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Abstract
Recent advancements in additive manufacturing technology for metallic materials have paved the way for the creation of 
patient-specific implants with tailored mechanical properties for bone tissue reconstruction. To address the issue of stress 
shielding and improve osseointegration, the implants feature an architected internal structure with a unique design capable 
of mimicking the mechanical properties of the damaged bone. This study proposes a fast, simple, and clinically applicable 
approach for designing trabecular-like structures for tailored implants, specifically for the tibia component in knee joint 
replacement. The lattice structures with different solid fractions were designed and fabricated using the selective laser melting 
(SLM) technique and Ti-6Al-4V alloy. The mechanical behavior of the structures was evaluated through computational and 
experimental analysis, and compared with that of natural tibia bone. Moreover, the manufacturing robustness of the printed 
structures was assessed using X-ray computed tomography and microscopic examinations. Results show that the permeability 
of the fabricated structures ranges from 0.16 ×  10–9 to 0.38 ×  10–9  m2, comparable to that of trabecular bones. The stiffness 
and strength of the designed structures range from 1.08 to 4.47 GPa and 147 to 295 MPa, respectively, reasonably consist-
ent with natural bone. Finally, the study proposes a conceptual design framework that isolates the correlation between the 
solid fraction of the lattices and the expected biomechanical behavior. Overall, the study highlights the potential of additive 
manufacturing in creating geometrically complex and mechanically tailored implants for bone tissue reconstruction.

Keywords Patient-specific implant · Additive manufacturing · Selective laser melting (SLM) · Trabecular bone · TPMS 
structure

1 Introduction

In the field of biomedical applications, titanium and its 
alloys are widely used due to their unique properties, includ-
ing excellent mechanical properties such as high specific 
strength and stiffness, high fracture toughness, great corro-
sion resistance, and special biocompatibility (Dhiman et al. 
2021, 2019; Liu et al. 2020; Shah et al. 2016; Singh et al. 
2020; Singla et al. 2021). However, despite these desirable 
characteristics, one major drawback of titanium implants is 

their elastic modulus. The elastic modulus of titanium alloys, 
particularly Ti6Al4V, is 110 GPa (Geetha et al. 2009), which 
is higher than the elastic modulus of human bone ranging 
from 0.5 GPa to a maximum of 30 GPa (Katz 1980; Ma 
et al. 2019a, b). This modulus mismatch can lead to uneven 
load distribution at the interface of natural bone and implant, 
which in turn can cause implant loosening or autogenous 
bone fracture (Krishna et al. 2007). This phenomenon is 
referred to as “stress shielding,” which can decrease implant 
longevity (Aufa et al. 2022). One solution to this problem 
is the use of “micro-architected” implants with lightweight 
lattice structures. However, the architecture of these struc-
tures plays a critical role, as the geometry, strut size, and 
solid fraction not only affect the mechanical behavior of 
the implant but also cell attachment, growth, and nutri-
ent transport (Benedetti et al. 2021; Hsieh et al. 2021; van 
Blitterswijk et al. 1986). Therefore, the implant's geometry 
should be tailored to prevent osteonecrosis and osteogenesis 
deformities around the implant.
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In recent years, triply periodic minimal surfaces (TPMS) 
have garnered attention as a versatile option for micro-archi-
tected implants due to their zero-mean curvature and high 
specific surface area, which create a large surface area for 
cell growth (Bidan et al. 2013; Jinnai et al. 2002). TPMS 
structures have unique geometrical features that promote cell 
growth and attachment, and Bobbert et al. (2017) reported 
that they also possess relatively high strength with low stiff-
ness. The advantage of TPMS structures lies in their abil-
ity to be tailored to mimic the properties of injured bone 
by controlling their equations and modifying parameters 
such as channel sizes. Various types of TPMS structures 
exist, including Schwartz primitive, Schwartz diamond, and 
gyroid. Each structure has its own unique properties, and it 
is difficult to determine which structure is superior. How-
ever, the gyroid structure has been found to have excellent 
mechanical properties and interesting self-supported features 
(Yan et al. 2014). Studies comparing compressive and tensile 
strength of TPMS structures found that the gyroid structure 
exhibits the finest mechanical behavior (Yu et al. 2020). 
Barba et al. (2019) concluded that the choice of lattice topol-
ogy strongly influences the geometrical precision that can 
be achieved, and that the gyroid structure presents supe-
rior manufacturability and mechanical behavior. Therefore, 
the gyroid structure was selected for this work. Due to the 
complex and periodic architecture of TPMS structures, their 
three-dimensional (3D) production was not possible until the 
advent of 3D printing. Selective laser melting (SLM) is an 
additive manufacturing method that uses a powder bed and 
heat source to create 3D metal shapes with high dimensional 
accuracy. SLM enables the production of complex scaffolds 
with excellent quality that was impossible with conventional 
methods (Bertol et al. 2010; Mullen et al. 2009; Yuan et al. 
2019).

