli beam deduced by differential transformation. As a result,
the expressions of the eigenfunction for flow-induced vibration and steady-state displacement response in the time domain
for forced vibration are obtained. The validity of the proposed method in numerical analysis of the dynamics of the straight
pipe under given conditions are verified and compared with existing methods in the published literature. Theoretical imple-
mentation procedures for this hybrid method on dynamic problems of curved pipes are further discussed. The investigation
can be extended to the study of other relevant problems concerning pipe dynamics, especially when the solution cannot be
obtained using a single algorithm.
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1 Introduction

As the simplest system characterized by fluid—structure cou-
pling in modern industrial society, fluid-conveying pipes can
be seen in various contexts, such as oil and gas transport
(Cabrera-Miranda and Paik 2019), liquid fuel transmission
(EINajjar and Daneshmand 2020), solution mining (Kheiri
2020), ship and marine engineering (Zhu et al. 2019), and
nuclear systems (Wu et al. 2020). Because of their wide
application globally, considerable efforts were devoted to
analyzing the related fluid—structure coupling dynamics in
the previous century, and a series of valuable achievements
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have been published in authoritative journals. For example,
Ibrahim studied the mechanics of fluid-conveying pipes used
in nuclear power plants both theoretically (Ibrahim 2010)
and practically (Ibrahim 2011), where he discussed vari-
ous problems related to fluid-conveying pipes such as model
type, dynamic analysis methods, and stability regimes.
Dehrouyeh-Semnani et al. focused on the nonlinear dynam-
ics of micropipes (Dehrouyeh-Semnani et al. 2017a, b) and
functionally graded pipes (Dehrouyeh-Semnani et al. 2019),
where they separately considered the size effect and tem-
perature dependence of material properties for both the pipe
and inner fluid. With respect to the material for manufac-
turing pipes, Tang et al. successively studied the dynamics
of fluid-conveying pipes consisting of polymer-like mate-
rial (Tang et al. 2018a), viscoelastic material (Tang et al.
2018Db) or viscoelastic material under time-dependent veloc-
ity (Tang et al. 2022). They also extended the study to the
nonlinear mechanics of a slender beam made of three-direc-
tional functionally graded materials (Tang et al. 2021) into
fluid-conveying pipes, with consideration of piezoelectric
attachments and nonlinear energy sinks (Tang et al. 2023a).
Furthermore, they studied the vibration suppression prob-
lem related to fluid-conveying pipes (Tang et al. 2023b).
As pointed out by Padioussis (2008), the dynamics of pipes
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conveying fluid has become a model dynamical problem,
and the knowledge gained can be extended to other dynam-
ics problems across applied mechanics.

With the rapid development of natural science and com-
puting technology, various models have been proposed based
on beam theory. For example, for a straight pipe-dominant
piping system, Padioussis (2008) proposed an integrated
equation to describe the linear vibration based on previous
calculations, where he considered various factors affect-
ing the pipe’s transverse motion. This inspired subsequent
research efforts, and most studies referred to his work. Guo
et al. (2010) established a linear vibration differential equa-
tion considering the flow model modification factor and
deduced the specific value of this factor for the internal fluid
flow with different models. Li and Yang (2014) presented
a concise mechanical model describing the pipe’s forced
vibration with consideration of different boundary condi-
tions, and studied its steady-state displacement response in
the time domain. Zhao and Liu (2023) included the “steady
combined force” caused by a curved segment by integrat-
ing the Heaviside function into the governing equation of a
straight pipe. They established the mathematical model of a
combined straight-curved pipe as a result. For a curved pipe-
dominant piping system, Misra et al. (1988a, b) established
the linear vibration differential equation and proposed three
theories (i.e., inextensible, modified inextensible, and exten-
sible theories, respectively) with regard to the pipe’s cen-
terline using finite element method (FEM) calculations and
experimental validity. On this basis, Zhao and Sun (2017)
developed the in-plane forced vibration model considering
the influence of added mass and damping along both axial
and transverse directions. Hu and Zhu (2018) established a
dynamic model with the consideration of the pipe configura-
tion and extensibility.

