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Abstract
Several studies have addressed stiffness analysis through different available methods including finite element analysis (FEA) 
and the virtual joint method (VJM) among others. However, matrix structural analysis (MSA) has not been used, although 
previous research has shown that it provides reliable results. Therefore, this paper focuses on the kineto-static analysis of a 
three-degree-of-freedom symmetrical parallel kinematic manipulator (PKM) with curved links, known as a spherical parallel 
manipulator (SPM). First, kinematic modeling is introduced through the inverse kinematic problem and the Jacobian matrix; 
then a detailed study of the stiffness modeling is established. Secondly, the force–deflection relationship is studied in the 
form of a numerical calculation and a graphical representation. Moreover, the kinematic redundancy is derived. Through 
MATLAB simulations, the deflection of the joints in both parts, translation, and rotation, is graphically represented using a 
numerical calculation method. Comparatively, SPM is purposefully compared to VJM in order to determine the efficiency 
of the proposed method. Interestingly, kinematic redundancy leads to better SPM performance, in which adding extra links 
(legs) to the robot strengthens the SPM structure and yields less joint deflection. It is worth noting that the MSA technique 
successfully deals with complex structures such as closed-loop chains, which is clearly apparent in the simplicity of its 
mathematical model toward the considered robot.

Keywords Spherical parallel manipulator · Stiffness analysis · Matrix structural analysis · Kinematic redundancy · Joint 
deflection

1 Introduction

Stiffness analysis of a mechanical structure is a significant 
area of focus in research nowadays. It refers to the impact of 
applied wrenches and external physical loads on the body of 
a mechanism, and how the structure reacts with respect to its 
accuracy and positioning errors (Pashkevich et al. 2011). In 
particular, industrial robots with serial, parallel, and hybrid 
kinematic architecture have become popular topics in many 
fields, such as manufacturing and machining tools, medical 
devices such as wrist and ankle rehabilitation devices (Mar-
tinez et al. 2013; Pehlivan et al. 2012), exoskeleton systems 
(Christensen and Bai 2018), haptic devices for teleoperation 
surgery (Saafi et al. 2013), and other applications. Paral-
lel manipulators are intended to be used with more preci-
sion to enable a larger workspace, and to be strengthened 
compared to serial manipulators due to various advantages. 
On the other hand, closed-loop chains could be challeng-
ing in terms of kinematic modeling, stiffness analysis, and 
so on. Hence, this paper focuses on stiffness analysis of a 
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three-degree-of-freedom parallel manipulator with spheri-
cal links (legs). To solve this problem, many studies have 
been conducted on a variety of methods to determine the 
stiffness modeling. We distinguish the most well-known 
methods in the literature, such as finite element analysis 
(FEA) (Taghaeipour et al. 2010; Piras et al. 2005; Klimchik 
et al. 2012; Azulay et al. 2014), virtual joint method (VJM) 
(Pashkevich et al. 2009; Klimchik et al. 2017), matrix struc-
tural analysis (MSA) (Deblaise et al. 2006; Nagai and Liu 
2008), and weighted topological graph-based MSA (Li et al. 
2017). The FEA method is based on the subdivision of a 
physical model of the robot structure into smaller particles 
(parts), which are formed by a meshing technique. The MSA 
approach is based on FEA but is more accurate and practi-
cal in the case of kinematics manipulators with a closed-
loop chain due to the redundancy of the degrees of freedom 
and a complex and time-consuming numerical calculation. 
The VJM is the most simplistic and limited approach and 
is built on the extension of the main rigid body with virtual 
joints according to the elastic deformation of its links, joints, 
and actuators. Previous research (Taghvaeipour et al. 2012; 
Popov et al. 2019; Cammarata 2016) has implemented the 
aforementioned approaches to solve the structural stiffness 
problem. Stiffness modeling of different types of kinematic 
parallel manipulators (PKMs) has been studied extensively; 
however, little research has been conducted to investigate 
the spherical parallel manipulator (SPM). The general struc-
ture of an SPM is represented through the MSA technique 
for medical application, namely a rehabilitation instrument 
(Popov et al. 2019). SPM robots play an important role in 
medical applications, including rehabilitation devices and 
teleoperation instruments for surgery, due to the high preci-
sion that the mechanisms can offer, as well as their ability 
to perform complex motion and orientation in three-dimen-
sional space. Recent contributions to the MSA technique 
include the work of Wu et al. (2014), who surveyed stiff-
ness analysis modeling of different types of SPMs using the 
VJM approach. Further, Castigliano’s theorem is reported 
for calculating the limb deflection. Thus, this paper aims to 
delve into stiffness analysis modeling of a three-degree-of-
freedom coaxial SPM which is dedicated to medical field 
application when applying the MSA technique, where one 
of the complicated constraints is to kinematically model the 
SPM’s structure due to its complex quadratic equation sys-
tem. Hence, the MSA method is based on the obtained kin-
ematics modeling. In addition, the force–deflection relation-
ship is represented with regard to translation and orientation 
deflection, and a comparison study is carried out to validate 
the proposed approach. The rest of the paper is organized 
as follows: Section 2 presents a detailed kinematic analy-
sis. Section 3 covers the stiffness modeling for the proposed 
computer-aided design (CAD) of the coaxial SPM. Sec-
tion 4 presents the obtained results and discussion. Section 5 