In light of the critical nature of producing implants that 
mimic the mechanical properties of damaged bones, this 
study aims to explore and evaluate the mechanical proper-
ties of various gyroid lattice structures with solid fractions 

of 0.16, 0.26, 0.36, and 0.56. Two groups of samples were 
produced using the Ti6Al4V alloy and SLM machine, 
respectively, to examine their manufacturability and mass-
flow properties while validating the numerical assessments 
of mechanical behaviors. In essence, the primary objective is 
to identify a new and straightforward correlation between the 
solid fraction (relative density) of the internal architecture 
of implants and their stiffness, strength, and energy absorp-
tion properties. The proposed equations offer a swift and 
practical method for designing trabecular-like structures of 
customized implants that can be readily employed in clini-
cal settings.

2  Materials and Methods

2.1  Design and Fabrication of Structures

The current investigation involved the conversion of the 
mathematical equation of the gyroid structure into a 3D 
computer-aided design (CAD) model, which was achieved 
using Rhinoceros 7 commercial software in conjunction with 
the Grasshopper plugin. Subsequently, the Autodesk Netfabb 
Ultimate 2021 software was utilized to modify and prepare 
the model for 3D printing. The theoretical equation of the 
gyroid structure is presented in Eq. (1) below, which was 
adapted from a review on equations for TPMS geometries 
by von Schnering and Nesper (1991) and a combination of 
works presented in the literature (Feng et al. 2019; Yan et al. 
2014; Yu et al. 2020; Barba et al. 2019).

Here, the variables a, b, and c determine the solid frac-
tion of the structure, which refers to the relative density of 
the struts and equals the ratio of the struts' volume to the total 
volume. These variables also determine the strut and cell size 
of the structure. Figure 1 illustrates different views of a gyroid 

(1)cos(ax)sin(by) + cos(by)sin(cz) + cos(cz)sin(ax) = 0

Fig. 1  a Gyroid unit cell architecture in front, b top, and c 3D views
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unit cell. The present study involved the design of five differ-
ent gyroid TPMS structures, each with identical strut sizes of 
300 µm and different solid fractions of 0.16, 0.26, 0.36, and 
0.56. The dimensions of the designed samples were selected 
to be 6 × 6 × 12 mm based on the ISO13314 standard. As rep-
resented in Fig. 2, two groups of samples with solid fractions 
of 0.26 and 0.56 were manufactured in an argon gas atmos-
phere by an SLM machine (NOURA M100P) with optimized 
parameters, maximum laser power of 300 W, and layer thick-
ness of 30 µm. The Ti6Al4V powder used for this fabrication 
was gas-atomized with a nearly spherical shape and particle 
size of less than 65 µm. The powder’s elemental composition 
is reported in Table 1. The building direction was in parallel 
with the Z axis of CAD models, and 400–450 slices formed 
the final shapes (Fig. 2). At the end of fabrication, all samples 
were removed from the platform by a wire-cutting machine 
and ultrasonically cleaned. In order to remove the unsintered 
powder, post-processing sandblasting was performed on all 
specimens.