Dynamic problems for pipes conveying fluid have been
analyzed by various approaches, among which the most
commonly used is FEM. For example, Giacobbi et al. (2012)
developed a fully coupled computational fluid dynamics
(CFD) model and a computational structural mechanics
(CFM) model in ANSYS to simulate experiments and con-
firm experimental results when they studied the dynamics
of a cantilevered pipe aspirating fluid. Using FEM, Dunst
et al. (2017) analyzed the vibration amplitudes of pipe in an
ultrasonic powder transport system. By coupling the ANSYS
mechanical and FLUENT finite volume solvers, Nikoo et al.
(2018) developed a coupled CFD-FSI framework to carry
out 3-D numerical simulations on the effectiveness of using a
PIP system for VIV suppression of offshore cylindrical com-
ponents. Nevertheless, there still exist limitations for FEM,
including the high computing cost for changes to various
system parameters (e.g., transverse and axial sizes, support-
ing type or cross-section shape). To overcome this drawback,
many numerical methods have been developed to improve
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computational efficiency through improved accuracy, includ-
ing the differential transformation method (DTM) (Mei
2008; Ni et al. 2011; Yalcin et al. 2009; Chen and Chen
2009), differential quadrature method (DQM) (Wang et al.
2007; Wang and Ni 2008; Ni et al. 2014a, b), transfer matrix
method (TMM) (Koo and Yoo 2000; Zhao and Sun 2018;
Liu and Li 2011; Wang et al. 2013), and Green’s function
method (GFM) (Li and Yang 2014; Zhao and Sun 2017; Li
et al. 2014; Abu-Hilal 2003, 2006). Because of the similarity
in dynamic behaviors, some methods appropriate for beams
can be used directly or indirectly on pipes. In this way, many
valuable achievements have been realized. For example,
Ni et al. (2011) employed DTM to study the natural fre-
quency as a function of flow velocity of a straight pipe with
four typical supports (i.e., cantilevered, clamped—clamped,
clamped-pinned and pinned—pinned, respectively), and they
also used the method to calculate some critical velocities
prompting the coupling system to lose stability via different
types. Wang et al. popularized DQM (Wang et al. 2007)
and its generalized form (GDQM) (Wang and Ni 2008) into
the fluid—structure coupling dynamics existing in fluid-con-
veying curved pipe with various boundary conditions and
external constraints. Koo and Yoo (2000) proposed TMM
based on dynamic stiffness method and continuity condi-
tions and used it to study the dynamic characteristics of the
KALIMER (Korea Advanced LIquid MEtal Reactor) inter-
mediate heat transfer system (IHTS) hot leg piping system.
Their work lays a solid foundation for further pipe-related
research by TMM. This inspired Zhao and Sun (2018) to
propose a new TMM based on Laplace transform (L-TMM)
to study the flow-induced vibration of fluid-conveying
curved pipe with elastic supports. Abu-Hilal (2003, 2006)
investigated the forced vibration of the Euler—Bernoulli
beam with different external conditions by GFM. Subse-
quently, Li and Yang (2014) used the same method to study
the forced vibration of fluid-conveying straight pipe and
deduced the analytical expression of steady-state displace-
ment response in the time domain as well.

The Galerkin method is a weighted residual method,
where the key point lies on the construction of shape func-
tions. It is an efficient tool in deriving an approximate solu-
tion for differential equations, and hence has been widely
used for solving dynamic problems of fluid-conveying
straight pipes. For example, Guo et al. (2010) adopted the
Galerkin method to calculate the stable area of a fluid-con-
veying straight pipe considering a flow model modification
factor. Kheiri and Padioussis (2015) analyzed the stability
of a flexible pin-free cylinder in axial flow via the Galerkin
method. Abdelbaki et al. successively discretized and solved
the nonlinear model for a free-clamped cylinder subjected
to confined axial flow (Abdelbaki et al. 2018) and the non-
linear model for a hanging tubular cantilever simultane-
ously subjected to internal and confined external axial flows
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(Abdelbaki et al. 2019) using the Galerkin method in MAT-
LAB software. Sazesh and Shams (2019) used the Galerkin
method to discretize the equation of motion of a cantilever
pipe conveying fluid under distributed random excitation.
Dehrouyeh-Semnani et al. employed the method to solve the
nonlinear dynamics of cantilevered fluid-conveying pipes
with uniform and nonuniform magnetization under an actu-
ating parallel magnetic field (Dehrouyeh-Semnani 2022) and
from macro to micro scale (Dehrouyeh-Semnani et al. 2016),
respectively.

For the Galerkin method, the fundamental requirement
is that shape functions must satisfy boundary conditions;
thus, in the majority of published literature, as mentioned
above, researchers prefer to use analytical normalized mode
functions of Euler—Bernoulli straight beams [i.e., combina-
tions of trigonometric functions (Guo et al. 2010; Kheiri and
Paidoussis 2015; Abdelbaki et al. 2018, 2019; Sazesh and
Shams 2019; Dehrouyeh-Semnani 2022; Dehrouyeh-Sem-
nani et al. 2016)]. However, it is difficult to generalize when
solving other fluid—structure coupling dynamic problems in
the same field, i.e., its apparent combinations of trigonomet-
ric functions cannot be easily extended to solve the dynamic
problems of fluid-conveying curved pipes.