summarizes the main contributions. Finally, Sect. 6 is dedi-
cated to a comparison study with VJM method.

2  Kinematic Analysis Modeling

Kinematic analysis is an important step in modeling robotics 
manipulators before CAD design. Parallel kinematic manipu-
lators are more challenging to model than serial manipulators 
due to their closed-loop chains. A fundamental characteristic 
of a three-degree-of-freedom (DOF) SPM with revolute joints 
(R), as illustrated in Fig. 1, is the use of three identical kin-
ematic chains with a curved linkage, and the links attach the 
mobile platform to the fixed platform. The center of rotation 
is located inside its kinematic structure as the gravity center 
which divides the robot structure into two symmetrical pyra-
mids. Both platforms have the similar angles, vi , while the 
three links that link the base platform have identical angles, � . 
Furthermore, � and � are the angles of the orientation of the 
lower and upper regular pyramids, respectively. The joints of 
the fixed platform are known as proximal joints, and their axes 
are labeled by the unit vector ui . The joints of the end effector 
are called the distal joints, its axis is a vector vi , and the last 
set of joints between the proximal and distal links are called 
the intermediate joints; wi is a unit vector applied to refer to 
its axes. Regarding the structure of the manipulator, it is con-
nected in such a way that the axes of all the rotating joints 
intersect at a common point, which represents the center of the 
manipulator. The other choice of the coordinate system when 
analyzing the structure of the SPM is the most important issue. 
For example, Gosselin et al. (1994) obtained a simple solution 

Fig. 1  Kinematics description of the ith leg of the SPM
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of the direct kinematics of the SPM by taking advantage of the 
isotropy of the mechanism configuration where the axes of the 
joints of the fixed platform coincide with the Cartesian coor-
dinates. In this case, the end effector moves with the mobile 
platform, namely the coordinate system and the convention.

2.1  Coordinate System

The coordinate system is considered to adequately represent 
all motions in practice. Therefore, the 12 sets of Euler angles 
cannot be applied. A new and less familiar coordinate rep-
resentation, called tilt and twist angle, is used to describe 
the orientation of the motions of the complicated mecha-
nism. In Bonev and Ryu (2001), the accessible workspace 
of a six-DOF parallel manipulator is represented in terms of 
the modified Euler angles, and in Bonev et al. (2002), this 
method is applied for symmetric mechanisms. The rotation 
matrix of tilt and torsion can be expressed in Eq. (1):

Based on the Denavit–Hartenberg convention (Niyetkaliyev 
and Shintemirov 2014), the mobile platform takes the form 
of a successive multiplication from the robot's fixed base to 
the end-effector platform represented in Eq. (2):

where TBp and TMp stand for the transformation matrix of the 
base and moving platform, respectively, while TL1 and TL2 
represent the transformation matrix of curved links (link 1 
and link 2). The resulting matrix product Tsystem is related to a 
vector ui that represents the orientation axis for the actuated 
joints, as given by Eq. (3):

�i is formed at the base platform according to the symmetry 
of the upper and lower pyramids, thus it is denoted as in 
Eq. (4):

Furthermore, the unit vector wi can be calculated in terms of 
ui , as described in Eq. (5):

(1)R(�, �, �) =

⎡
⎢
⎢
⎣

c�c�c(� − �) − s�s(� − �) − c�c�s(� − �)s�c(� − �) c�c�

s�c�c(� − �) − c�s(� − �) − s�c�c(� − �) − c�s(� − �) s�s�

−s�c(� − �) s�s(� − �) c�

⎤
⎥
⎥
⎦

(2)Tsystem =

3∏

i=1

TBP.TL1.TL2.TMP

(3)ui =

⎡
⎢
⎢
⎣

−sin�i . sin �

−sin�i . sin �

cos �

⎤
⎥
⎥
⎦

(4)�i =
2(i − 1)�

3

where �i , ( i = 1, 2, 3 ) is the angle of the three actuated 
motors.