2.2  Measurement and Morphological 
Characterization

In order to evaluate the manufacturability of designed lattices, 
a micro-computed tomography (micro-CT, LOTUS in Vivo) 
was utilized to scan the samples and characterize their 3D 
morphology. For this purpose, a 10-µm-resolution micro-CT 
scanner was used at a tube voltage of 90 kV and tube current 
of 58 μA. Thereafter, 3D models were reconstructed using 
Avizo Lite 2019 software.

Calculating the percentage of solid and empty parts is a 
theoretical impossibility without precise knowledge of the 
structures' densities. As a result, the samples were immersed 
in alcohol for 2 h, after which their densities were determined 
using Archimedes' formula. This formula is presented in 
Eq. (2) (Léon Y León 1998; Yánez et al. 2018):

 where �s is the sample density, Wa and Walc are the weights 
of the samples in air and alcohol, respectively, and �alc is the 

(2)�s =

(

�alc ∗ Wa

Wa −Walc

)

density of alcohol (0.789 g/cm3). Following the determina-
tion of the density, the relative density (solid fraction) was 
then calculated using Eq. (3) (Léon Y León 1998; Yánez 
et al. 2018), where �d is the theoretical bulk density of 
Ti6Al4V (4.42 g/cm3):

The microstructure of the structures was examined using 
an optical microscope (Dino Eye. AM 423X) and a scan-
ning electron microscope (SEM, VEGA3 TESCAN) for 
finer details. However, before conducting any microstructure 
observations, the samples were cut, mounted, grounded by 
SiC papers (#500, #800, #1000, #1500, and #2000), polished 
with diamond paste, and etched for 35 s in Kroll etchant 
solution (100 ml H20, 5 ml  HNO3, and 2.5 ml HF).

2.3  Permeability Measurement

To assess the permeability of the samples, the falling-head 
method was employed, with each structure undergoing three 
separate measurements to ensure precision of data. Figure 3 
illustrates the experimental setup where the sample was 
affixed to the end of the standpipe, which was then filled 
with water. The time t1 and t2 were recorded at heights L1 

(3)Pv =

(

�s

�d

)

Fig. 2  a The building orienta-
tion of samples in the manu-
facturing process, and b the 
manufactured samples

Table 1  Chemical composition of Ti6Al4V powder used in this study

Element Min. wt% Max. wt%

Al 5.50 6.75
V 3.50 4.50
Fe – 0.30
O – 0.20
C – 0.08
N – 0.05
H – 0.015
Y – 0.005
Other elements each – 0.10
Other elements total – 0.40
Ti Bal
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and L2, respectively, which were constant for all samples. 
Utilizing Darcy’s law (Eq. 4), the permeability ( k ) was cal-
culated as follows:

where � represents the dynamic viscosity coefficient of 
water, � is the density of water, g is the gravitational con-
stant, and K is the hydraulic conductivity, which is deter-
mined by the following formula (Eq. 5):

Here, H represents the height of the samples, and a and 
A denote the cross-sectional areas of the standpipe and sam-
ples, respectively (Li et al. 2019a, b; Pennella et al. 2013).

(4)k =
K�

�g

(5)K =
aH

A(t2 − t1)
ln

(

L1

L2

)

2.4  Mechanical Behavior Evaluation

The creation of a finite element model (FEM) for the 
numerical analysis of designed structures was accom-
plished using Abaqus/Explicit. The 3D models were posi-
tioned between two rigid plates: the lower plate was fixed, 
and all its degrees of freedom were closed, while the upper 
plate was movable and loaded along the Z axis at a con-
stant speed. The upper surface of the sample was subjected 
to a vertical displacement that compressed the specimen 
to 50% of its length, with half the length of the sample 
being the applied boundary conditions, as shown in Fig. 4.