The purpose of this work is to construct a new hybrid
method combining DTM and Galerkin discretization, and
additionally to verify the validity of this method in study-
ing the dynamics of fluid-conveying pipes. DTM herein is
used to derive the normalized mode functions, while the
Galerkin technique is used to discretize the governing equa-
tion and deduce the eigenfunction as well as steady-state
displacement response with the aid of normalized mode
functions derived by DTM. The rest of the paper is organ-
ized as follows: Governing equations of the fluid-conveying
straight pipe are deduced using the D’Alembert principle
and reviewed in Sect. 2. Expressions of eigenfunction and
steady-state displacement response are obtained using the
Galerkin method in Sect. 3. Normalized mode functions are
derived by DTM in Sect. 4, and numerical experiments are
performed to verify the validity of the proposed method in
Sect. 5. The method is extended to the study of dynamic
problems of curved pipes as discussed in Sect. 6, and conclu-
sions are drawn in Sect. 7.

2 A Review of the Deduction of Governing
Equations Using the D’Alembert Principle

A horizontally placed straight pipe is considered. Figure 1
shows the force diagram of an element with length of dx,
where p(x,t) is the distributed force along the pipe axis, Q
and M represent the shearing force and bending moment at the
cross-section, respectively, f; denotes the inertia force per unit
length of the pipe, and f; is the force of the inner fluid acting
on the pipe per unit length.

T_r M(Q‘ J)MaaMd
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Fig. 1 Mechanical model of the pipe element

If w denotes lateral displacement, x and ¢ are coordinate
and time, EI represents the pipe’s flexural stiffness, m,, and m;
denote mass per unit length of pipe and fluid, respectively, and
U is the average velocity of internal inviscid and incompress-
ible fluid in cross-section, then according to the D’Alembert
principle, equilibrium equations of force and moment (regard-
ing the right-end point) can be written as follows:

plx, Ddx+ Q=0+ %dx +fi(x, Hdx + fi(x, H)dx

(H
M+(z)i/[dx M + Qdx + p(x, f)dx - %x

Substituting f;(x, £) with m,0*w/d¢* and neglecting high
orders of dx will yield

M

2
R hiw 0+ m Y Iw

b g = p(x. D) @

According to Euler—Bernoulli beam theory, M can be writ-
ten as follows (Koo and Yoo 2000):

M= EIW 3)

The material derivative of inner fluid can be expressed as
follows (Faal and Derakhshan 2011):

9 9 \? 5 0%w Pw  *w
0= —+U—> =0 popdW I
ax, 1) <(3t ox) W& D=V axor " or
)
Then f; can be formulated as follows:
*w *w *w
fix, O = mea(x, t)szUza S +2m tUa TR )

With the substitution of Egs. (3) and (5) into Eq. (2), it will
become

5 AL U2‘)

0w
P 02+2fU

- p(x’ t)
(6)

Some dimensionless parameters can be defined as
follows:

%
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Considering Eq. (7), Eq. (6) can be rewritten as follows:

0411 ’1

For convenience, C, P and F are used to indicate
clamped, pinned and free supporting types, respectively,
in the following study. For four typical kinds of pipes,
their dimensionless boundary conditions can be written
as follows (Ni et al. 2011):

(1) C-F pipe

n0,7)=47'0, 0)=7n"1, 2)=71"(1, 1)=0 )
(2) C—C pipe

n0, ) =710, ) =n(, ©) =71'(1, 7) =0 (10)
(3) C—P pipe

n0, ) =1'0, ) =n(l, 1)=74"(1, )=0 (1)
(4) P-P pipe

n©, 1) =1"0, )=n1, =71"1, 1)=0  (12)

It should be noted that dimensionless parameters are
usually the first choice in the following investigation
unless there exists a special illustration.

3 Deduction by the Galerkin method

Using Galerkin discretization, the solution of Eq. (8) can
be expressed as follows (Guo et al. 2010; Kheiri and Pai-
doussis 2015; Abdelbaki et al. 2018, 2019; Sazesh and
Shams 2019; Dehrouyeh-Semnani 2022; Dehrouyeh-Sem-
nani et al. 2016):

N
nE 1) = Y, 0,(0)q,(7) (13)
n=1

where ¢, (&) denotes the nth shape function and g,(7) is
the nth general coordinate, and N represents the number of
shape functions.