The unit vector of the axis of the distal link vi is a function 
of the orientation of the moving platform; thus,

noting that the Tsystem is the aforementioned rotation matrix, 
and v∗

i
 is the unit vector of the axis of the top link joints.

2.2  Inverse Kinematic Problem

The orientation and position of the moving platform (robot’s 
end-effector) are expressed using the inverse kinematic 

(5)wi =

⎡
⎢
⎢
⎣

−s�i.s� .c�1 +
�
c�i.s�i − s�i.c� .c�i

�
.s�1

−c�i.s� .c�1 +
�
c�i.s�i − s�i.c� .c�i

�
.s�1

−c� .c�1 + s� .c�i.s�1

⎤
⎥
⎥
⎦

(6)vi = Tsystem.v
∗

i

problem (IKP). In general, inverse kinematics is much easier 
to solve in the case of parallel kinematic manipulators. Most 
often, inverse kinematics in the case of PKMs is carried out on 
its geometry configuration and its structural features; likewise, 
the most known geometric approach is the vector method, 
which is a well-known method. Moreover, for a parallel robot 
with a spherically geometric structure, there are some geomet-
ric properties (all dimensions that characterize the architecture 
structure, namely, the mechanism’s height, proximal and distal 
link dimensions and curved angles, and the radius of the fixed 
and mobile platforms) that are different from the ordinary gen-
eral SPM architecture. Under the selected coordinate system, 
the unit vector ui as prescribed in Eq. (3), for the case of a 
closed-loop chain of the SPM, is given in Eq. (7):

with ( i = 1, 2, 3 ). Equation (8) defines the relationship 
between the proximal and distal links:

In order to solve the polynomial equations system that is 
developed using the angle tangent identities and which can 
be expressed by Eq. (9):

(7)wi.vi = cos �2

(8)A.xi
2 + 2B.xi + C = 0
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We get the quadratic form as reported in Eq. (10):

with the coefficients presented in Eq. (11)

where vix , viy , andviz are the components of the vector vi . In a 
more explicit form, we can write vi as in Eq. (12):

The inverse kinematics problem is presented as an easy-to-
follow algorithm. It was first developed by Tursynbek and 
Shintemirov (2021). Equation (10) represents a system of 
quadratic equations, which require an analytical develop-
ment (Gosselin and Lavoie 1993).

2.3  Workspace Analysis

Workspace analysis is one of the most important parts of 
studying the robot’s kinematics and allows one to represent 
all possible sets of points (volume) that the robot’s end effec-
tor can reach. More importantly, workspace modeling of a 
parallel kinematic manipulator such as our case of study 
(coaxial SPM and general structure SPM) can be used as an 

(9)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

cos �i =
1−t2

i

1+t2
i

sin �i =
2ti

1+t2
i

ti =
�i

2

(10)A.t2
�i
+ 2B.t�i + C = 0

(11)

⎧
⎪
⎨
⎪
⎩

A = −viy. sin �1 − viz. cos �1 − cos

B = vix. sin �1
C = viy. sin �1 − viz. cos �1 − cos �2

(12)vi =
[
v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z

]

effective tool to optimize the considered robots by determin-
ing their singularity volume.

Basically, two main types of SPM structure are repre-
sented through the ( ZYZ ) axis, and since the workspace is 
essentially based on its developed inverse kinematics, real 
solutions express the reachable workspace, while unreal 
solutions demonstrate a singularity set of points. The 
graphical representation shows the workspace of both SPM 
structures, where Figs. 2 and  3 represent the general SPM 
architecture and the proposed coaxial SPM workspace, 
respectively. Both figures are divided into two main sections, 
where the green color refers to the reachable workspace area, 
whereas the red color section refers to the singularity volume 
area.

It can be noted that the singularity volume of the coaxial 
SPM is reduced compared to the general SPM structure. 
The Cartesian workspace shows a full three-dimensional 
(3D) set of points representing all possible points that the 
mobile platform can reach. The solutions of Eq. (10) are 
graphically represented in Figs. 2 and  3, which is a half 
sphere-like shape.