For the finite element analysis, isotropic material prop-
erties were considered, and since it has been established 
that the mechanical properties of additively manufac-
tured materials differ from those of conventionally pro-
duced materials, the properties of additively manufac-
tured Ti6Al4V alloy were obtained from the literature 
and inserted into Abaqus. For the elastic properties, an 
elastic modulus of 107 GPa and a Poisson's ratio of 0.3 
were used (Wang and Li 2018). The plastic deformation 
of Ti6Al4V is described by the Johnson–Cook plasticity 
model (Johnson and Cook 1983), which accounts for strain 
rate, thermal softening, and strain hardening. According 
to the model, the flow stress in plastic region can be rep-
resented by the equation below:

where A , B , N , C , and M are constant values of material-
related parameters according to the flow stress data, and εe , 
ε̇p , and ε̇0 are the equivalent plastic strain, equivalent plastic 
strain rate, and the reference equivalent plastic strain rate, 
respectively. Troom is the room temperature, and Tm is the 
absolute melting temperature. The input parameters of the 
Johnson–Cook model for Ti6Al4V were obtained from 

(6)

σs =

[

A + B
(

εe
)N

]

.

[

1 + Cln
(

ε̇p

ε̇0

)]

.

[

1 −

(

T − Troom

Tm − Troom

)M
]

Fig. 3  Schematic of permeability measurement (falling-head method)

Fig. 4  Boundary conditions in 
simulation
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previous studies (Wang and Li 2018; Wauthle et al. 2015), 
as listed in Table 2.

To bridge the gap between simulated and real behavior, 
a compression test was performed on two lattice structures 
having solid fractions of 0.26 and 0.56. The unidirectional 
compression tests were conducted on these samples at room 
temperature using a universal testing machine, in accord-
ance with ISO13314 instruction. The test was performed at 
a constant strain rate of 0.5 mm/min, and the load–displace-
ment curve was recorded. The resulting data was then used 
to calculate the stress (σ), strain (ε), elastic modulus (E), and 
yield strength (σy) for each test. Finally, stress–strain curves 
were plotted using the obtained data.

3  Results and Discussion

3.1  Manufacturability

Figure 5 presents a comparison between the 3D models of 
primary CAD files and their reconstructed counterparts 
using micro-CT data, along with their respective cross sec-
tions. It is evident that the samples were successfully built 
with a high degree of dimensional accuracy. Moreover, the 
SEM images of the samples' top surfaces depicted in Fig. 6 
further support this observation. Table 3 tabulates the solid 
fraction and channel size of the samples obtained from mul-
tiple sources, including micro-CT data, density measure-
ments, microscopic observations, and the CAD files. The 
table shows that the channel sizes of the manufactured sam-
ples are slightly smaller than the designed values. Specifi-
cally, the strut size increased from 300 µm to approximately 
315 µm after the manufacturing process. However, this is a 

Table 2  Constitutive parameters 
of the Johnson–Cook plasticity 
model used in the FEM

A (MPa) B (MPa) N C M

1567 952 0.4 0 0

Solid fraction 0.26 Solid fraction 0.56

3D-Model Cross Section 3D-Model Cross Section

C
A

D
M

ic
ro

-C
T

1 mm

1 mm 1 mm

1 mm

Fig. 5  3D designs and cross section of samples from both CAD and micro-CT data
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known outcome of the SLM process, where the thermos-
capillary flow results in unstable molten pools, leading to a 
relatively small difference in strut size that can be ignored 
(Gu et al. 2013; Lee et al. 1998; Ma et al. 2019b; Rombouts 
et al. 2006; Yadroitsev et al. 2007). This also explains the 
higher solid fraction observed after the construction of the 
samples.

Microstructural characterization of the samples (Fig. 7) 
revealed that both groups exhibit the same type of micro-
structure, namely the α’ phase, which comprises fine and 
orthogonally oriented martensitic laths. The formation of 

this phase is a consequence of the rapid cooling rate dur-
ing the SLM process, as many of the previous β transforms 
into the acicular α’ martensitic phase (Eshawish et al. 2021; 
Fotovvati et al. 2012).

3.2  Permeability

Permeability is a crucial parameter for analyzing the mass 
transport characteristics of lattice structures, as they can 
significantly impact bone growth (Hollister 2005; Sanz-
Herrera et al. 2008; Jones et al. 2009; Mitsak et al. 2011). 
Quantitatively, permeability measures the ability of a porous 
structure to conduct fluid flow, which is influenced by a 
combination of interconnectivity, solid fraction, channel 
size, orientation, and tortuosity. It is important to note that 
inadequate permeability values may lead to the formation 
of cartilaginous instead of bone tissue, while higher values 
have been shown to enhance bone ingrowth (Kemppainen 
2008; Jeong et al. 2011; Mitsak et al. 2011).