By substituting Eq. (13) into Eq. (8), it becomes
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N
Y (kq, + 84, +md,) = f& ) (14)
n=1
where
- dY N0 de
k=—lt4+u>—" 3=2 Lom=
e g 8 uﬁdé m= g,

By multiplying each shape function and integrating the
result in & €[0, 1], Eq. (14) becomes

mnqn) fm’ m = 1’2,3,...,N

Z (Kmnqn + Gﬂ'l}’lqﬂ
) (15)

where

K= [0 [ddgjwuzdd;"Jdg Gy = 20\/B f; 922
Mnn = ,/0 (pm(pndé’ fm - fo (pmf(é’ T)dg

Equation (15) can be rewritten by its matrix form as fol-
lows (Zhao and Liu 2023):

Kysnnsi T Gnsvdnxa + Myl vsa = Fxi (16)

where the subscript denotes the order of matrix or vector.
3.1 Eigenfunction for Flow-Induced Vibration

If fyx1 = 0, the flow-induced vibration differential equation
will be obtained as follows (Zhao and Liu 2023):

Kysndnxi + Gnxnlnsg + Myung s =0 17)
The solution of Eq. (17) can be expressed as follows:
q = g, exp(ior) (18)

where @ = QLZ\ [ —=L E represents the system’s characteris-

tic variable.
With the introduction of Eq. (18) into Eq. (17), the result
will be

K +i0G — o’M|q, = 0 (19)

To obtain a non-trivial solution of g, the determinant
must be equal to zero, i.e.,

’K +i0G — sz’ =0 (20)

Solving Eq. (20) will yield the results of eigenvalues
w; (i=1,2,3,...,N). In addition, its real part ( Re(w;))
represents the ith natural frequency of the pipe, while the
imaginary part ( Im(w,)) is related to the damping, with
the damping ratio being ¢ = —Im(w,)/Re(w;) (Paidoussis
2008).
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3.2 Steady-State Displacement Response for Forced
Vibration

A complex period excitation can be approximated by
finite harmonic terms by using Fourier series (Zhao and
Sun 2017). Hence, for a concentrated harmonic excita-
tion normal to the pipe axis characterized by a single fre-
quency, p(x, t) can be written in complex form as follows
(Li and Yang 2014):

px, 1) = Fys(x — A) exp(iQr) QD

where F, A and Q denote the amplitude, coordinate, and
frequency of the excitation, respectively.

According to Eq. (7), the dimensionless form of
Eq. (21) s

f(&, ©) = fy6(¢ — a) exp(iwr) (22)
where
L2 A — = 2 mf+mp
= —F . = —, = QL
fo=gifoa=gp. @ El

Under this condition, the solution of Eq. (22) can be
expressed as follows:

q = qoexp(ior) (23)
Substituting Eqs. (22)—(23) into Eq. (16) will yield
-1
4= |K+@G-aM| f (24)

T
where f = fy[@,(a), @,(@), ..., @y(@)] -

Thereby, with the combination of Egs. (13), (23)—(24),
the steady-state displacement response in the time domain

can be written as follows:

n, r) = Re{ [0 [K + iwG — EZM] _lf} cos(wt)
" (25)
- Im{ @ [K + G — EZM] f} sin(@r)

By taking into account Sects. 3.1 and 3.2, it is clear
that K, G, M and f are all directly related to shape func-
tions. Then we can determine ¢, (), which is the research
goal in this study.

4 Normalized Mode Functions Using DTM
Detailed illustration of DTM can be seen in Ni et al. (2011);

therefore, it can be used directly here. For a homogeneous
Euler-Bernoulli straight beam, its equation of motion can

be achieved directly by ignoring the fluid-related terms and
excitation as in Eq. (8).

4+ 1=0 (26)

The solution of Eq. (26) can be expressed as follows:
n(s, 7) = y(§) expliwr) (27

m, . . . . . .
where w = QLZ\ / E—; is the dimensionless characteristic vari-

able, with m,, L, and ET having the same meanings as with
the straight pipe mentioned in Egs. (6)—(7).
Introducing Eq. (27) into Eq. (26) will yield

yW-a’y=0 (28)

Referring to Ni et al. (2011), the differential transforma-
tion of Eq. (28) can be written as follows:

w2

— Y,
ML, o+ (29)

Y(ng+4) =
where n, denotes the ngth iteration in DTM.

If a C-F pipe is taken as an example, then the differential
transformation of its dimensionless boundary conditions can
be written as follows:

No
Y(0) = Y(1) = Y ny(ng — D¥(np)
ny=0
N (30)
= Y ng(ng = Dng = 2)¥(ng) = 0
ny=0

where N, denotes the number of iterations.
Then, combining Egs. (30) and (29), the recurrence rela-
tions of Y(n) can be formulated as follows:

{ Y(4m) =0

Yam+ =0 MZ0L2 GD

m=0,1,2,... (32)

— 2! 2m
{ Y(4m +2) = (4'”;2)!@ Y(2)
— : 2m ’
Ydm+3) = TPyl Y(3)
The final expression can be written as follows:

AY =0 (33)

where Y = {Y(2), Y(3)}7, and if N, is an integer multiple
of 4, we will have

A=Y L A, = 32%0‘1 ¥
11 =0 @ 12 J=0 @+ (34)
21 . -1 .
_ N\ 2j — ¢ L o)
Ay = Z:j=1 @-mn? Ap =3 Z:j=0 @
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To obtain non-trivial Y, the determinant of A should be
equal to zero, i.e., |A| = 0. The natural frequencies w, (n =
1,2,3,..., N) can be worked out by DTM or seen in Ni et al.
(2011). Then, after back substitution, the system’s mode
functions will be obtained as follows:

N .
B P ALV}
o

M _q . No_q .
n 2j 244 . 4 2j
_ wy 4j42 =0 (4! Wy 4j+3
(&) j=§0 (4]._'_2)!5 W ,Z=o (4j+3)!§

Zf:o “+D!
(35
For the other three kinds of pipes, similar results can be
deduced and written as follows:

(1) C-Cpipe

No
ST el Mo 2j

Yy
L Tl o
() . =0 (4j+2)! [0) i
4j+2 4j+3
Yal) = Z gV Z i
=0

4 +2)! =S Rl
=0 (4j+3)!
(36)
(2) C-Ppipe
N No_y 2 N
o ;) 442 Zfio %i_l ) 443
©= gt : o TLA
In Z(; @+2)! N Z(; @ +3)!
=0 (4j+3)!
(37)
(3) P-P pipe
N ﬁ_| 2 N
E ©F Zi% (4;;_"1>'70_1 O s
©= —— gy — gt
o Z:; @+ D! N Z:; @+3)!
=0 (4+3)!
(38)

Although Eqgs. (34)—(35) are obtained on the condition
that N, is an integer multiple of 4, in fact, as long as N,
is large enough, this result will always be obtained just by
discarding the last few items.

In general, normalized mode functions are our subject,
and they can be obtained by:

N i1 )

n = 1. . 39
S n©)]de ©9)

where 3,(&)(n =1, 2, 3, ..., N) are just the undetermined
®,(&) in Eq. (13).

It is commonly considered that higher-order natural fre-
quencies contribute little to the system’s dynamics. As a
result, most researchers mainly focus on the first few natural
frequencies, meaning that N is not a large number here. In
addition, in the next section, DTM-Galerkin will be used for
convenience to indicate the proposed hybrid method com-
bining DTM and Galerkin discretization.
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5 Numerical Results

Dai et al. put DTM into the analysis practice of dynam-
ics of a fluid-conveying straight pipe in Ni et al. (2011),
where they concluded that N, = 60 can output sufficiently
accurate results with little time cost, and with increasing N,
the precision increases but more computing time is needed.
Therefore, in order to balance accuracy and efficiency, N, is
directly chosen as 80 in the following calculations, and then
determination of N is the only problem left.

5.1 Determination of N

Numerical experiments should be performed to find the
appropriate value of N. During this process, DTM and GFM
are chosen as the verification standards in calculating natural
frequency and steady-state displacement response, respec-
tively, since:

(1) DTM has been verified to be of high efficiency and high
precision in solving a homogeneous differential equa-
tion with high order in Mei (2008), Ni et al. (2011),
Yalcin et al. (2009) and Chen and Chen (2009).

(2) GFM can derive an analytical solution of a non-homo-
geneous differential equation in closed form, as shown
in Li and Yang (2014), Zhao and Sun (2017), Li et al.
(2014) and Abu-Hilal (2003, 2006).

With respect to natural frequency, if f = 0.5 and a C-F
pipe is taken as the research object, then the first four natural
frequencies under different flow velocities can be numeri-
cally derived, and the results are shown in Table 1.

Table 1 reveals that as N increases, the results obtained
by DTM-Galerkin are increasingly close to those of DTM,
and when N increases to 8, the results of these two methods
are in good agreement.

With respect to the steady-state displacement response, if
the parameters are chosen as f§ = 0.5, f, = 1.0,a = 0.5, and
o = 15.0, then the amplitude of steady-state displacement
response (denoted by #,,,,.) at & = 0.8 of a C—F pipe can be
calculated by GFM and DTM-Galerkin simultaneously, and
the results are shown in Table 2.

Table 2 reveals that as N increases, the results of DTM-
Galerkin are increasingly close to those of GFM, and when
N increases to 8, the results of these two methods are very
close to each other.

With the combination of Tables 1 and 2, it can be found
that when N = 8, the results of DTM-Galerkin accord well
with those of existing methods; therefore, N = 8 will be the
first choice in the following calculations in this section.



Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2024) 48:647-659

653

Table 1 First four natural frequencies under different flow velocities

Flow veloc- Mode DTM-Galerkin solution

DTM solu-

ity tion (Ni et al.
N=4 N=6 N=38 2011)
u=10 Re(w,) 3.3238  3.3237 33237  3.3237
Re(w,) 21.7668 21.7659 21.7659 21.7659
Re(w;) 61.3587 61.3592 61.3593 61.3593
Re(w,) 120.8506 120.5544 120.5538 120.5538
u=20 Re(w;)  2.6928  2.6913  2.6912  2.6912
Re(w,) 20.9584 20.9560 20.9560 20.9560
Re(w;) 60.3479 60.3420 60.3418 60.3418
Re(w,) 120.2853 119.5078 119.5070 119.5070
u=3.0 Re(w;) 12430  1.2275 1.2273 1.2273
Re(w,) 19.5930 19.5925 19.5925 19.5925
Re(w;) 58.6766 58.6323 58.6317 58.6317
Re(w,) 119.3724 117.7568 117.7542 117.7542

Table2 Amplitude of steady-state displacement response at £ = 0.8

Flow velocity DTM-Galerkin solution

GFM solution

5.2 Validity of the Current Method in Flow-Induced
Vibration

5.2.1 Natural Frequency as a Function of Flow Velocity

If the mass ratio is taken as # = 0.262, then calculations on
the first four natural frequencies are performed and Fig. 2
shows the results. It is noteworthy that four curves composed
of different markers correspond to the results by DTM, and
four solid curves are obtained by DTM-Galerkin.

Figure 2 shows the variation in the first four natural fre-
quencies following flow velocity, and the results of these two
methods accord well with each other, revealing the effective-
ness of DTM-Galerkin in calculating natural frequencies.

5.2.2 Modal Displacement Patterns of a P-P Pipe Under
Different Flow Velocities

As was noted by Paidoussis (1998), the study of modal dis-
placement patterns under different flow velocities is help-
ful in explaining the impact mechanism of flow velocity on
the pipe’s conservative property; therefore, with the aid of

N=4 N=6 N=38
u=0 0.0055358 0.0055261 0.0055256 0.0055256
u=10 0.0070878 0.0070860 0.0070818 0.0070817
u=20 0.0105839 0.0105929 0.0105890 0.0105892
u=3.0 0.0149214 0.0148995 0.0149029 0.0149027
u=4.0 0.0192730 0.0191659 0.0191877 0.0191875

DTM-Galerkin, modal displacement patterns of a P—P pipe
under different flow velocities are shown in Fig. 3 along
with the results by Paidoussis (1998), where u, is equal to
z for a P-P pipe (Ni et al. 2011; Paidoussis 1998).

From Fig. 3 it can be seen that the results by DTM-

Galerkin accord well with those by Paidoussis (1998),

Fig.2 First four natural 200 . . :
frequencies Re(w) versus flow W
velocity u by DTM-Galerkin 1sol 4th mode |
and DTM 3rd mode
~ 80f -~
3 3rd mode 3
E ) E 100 |
60 2nd mode
| 1st mode
40 2nd mode 50 b Lst mode i
207 M“L‘o".“\\
0 0 ‘ ‘ ‘
0 2 4 6 8 10 2 4 6 8 10
u u
(a) C-F pipe (b) C-C pipe
200 160 T
4th mod
» W 120 | mode
3rd mode 3rd mode
3 3
T T
~ o~

2nd mode

(c) C-P pipe

@ Springer



654 Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2024) 48:647-659

. .. 2y -
confirming that the Coriolis term [2u\/ﬁa§7 in Eq. (8)]

makes the system gyroscopic conservative, rather than just
conservative (Paidoussis 1998) from the view of numerical
calculation.

5.2.3 Eigenvalue of a C-F Pipe as a Function of Flow
Velocity Under Different Mass Ratios

In order to clearly see variations in eigenvalues of fluid-
conveying pipes following flow velocity, it is helpful to
use an  Argand diagram. The first four eigenvalues
of a C—F pipe as functions of flow velocity under different
mass ratios are then presented as shown in Fig. 4, where
flow velocities have all been marked by black dots with
specific values. In addition, results by Paidoussis (1998)
are given for comparison.

As shown by Fig. 4, the results by DTM-Galerkin show
good accordance with those by Paidoussis (1998) within
the computing range of flow velocity, which reveals that
DTM-Galerkin is effective in the current investigation.

5.2.4 Critical Velocities Under Given Conditions

The critical velocity for divergence (denoted by u_4) cor-
responds to Re(w;) = Im(w;) = 0, and the critical velocity
for flutter (denoted by u,) corresponds to Re(w;) # 0 and
Im(w;) = 0 (Paidoussis 2008). Obeying this principle, some

0 1/8,7/8
1/4,3/4

3/8,5/8 1/2

(c) u/u.=0.75

Results by Paidoussis [50] - =-=--~- DTM-Galerkin solution

Fig.3 Variation in modal forms of the fundamental mode of a P-P
pipe of vanishing flexural rigidity during a period of oscillation

72, € Springer

calculations are performed on critical velocities and Table 3
shows the results.