2.4  Jacobian Matrix

We have established so far the mathematical modeling of 
both inverse and forward kinematics of the 3-RRR SPM. The 
focus of this section is to determine the mechanism’s Jaco-
bian matrix. Basically, the Jacobian matrix can be derived 
from the relationship between the static forces of the robot’s 
manipulator and its velocities. The Jacobian matrix of the 
3-RRR spherical coaxial parallel manipulator is represented 
in Eq. (13):

Fig. 2  Cartesian workspace of general SPM
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To emphasize, Eq. (13) refers to the angular velocity vec-
tor of the mobile platform, and is the Jacobian matrix that 
connects the actuated joints vector. In general, the Jacobian 
matrix of parallel kinematic manipulators can be derived 
from the differentiation of its inverse kinematics. Thus, dif-
ferentiating both sides of Eq. (7), we get the following Eq. 
(14):

with

As expressed in Gosselin and Lavoie (1993), the Jacobian 
matrix can be also defined as in Eq. (16):

In a more simplified mathematical representation, we can 
describe the Jacobian matrix with Eq. (17):

with

(13)�̇� = J.𝜔

(14)�̇�ivi + 𝜔iv̇i = 0

(15)
{

v̇i = 𝜔vi
�̇�i = �̇�.ui

(16)J = −J−1
2
.J1

(17)J1𝜔 + J2�̇� = 0

(18)J1 =

⎡
⎢
⎢
⎢
⎣

�
w1 × v1

�T
�
w2 × v2

�T
�
w3 × v3

�T

⎤
⎥
⎥
⎥
⎦

(19)J2 =diag
(
w1 × u1.v1,w2 × u2.v2,w3 × u3.v3

)

3  Stiffness Analysis

Mechanical structures such as robotic applications and 
industrial mechanisms depend on external wrenches 
(force and moment). These applied forces can affect their 
kinematic and dynamic behavior, causing singular states 
within the robot’s workspace, making it difficult to con-
trol the robot. Thus, stiffness modeling plays an important 
role in the design of any mechanical structure. It allows 
engineers to achieve an optimal design for a predefined 
task. However, to conduct mechanical stiffness analysis, it 
is recommended to use an appropriate method that relies 
on a simple calculation, which provides an accurate and 
resilient method that can handle multiple cases (flexible 
or rigid body, active or passive joints, open or closed-loop 
chains) (Klimchik et al. 2019). For this reason, the MSA 
technique is derived to calculate the stiffness of a spheri-
cal parallel manipulator (SPM) with three degrees of free-
dom. In addition, the force–displacement relationship is 
established to demonstrate the physical meaning of the 
application of external forces to the studied mechanism. 
Thus, the translational and rotational displacements of the 
joints are represented in numerical and graphical results.

3.1  Compliance Matrix Formulation of a Curved 
Beam

Usually, to determine the stiffness matrix of a mechanical 
structure, we simply use the FEA method with numerical 
software (e.g., MATLAB R  , Ansys R  , Solidworks R  , etc.) 
which returns a ready-to-use system of equations of the studied 
mechanism. Its advantage is the known geometry of the robot’s 
links. On the other hand, parallel kinematic manipulators with 

Fig. 3  Cartesian workspace of coaxial SPM
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curved linkages require different approximations. Therefore, to 
derive the stiffness model of each curved link, Euler–Bernoulli 
beam theory is derived. In this regard, Fig. 4 shows a curved 
beam element acted upon by external wrenches.

In order to calculate the stiffness of the SPM limb, the com-
pliance of a circular curved beam needs to be formulated. Fig-
ure 2 shows a cantilever with forces and moments applied onto 
the free end, and the compliance matrix is calculated using 
Euler–Bernoulli beam theory. The strain energy is expressed 
to complete this calculation.