The values of permeability in trabecular bone depend on 
different factors, such as the anatomic site and age of the per-
son. For instance, Nauman and colleagues (1999) reported 
that the permeability of the proximal femur is significantly 

Fig. 6  SEM images from top 
surfaces of samples with solid 
fractions of a 0.26 and b 0.56

Table 3  Geometrical data obtained from the design and the computa-
tion

Solid fraction, % Channel size, µm

Designed Micro-CT Density 
measure-
ments

Designed Micro-CT Micro-
scopic 
obser-
vations

26 29 31 1600 1510 1530
56 56 58 600 550 560

Fig. 7  Optical microscopy 
(OM) images from etched 
surfaces of samples with solid 
fractions of a 0.26 and b 0.56. 
Typical acicular martensitic α’ 
phases are indicated by arrows
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greater than that of the vertebral body. Hence, a range of 
permeabilities is found in the literature (1.00 ×  10–11 to 
1.21 ×  10–8  m2), rather than a specific value. In the present 
study, the permeabilities of samples with solid fractions of 
0.26 and 0.56 were found to be 0.16 ×  10–9 and 0.38 ×  10–9 
 m2, respectively. In both cases, the values are applicable, and 
as evident, the higher permeability of the 0.26 solid fraction 
is due to its larger channel size. A straight-through connect-
ing structure would result in a higher permeability, and the 
obstructive structure of the gyroid against the fluid flow is 
the reason why the permeabilities of structures in this study 
are not in the higher-value part of the abovementioned range.

3.3  Mechanical Properties

3.3.1  Compression Behavior

The stress–strain behavior of the structures under investiga-
tion is graphically depicted in Fig. 8. The initial linear region 
represents the elastic behavior, where the slope of the curve 
reflects the stiffness or elastic modulus of each structure. 
At the end of this zone, the highest peak on the curve sig-
nifies the maximum stress and strength the structures can 
withstand. Subsequently, the curves enter the plastic region, 
where even with a slight increase in stress, a wide range of 
strain and deformation can be observed, making them suit-
able for high-energy absorption applications (Zhang et al. 
2021). For solid fractions of 0.36 and 0.56, the last portion 
of the curves, where the stress increases after the plateau 
region, is referred to as densification. This increase in stress 
is due to the struts of the structures coming into contact 
with each other. However, samples with lower solid frac-
tions did not experience this phenomenon. Figure 9 illus-
trates the displacement and von Mises stress distributions 
of samples at different strains, highlighting the densification 
of the structures.

The stress–strain curves obtained from the uniaxial 
compression tests of manufactured structures are depicted 
in Fig. 10, along with images of the compressed samples. 
These curves exhibit good stability and follow a similar 
trend to those obtained from the finite element analysis. 
The fluctuations observed in the plateau region indicate 
that the structure fails layer by layer. Table 4 provides the 
results of the experiments, in addition to the finite element 
analysis results. Consistent with the finite element analysis 
findings, the sample with a solid fraction of 0.56 displays a 
higher yield strength and stiffness in the compression test. 
An increase in the solid fraction leads to a corresponding 
increase in the stiffness and yield strength of the structures. 
Designing the implant in a way that its stiffness is within 
the appropriate range (1.30–5.3 GPa for tibia, femur, and 
proximal bone; Gibson and Ashby 2014) can prevent the 
stress shielding phenomena. As the table demonstrates, the 
elastic modulus of structures in this research is also within 
this range. Discrepancies between the experimental and 
numerical values can be attributed to factors such as dis-
crepancies between the fabricated lattice geometry and the 
nominal CAD input, manufacturing imperfections, unmelted 
powders, and surface abnormalities (Wauthle et al. 2015; 
Dallago et al. 2018). Nonetheless, a discrepancy of less than 
10% between the experimental and finite element analysis 
results is considered acceptable, which is in line with the 
literature (Dallago et al. 2018).