As Table 3 shows, the results by DTM-Galerkin accord
well with those in Paidoussis (1998); therefore, the correct-
ness of DTM-Galerkin in calculating critical velocities is
guaranteed.

5.2.5 Critical Velocity for Flutter of a C-F Pipe as a Function
of Mass Ratio

Variation in critical velocity for flutter following the mass
ratio is another key research point for a C-F pipe, and Fig. 5
shows both the scatter results for u.; as a function of § by
DTM-Galerkin and the theoretical curve obtained by Pai-
doussis (1998).

As Fig. 5 shows, it is clear that the results, especially
those at inflection points, e.g., § ~ 0.3, 0.65, 0.7, 0.85, or
0.93, by DTM-Galerkin are nearly identical to the theoreti-
cal curve (Paidoussis 1998) within the calculation range of
mass ratio, further confirming the validity of DTM-Galerkin.

5.2.6 Critical Natural Frequency for Flutter of a C-F Pipe
as a Function of Mass Ratio

As mentioned in the first sentence of Sect. 5.2.4, if flutter
instability occurs, Re(w;) # 0 and Im(w,) = 0, the eigenval-
ues will degenerate to real numbers, namely the natural fre-
quencies of a pipe. Then, using the same labeling protocol as
u., @ can be used to denote the critical natural frequency
for flutter below. As a simple example, the critical natural
frequency for flutter of a C—F pipe as a function of mass
ratio by DTM-Galerkin is shown in Fig. 6, where the theo-
retical curve obtained by Paidoussis (1998) is also given for
comparison.

As depicted by Fig. 6, the scatter results for o calcu-
lated by DTM-Galerkin perfectly match the theoretical curve
(Paidoussis 1998) over the computing range of mass ratio,
confirming the validity of DTM-Galerkin once again.

5.3 Validity of the Method in Calculating
Steady-State Displacement Response

Ifp =0.262,u = 1.868, f, = 0.686, 0 = 12.167and a = 0.5,
then DTM-Galerkin and GFM are used for comparison
to calculate the amplitude of steady-state displacement
response for all four kinds of pipes, and the results are shown
in Fig. 7.

Regardless of the supporting formats, Fig. 7 shows that
the results of these two methods accord well with each
other, confirming the effectiveness of DTM-Galerkin in
calculating the steady-state displacement response.
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Fig.4 First four eigenvalues of
a C-F pipe versus flow velocity
under different mass ratios
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Table 3 Critical velocities of

: . . Supporting type Mode Instability type DTM-Galer-  Ref.
four kinds of pipes under given kin solution Paidoussis
conditions ) ( 1998)‘ )
C-F (8 =0.5) 3rd mode Flutter 9.321 ~9.3
C-C(p=0)5) 1st mode Divergence 6.283 2
Ist & 2nd modes Coupled-mode flutter 9.299 ~9.3
C-P (=0.5) 1st mode Divergence 4.491 ~ 4.49
Ist & 2nd modes Coupled-mode flutter 7.774 -
P-P (p=0.1) 1st mode Divergence 3.142 b4
2nd mode Divergence 6.283 2
Ist & 2nd modes Paidoussis coupled-mode flutter 6.382 =~ 6.38
18 6 Further Discussion: Implementation
16l s by Padonsis (501 of the Current Method
Results by Paidoussis [5 . . .
Wl ¢ DTVGalekin soluion for Fluid-Conveying Curved Pipes
12+ Inspired by the above investigation, we can naturally gen-
2 ol eralize our research objective to curved pipes with both
ends rigidly supported (i.e., C-C, C-P, P-P pipes), for
81 which the dimensionless in-plane governing equation can
6l be written as follows (Zhao and Sun 2017):
4 . : . : PE L Hg2 0 92 %
0 0.2 0.4 0.6 0.8 1 06° + 29013 004 + 21/{\/_9 (09301 op 900t ) (40)
8 4 (0% o 9o P& _
0 602 602612 OP ot f(0 T)
Fig.5 Critical velocity for flutter u  of a C-F pipe versus mass ratio with
w ® m m
E=2.0=— f=—— u=RU\/—,
R 0, mg+m EI
45 P
(41)
a0l t | _EIl R3 OF(®, 1)
Results by Paidoussis [50] = ﬁ f(a E T
®  DTM-Galerkin solution mg +

351

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

&)

Fig.6 Critical natural frequency for flutter w  of a C-F pipe versus
mass ratio f§

@ Springer

where w denotes tangential displacement, R is the constant
radius of the centerline, @ is the angle coordinate and Hop
is the opening angle of the pipe, m; and m,, denote the mass
per unit length of the fluid and pipe, respectively, the inner
fluid flows with constant velocity U modeled by plug flow,
El represents the flexural stiffness, # is time, and F represents
the excitation along the radial direction.