The applied forces and moments can be presented as

Differentiating Eq. (20), we obtain the translational and rota-
tional deflections based on Castigliano’s theorem (Hibbeler 
2001):

Afterward, the relationship that links the displacements with 
the applied wrenches can be determined as

(20)

U =
R

2

�

∫
0

⎡
⎢
⎢
⎣

�
f
�

1

�2

EA
+

�
f
�

2

�2

GA
+

�
f
�

3

�2

GA
+

�
m

�

4

�2

GIx
+

�
m

�

5

�2

EIy
+

�
m

�

6

�2

EIz

⎤
⎥
⎥
⎦
dΦ

(21)

f
�

1
= f1 cos� − f2 sin�

f
�

2
= f1 sin� + f2 cos�

f
�

3
= f3

m
�

4
= m4 cos� − m5 sin� − f3R(1 − cos�)

m
�

5
= m4 sin� − m5 cos� − f3R sin�

m
�

6
= m6 − f1R(1 − cos�) − f2R sin�

(22)
Δu1 =

�U
�m4

,Δu2 =
�U
�m5

,Δu3 =
�U
�m6

,

Δu4 =
�U
�f1

,Δu5 =
�U
�f2

,Δu6 =
�U
�f3

The elements of matrix K�
L−1

are

Matrix A denotes the area of the cross section, E the Young’s 
modulus, G =

E

2
.(1 + �) is the shear modulus with the Pois-

son ratio, and Ix,Iy , and Iz are moments of inertia.

3.2  Matrix Structural Analysis (MSA)

The MSA technique is also known as the direct stiffness 
method (DSM) or the displacement method. It mainly consists 
in deriving complex structures in individual parts, concerning 
all possible properties, namely the rigid or flexible support 
of the mechanism, the rigid or flexible connections, and the 
passive or active joints. For this reason, MSA-based stiffness 
analysis provides an easy-to-understand method with step-by-
step details. Firstly, we decompose the coaxial SPM into four 
main parts (fixed and mobile platforms, robot links, type of 
robot joints, and active or passive joints) as shown in Fig. 5. 
One of the many advantages that mechanism’s can offer is 

(23)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δu1
Δu2
Δu3
Δu4
Δu5
Δu6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 0 0 0 C16

C12 C22 0 0 0 C26

0 0 C33 C34 C35 0

0 0 C34 C44 C45 0

0 0 C35 C45 C55 0

C16 C26 0 0 0 C66

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m4

m5

m6

f1
f2
f3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

C11 =
R
2

(

s1
GIx

+
s2
EIy

)

,C22 =
R
2

(

s2
GIx

+
s1
EIy

)

;

C12 =
s8R
2

(

1
GIx

− 1
EIy

)

c16 =
R2

2

(

s2
EIy

−
s7
EIx

)

;

c26 =
R2

2

(

s4
GIy

−
s2
EIy

)

;c33 =
R�L
EIz

;c33 =
s5R2

EIz

c35 =
s6R2

EIz
;c44 =

R
2A

( s1
E

+
s2
G

)

+
s3R3

2EIz
;

c45 =
s8R
2A

( 1
E
− 1

G

)

+
s4R3

2EIz
c55 =

R
2A

( s1
E

+
s2
G

)

+
s2R3

2EIz
;

c66 =
R�L
GA

+ R3

2

(

s3
GIx

+
s2
EIy

)

s1 = �L + sin �L ⋅ cos �L
s2 = �L − sin �L ⋅ cos �L

s3 = 3 ⋅ �L + sin �L ⋅ cos
�L
2

− 4 sin �L

s4 = 1 − cos �L − sin2
�L
2

s5 = sin �L − �L
s6 = sin �L − �1
s7 = 2 ⋅ sin �L − �L − sin �L ⋅ cos �L
s8 = − sin2 �L

Fig. 4  A curved beam element acted upon by external wrenches
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their symmetry, so we simply derive the MSA technique on a 
single leg of the kinematic manipulator.

3.3  Modeling of Flexible Links

According to Fig. 5, the links 1–2 and 3–4 are presented 
as flexible links, and the links under the loading forces are 
described by

where K11 , K12 , K21 , and K22 stand for (6× 6) stiffness matri-
ces, wi and wj are the applied wrenches, and Δi andΔj are the 
link deflections. In our case study, Eq. (24) can be given as

3.4  Modeling of Rigid Links

When the flexibility is negligible, rigidity constraints are 
replaced, and the rigid body presented as link 5–6 can be 
written in the form

where D(ij) denotes the (3× 3) skew-symmetric matrix 
expressed as

In a more explicit form, we can describe link 5–6 by

(24)
⎡
⎢
⎢
⎣

05×6 05×6 �r
1,2

− �r
1,2

I6×6 06×6 06×6 05×6
�e
1,2

05×6 Kact�
e
1,2

− Kact�
e
1,2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

W1

W2

Δt1
Δt2

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

0

0

0

⎤
⎥
⎥
⎦

(25)