3.3.2  Mechanical Properties and Solid Fraction Relations

The correlation between mechanical properties of lattice 
structures and their solid fraction (or relative density) can be 
described by the exponential function proposed by Gibson 
and Ashby (2014), which is shown below:

where ρ is the solid fraction or relative density of the struc-
ture, E0 and �0 are the offset of the elastic modulus and yield 
strength, respectively, and C1,C2, n and m are the material 
and structural constants. By plotting the changes in the 
mechanical properties of structures based on their solid 
fractions on a logarithmic scale, the constants of Eqs. (7) 
and (8) can be determined (Fig. 11). These equations can 
be utilized to simplify the process of customized implant 
design. Based on the required strength and stiffness (deter-
mined by factors such as age, gender, bone density, etc.), 
the safe and appropriate solid fraction range of the implant 
can be selected using the derived equations. This method 
can greatly facilitate the development of personalized and 
customized implants.

(7)E∗ = C1�
n + E0

(8)�
∗ = C2�

m + �0

Fig. 8  Stress–strain curves from finite element analysis for different 
solid fractions
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U = 1 mm U = 2 mm U = 3 mm

0.16

0.26

0.36

0.56

0.16

0.26

0.36

0.56

(a)

(b)

Fig. 9  Compressive deformation at different compressive strains: a) von Mises stress and b) displacement distributions
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3.3.3  Energy Absorption Evaluation

The energy absorption capacity is a determining charac-
teristic of lattice structures to evaluate their mechanical 
properties. The solid fraction or relative density is one of 
the most influencing parameters of cellular structures, and 

therefore, understanding the relationship between relative 
density and energy absorption properties is of great impor-
tance. The energy absorption of the structures during the 
compression test can be calculated as below by integrating 
the stress–strain curve (Li et al. 2019a, b; Ma et al. 2021; 
Zhang et al. 2021):

Fig. 10  Stress–strain curves 
from the compression test and 
compressed samples

Table 4  The effect of relative 
density on the mechanical 
properties of structures

Solid fraction Stiffness, GPa Yield strength, MPa

Experiment Simulation % error Experiment Simulation % error

0.16 – 1.08 – – 147.02 –
0.26 2.41 2.23 −7.1 171.42 168.78 −1.5
0.36 – 3.07 – – 232.24 –
0.56 4.63 4.47 −2.1 305.17 295.13 −3.3

Fig. 11  Relationship between a relative stiffness, and b relative strength and relative density for implant design
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where �d is the maximum strain at the onset of the densifi-
cation stage. The densification strain ( �d ) is defined as the 
corresponding strain to the maximum energy absorption effi-
ciency �(�) , which can be written as follows (Li et al. 2006):

where �(�) is the peak stress during the deformation up to 
the strain � . In effect, the densification strain refers to the 
corresponding strain to the peak point of the energy absorp-
tion efficiency curve. Specific energy absorption ( SEA ), 
which is shown in Eq. 11, is the most common method used 
to reveal the energy absorption capability (Li et al. 2019a, 
b; Ma et al. 2021; Zhang et al. 2021):

where � is the relative density of the structure. The relation-
ship between the energy absorption and the specific energy 
absorption values of lattice structures, as well as strain 
values for different solid fractions, is presented in Fig. 12. 
Furthermore, the energy absorption efficacy of the samples 
obtained from both experimental and numerical methods 
is listed in Table 5, revealing an increase in energy absorp-
tion capacity with the increase of relative density. Notably, 
the results obtained from both methods indicate an accept-
able similarity. Although the energy absorption capacity of 
the designed structures is observed to increase with solid 
fraction, the specific energy absorption of the samples falls 