By the same manner as described in Sects. 3 and 4, the
expressions of eigenfunction and steady-state displace-
ment response by the proposed DTM-Galerkin will also
be finally obtained, and a brief description will be given
below. As Sects. 3 and 4 show, the core of DTM-Galerkin
lies in the determination of normalized mode functions;
therefore, to avoid repetition, some important intermediate
results are given directly.
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6.1 Normalized Mode Functions by DTM

The Euler—Bernoulli curved beam is used as the mechani-
cal model deducing the normalized mode functions. Then,
by neglecting fluid-related items, Eq. (40) degenerates
into:

I p 0t (% d% 6 0%
a06 + 2on g5 T 0\ 592 + Ggr002 ) T g =0 42)

Equation (42) is just the in-plane governing equation
of the Euler—Bernoulli curved beam. Its solution can be
expressed as follows:

@0, 7) = y(0) exp(iowT) (43)

m, . . . . .
where w = Q.RZ\ / E—;‘ is the dimensionless characteristic

variable, with m, R, and ETl having the same meaning as the
curved pipe mentioned in Egs. (40)—(41).

Substituting Eq. (43) into Eq. (42) and applying the
DTM principle to this problem will yield the recursion
formula written as follows:

262
Y(n, +6) = ———————¥(n, +4)
l_L.=5 (ny +10) “
6: (1 —w?) 6% w* “4
- Y(1 +2) — —————Y(n))
T8,y +) e, () +i)

where n, denotes the n,th iteration in DTM.

If a C—C curved pipe is taken as an example, then dif-
ferential transformations of its boundary conditions can
be written as follows:

o

YO =Y()=YQ)= Y Y@n)= Y n¥@n)
n =0 n =1

o (45)
= Y m(n = DY(n) =0

n =2

With the combination of Eqgs. (44) and (45), and after
further manipulations, the result can be expressed in
matrix form as follows:

AY =0 (46)

where Al-j (i, j=1, 2, 3) are functions of w and
Y = {Y(3),Y(4),Y(5))".

By solving |A| = 0, the natural frequencies w,(n =1,
2, 3, ..., N) will be derived; in addition, Y(4) and Y(5) as
functions of Y(3) can be obtained simultaneously. There-
fore, the mode functions will be obtained after substituting
the natural frequencies and Y(3), Y(4), Y(5) into

N

%(0)= Y 0" Yy, @,) 47

n,;=0

. @ Springer
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Normalizing y, (0) will yield

Y,(0)

$,0) = —=L
Ji ya0)]do

(48)

where Y(3) is eliminated naturally and $,(0)(n =1, 2, 3, ...,
N) are just the results as expected.

6.2 Deduction by Galerkin Method

The solution of Eq. (40) can be written as follows:

N
£0, )= ) 9,0)q,(7) (49)
n=1

where g, (7) is the nth general coordinate, and N represents
the number of normalized mode functions.

By the same procedures as Egs. (14)—(16), a similar result
will be obtained as follows:

Kyunnsi + Gnsvdnxg + Mysnd s =Faxi (50
where
1 64 44 2a
. [ 49, , 4%, 44,
K= [ 5l G+ 200 G+ 0

! d* 1
= I 4 no_p6 o _ .
an = -/0 Ym Hop do? Hopy” dé, fm = ’/O ymf(é" T)dé

1 d357
do, G, =2u\/p6} / Sl == +06
0

(3) The study combining DTM and Galerkin discretization
can be extended to develop other hybrid algorithms,
especially for the combination of the method that can
deduce mode functions [e.g., VIM (Li and Yang 2017)]
and the Galerkin method.

(4) For further study, the application of the proposed
method may be extended to the analysis for nonlinear
static and dynamic responses of pipes conveying fluid.
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> B

do
de? P do

The next steps for Eqs. (17)—(25) are the same as with the
straight pipes, so there is no need to repeat them.

7 Conclusions

A new hybrid method combining differential transforma-
tion and Galerkin discretization is proposed for the first time
to study the dynamics of fluid-conveying pipes, and some
important conclusions are drawn as follows.

(1) The proposed method combines the advantages of
DTM in deducing mode functions and the Galerkin
method in discretizing partial differential equations,
thus demonstrating high accuracy and efficiency in
solving governing equations of fluid-conveying straight
pipes.

(2) The same steps as those used for straight pipes can
be taken for curved pipes, revealing that the proposed
method can be easily extended to curved pipes.

@ Springer
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