⎡
⎢
⎢
⎢
⎢
⎣

−I6×6 06×6 06×6 06×6 K11

2,3
K12

2,3
06×6 06×6

06×6 − I6×6 06×6 06×6 K12

2,3
K22

2,3
06×6 06×6

06×6 06×6 − I6×6 06×6 06×6 06×6 K11

4,5
K12

2,3

06×6 06×6 06×6 − I6×6 06×6 06×6 K12

4,5
K22

4,5

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W2

W3

W4

W5

Δt2
Δt3
Δt4
Δt5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

0

0

0

0

⎤
⎥
⎥
⎥
⎦

(26)
[
D(ij) − I6×6

][Δti

Δtj

]
= 06×1

(27)D(ij) =

[
I3×3

[
d(ij)×

]T

03×3 I3×3

]

6×6

3.5  Modeling of Elastic Joints

Joint 0–1 is given as an active and flexible joint; this returns 
to the position of the actuators (motors), and it is described 
by

According to the proposed coaxial SPM labeled in Fig. 2, 
we can write the following equation system:

with

where Ri,j are the elements of the predefined rotation matrix 
in Eq. (1), and Kact is the actuator’s stiffness matrix.

3.6  Modeling of Passive Joints

Links 2–3 and 4–5 are connected by passive joints. This allows 
us to present the following form:

(28)
�
06×6 06×6 D6×e − I6×6
I6×6 DT

6,e
06×6 06×6

�⎡
⎢
⎢
⎢
⎣

W5

W6

Δt5
Δt6

⎤
⎥
⎥
⎥
⎦

=

�
0

0

�

(29)
[
Wi

Wj

]
=

[
K

(ij)

11

K
(ij)

12

K
(ij)

21

K
(ij)

22

]

12×12

[
Δti

Δtj

]

(30)
⎡
⎢
⎢
⎣

05×6 05×6 �r
1,2

− �r
1,2

I5×6 I5×6 05×6 06×6
�e
1,2

05×6 Kact�
e
1,2

Kact�
e
1,2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

W1

W2

Δt1
Δt2

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

0

0

0

⎤
⎥
⎥
⎦

(31)�r =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 R11 R12 R13

0 0 0 R21 R22 R23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(32)�e =
[
0 0 0 R31 R32 R33

]

Fig. 5  Connections between the 
manipulator links and base
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where �p
i,j

 stands for the full-rank matrix of a (6× 6) size, 
which determines the passive directions with (p = 6 ×r)

4  Boundary Conditions

4.1  Including the External Loading

In a robotic mechanism, its kinematic structure is given as 
either an open or closed-loop chain. It is recommended to 
consider the effects when applying external wrenches (force, 
moment) on the mechanical structure, which is necessary to 
avoid critical and singular situations. Moreover, it allows 
deriving a reasonable Cartesian stiffness matrix, which can 
be written in the following general form:

As a consequence, we derive the latter for a coaxial SPM as

(33)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

05×6 05×6 05×6 05×6 �r
3,4

− �r
3,6

05×6 05×6

�r
3,4

�r
3,4

05×6 05×6 05×6 05×6 05×6 05×6

�
p

3,4
01×6 01×6 01×6 01×6 01×6 01×6 01×6

01×6 �
p

3,4
01×6 01×6 01×6 01×6 01×6 01×6

05×6 05×6 05×6 05×6 05×6 05×6 �r
5,6

− �r
5,6

01×6 01×6 �r
5,6

�r
5,6

05×6 05×6 05×6 05×6

05×6 01×6 �
p

5,6
01×6 01×6 01×6 01×6 01×6

01×6 01×6 01×6 01×6 01×6 01×6 01×6 01×6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W3

W4

W5

W6

Δt3
Δt4
Δt5
Δt6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

0

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)
[
I6×6 I6×6

]
6×12

[
Wi

Wj

]

12×1

=
[
We

]
6×1

4.2  Modeling of a Rigid Support

As presented in Fig. 5, the fixed platform is denoted by 
node (0), and since it is assumed as a rigid body, it can be 
addressed by its linear form:

4.3  Aggregation of MSA Model Components

Typically, robotics manipulators have huge and complex cal-
culation numbers for deriving their stiffness analysis model. 
However, the MSA technique makes it possible to linearize the 
entire assembly within