(9)W =

�d

∫
0

�(�)d�

(10)�(�) =
∫ �0

0
�(�)d�

�

(

�0

) ,
d�(�)

d�
|

�=�
d
= 0

(11)SEA =
∫ �

d

0
�(�)d�

�

within a similar range, suggesting that the samples possess 
analogous energy absorption properties due to their compa-
rable structures. However, upon calculating energy absorp-
tion efficacy values from experimental and finite element 
method (FEM) results, it is evident that the samples with a 
solid fraction of 0.26 exhibit the highest values. This can be 
attributed to the compression behavior of this sample, which 
exhibits a stress–strain curve with fewer fluctuations. The 
smoother stress–strain curve, combined with the higher den-
sification strain in samples with lower solid fractions, ena-
bles them to absorb more energy at the same stress. Moreo-
ver, it is observed that as the solid fraction increases from 
0.26 to 0.56 mm, the energy absorption efficiency of the 
structures is considerably reduced by approximately 26%. 
This decline is attributed to the higher densification strain 
of the sample with a solid fraction of 0.56. In conclusion, 
the energy absorption capacity of structures increases with 
an increase in solid fraction. Additionally, while all struc-
tures display relatively similar energy absorption behavior, 
structures with lower solid fractions exhibit higher values of 
energy absorption efficacy.

Fig. 12  a Energy absorption and b specific energy absorption of the structures versus strain

Table 5  Energy absorption efficacy values obtained from compres-
sion tests and FEM

Solid fraction, % Energy absorption efficacy, %

Experiment Simulation % error

16 – 72.38 –
26 76.46 80.44 5.2
36 – 64.67 –
56 58.19 54.12 − 7
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4  Conclusions

This study aimed to establish a clear correlation between 
the solid fraction of the gyroid lattice structure and its 
mechanical properties, such as stiffness, strength, and 
energy absorption. This information is critical for the 
development of custom trabecular bone implants. Specifi-
cally, the study focused on the tibia component of knee 
joint replacements. To investigate the relationship between 
the solid fraction and mechanical properties, gyroid struc-
tures with solid fractions of 16%, 26%, 36%, and 56% were 
designed and analyzed using finite element analysis. To 
validate the simulation results and evaluate the manufac-
turability and permeability of the structures, two of the 
structures with solid fractions of 26% and 56% were fab-
ricated using the SLM technique. The key findings of the 
study are presented below.

1- Ti6Al4V lattices with gyroid structures were produced 
using selective laser melting (SLM) and exhibited stable 
manufacturability. The accuracy of the solid fractions 
and the manufacturing deviation of the struts and chan-
nels size confirmed the stability of the manufacturing 
process.

2- The permeability behavior of the gyroid structures was 
evaluated through an experimental method. The per-
meability of the samples ranged from 0.16 ×  10–9 to 
0.38 ×  10–9  m2, similar to the permeability range of the 
tibia bone. Furthermore, the permeabilities decreased 
as the solid fraction increased. However, the straight-
through connecting structure of the gyroid structure 
exhibited an obstructive behavior against fluid flow.

3- FEM and experimental assessment of the compres-
sion behavior of the Ti6Al4V gyroid lattices produced 
by SLM revealed that the structures have adjust-
able mechanical properties. The structures can reduce 
implant stiffness to the same range as trabecular bone 
stiffness. The stiffness and yield strengths of the 
gyroid lattices ranged from 1.08 to 4.47 GPa and 147 
to 295 MPa, respectively, satisfying the requirements 
of natural trabecular bones. The designed structures 
can match the stiffness of human bone by altering the 
solid fraction, thereby reducing the probability of stress 
shielding phenomenon and implant failure. Additionally, 
their high mechanical strength prevents implant failure 
under mechanical loading.

4- The mechanical behavior assessment of Ti6Al4V gyroid 
lattices fabricated using SLM showed that the solid frac-
tion of the structure plays a crucial role in determining 
its strength and stiffness. These relationships can be uti-
lized to select the optimal solid fraction of the structure 
for implant design, taking into account the patient's age 

and bone density. By doing so, personalized implant 
design can be simplified and accelerated.

5- Increasing the solid fraction of the gyroid structure leads 
to improved energy absorption capability. However, spe-
cific energy absorption values were relatively similar 
across all structures due to their identical lattice struc-
ture. Among the structures evaluated, the gyroid lattice 
with 26% solid fraction exhibited the highest energy 
absorption efficacy due to its smoother stress–strain 
curve and high densification strain. The results dem-
onstrated that gyroid lattices with lower solid fractions 
are capable of absorbing more energy at the same stress 
compared to those with higher solid fractions.
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