A detailed clarification is reported in Klimchik (2018), 
where Wact and Δact are vectors, and include all possible 
parameters that relate applied wrenches with the resulting 
displacements, while Δte corresponds to the end-effector 
node (6). The Cartesian stiffness matrix Kact utilizes the lin-
ear equation system as follows:

(35)
[
I6×6 I6×6

]
6×12

[
We

Wte

]
= Wext

(36)
[
06×6 I6×6

][W0

W1

]
= 0

(37)
�
A B

C D

�⎡
⎢
⎢
⎣

W�g

Δt�g
Δte

⎤
⎥
⎥
⎦
=

�
0

Wext

�

(38)Kci =D − CA−1B

(39)
A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

05×6 06×6 06×6 06×6 06×6 06×6 06×6 I6×6 06×6 06×6 06×6 06×6 06×6
06×6 −I6×6 06×6 06×6 06×6 06×6 06×6 06×6 K11

2,3 K12
2,3 06×6 06×6 06×6

06×6 06×6 −I6×6 06×6 06×6 06×6 06×6 06×6 K12
2,3 K22

2,3 06×6 06×6 06×6
06×6 06×6 06×6 −I6×6 06×6 06×6 06×6 06×6 06×6 06×6 K11

4,5 K12
4,5 06×6

06×6 06×6 06×6 06×6 −I6×6 06×6 06×6 06×6 06×6 06×6 K12
4,5 K12

4,5 06×6
06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 D5,6

06×6 06×6 06×6 06×6 06×6 I6×6 DT
5,6 06×6 06×6 06×6 06×6 06×6 06×6

05×6 05×6 05×6 05×6 05×6 05×6 05×6 �r1,2 − �r1,2 05×6 05×6 05×6 05×6
I6×6 I6×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6 06×6
�61,2 01×6 01×6 01×6 01×6 01×6 01×6 Ka�e1,2 − Ka�e1,2 01×6 01×6 01×6 01×6
05×6 05×6 05×6 05×6 05×6 05×6 05×6 05×6 05×6 �r3,4 − �r3,4 05×6 05×6
05×6 05×6 �r3,4 �r3,4 05×6 05×6 05×6 05×6 05×6 05×6 05×6 05×6 05×6
01×6 01×6 �p3,4 01×6 01×6 01×6 01×6 01×6 01×6 01×6 01×6 01×6 01×6
01×6 01×6 01×6 �p3,4 01×6 01×6 01×6 01×6 01×6 01×6 01×6 01×6 01×6
05×6 05×6 05×6 05×6 05×6 05×6 05×6 05×6 05×6 05×6 05×6 �p5,6 �p5,6
05×6 05×6 05×6 05×6 �r5,6 �r5,6 05×6 05×6 05×6 05×6 05×6 05×6 05×6
01×6 01×6 01×6 01×6 01×6 �p5,6 01×6 01×6 01×6 01×6 01×6 01×6 01×6
01×6 01×6 01×6 01×6 01×6 �p5,6 01×6 01×6 01×6 01×6 01×6 01×6 01×6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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As reported earlier, the global study is described according 
to a single leg of the coaxial SPM. Thus, the aggregate stiff-
ness matrix can be defined as

5  Force–Displacement Relationship

To demonstrate the utility of applying kinematic redundancy, 
which is defined by adding extra links or joints to the kinematic 
manipulator, the coaxial SPM has been varied in terms of its 
number of legs. The obtained results should pave the way to 
reliable structure performance. In addition, a force–displace-
ment relationship is derived with respect to the predefined kin-
ematic constraints. Establishing the translational and rotational 
deflection part of the joints aims at avoiding undesired situa-
tions (damage to the mechanism during its function, kineto-
static singularities, etc.) and offers an efficient solution (optimal 
CAD design, choice of materials, etc.). The physical parameters 
of aluminum are taken into consideration with a Young’s modu-
lus of 2.2 ⋅ 109 ( Pa ), a Poisson ratio of � = 0.37 , link thickness 
( Lthk ) of 10−2 , cross-sectional area of the link A = L2

thk

(
m2

)
 , and 

actuator stiffness Kact of 106
(

N

rad

)
 . The moment of inertia at the 

origin for both links is defined with the following expressions: 
Ixx1 = Ixx2 = 4607.684

(

g.mm2) , Iyy1 = Iyy2 = 2.829 × 10
4
(
g.mm2

)
 

and, Izz1 = Izz2 = 2.772 × 10
4
(
g.mm2

)
 . The applied wrenches 

(40)B =

⎡
⎢
⎢
⎣

030×6
−I6×6
042×6

⎤
⎥
⎥
⎦

(41)C =
[
06×36 I6×6 06×36

]

(42)D =01×6

(43)KC =

3∑

i=1

KCi

take the vector values Wect = [30N, 30N, 30N, 0N.m, 0N.m, 0N.m] . 
Figures 6, 8, and  10 show the obtained translation joint deflec-
tion within x, y, and z components, respectively, while 
Figs.  7, 9, and 11 represent rotation joint deflection within �x 
and �y.

Case 1: MSA-based stiffness matrices of the three-DOF 
SPM with parameters as (i = 3 where i represents the num-
ber of legs, �1 = 0

◦, �2 = 90
◦ , �1 = 90

◦ , and �2 = 90
◦)

  
Case 2: MSA-based stiffness matrices of the three-DOF 

SPM with parameters as (i = 4 where i represents the number 
of legs, �1 = 0

◦, �2 = 90
◦ , �1 = 90

◦ , and �2 = 90
◦) 

(44)

Kglobal = 102×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4.3 ⋅ 103 −5.62 ⋅ 102 13.56 1.79 ⋅ 102 2.22 ⋅ 102 −9.5
−5.62 ⋅ 102 5.07 ⋅ 103 2.8 ⋅ 102 1.31 ⋅ 102 2.1 ⋅ 102 0.153

13.56 2.8 ⋅ 102 6.13 ⋅ 103 −8.5 0.227 77.16
1.79 ⋅ 102 1.31 ⋅ 102 −8.5 9.45 ⋅ 102 −43.53 1.52
2.22 ⋅ 102 2.09 ⋅ 102 0.227 −43.53 1.96 ⋅ 102 −2.13
−9.46 0.153 77.16 1.52 2.13 58.9

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(45)
Kglobal = 102 ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.67 ⋅ 103 −1.31 ⋅ 103 −81.08 2.95 ⋅ 102 2.6 ⋅ 102 −10.10

−1.31 ⋅ 103 6.59 ⋅ 103 4.71 ⋅ 102 −92.17 1.17 ⋅ 102 1.47

−81.09 4.71 ⋅ 102 7.83 ⋅ 103 −4.03 −15.10 77.42

2.96 ⋅ 102 −92.17 −4.03 1.26 ⋅ 103 −10.97 2.67

2.6 ⋅ 102 1.16 ⋅ 102 −15.10 −1.09 ⋅ 102 3.58 ⋅ 102 −4.96

−10.10 1.47 77.42 2.67 −4.97 ⋅ 102 58.9

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Table 1  Relationship between deflection components (translation and 
rotation) and kinematic redundancy

Max and Min deflection 
in x, y, and z axes

For i  = 3 For i = 4 For i 
= 5

maxΔp
x

0.1900 0.1233 0.1212
Max Δp

y
0.1563 0.098 0.1007

Max Δp
z

0.0583 0.0454 0.0358
MaxΔ�

x
0.003 0.0015 0.0014

MaxΔ�
y

0.0233 0.0121 0.0144
MaxΔ�

z
0.0222 0.0072 0.0170

MinΔp
x

0.0498 0.0443 0.0327
MinΔp

y
0.0388 0.0380 0.0280

MinΔp
z

0.0384 0.0310 0.0217
MinΔ�

x
0.0153 0.0082 0.008

MinΔ�
y

0.0113 0.0075 0.0089
MinΔ�

z
0.0032 0.0024 0.0110
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Case 3: MSA-based stiffness matrices of the three-DOF 
SPM with parameters as (i = 5 where i represents the num-
ber of legs, �1 = 0

◦, �2 = 90
◦ , �1 = 90

◦ , and �2 = 90
◦)

  
MSA technique has been applied to study the robot’s 

stiffness behavior. Additionally, kinematic redundancy was 
investigated by adding rigid links (legs) to the regular SPM 
form, as presented in case 1, case 2, and case 3 with varying 
numbers of three legs, four legs, and five legs, respectively. 

(46)
Kglobal = 102 ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6.02 ⋅ 103 −1.71 ⋅ 103 −3.46 ⋅ 102 3.73 ⋅ 102 2.82 ⋅ 102 30.90

−1.71 ⋅ 103 7.97 ⋅ 103 8.71 ⋅ 102 1.26 ⋅ 102 2.18 ⋅ 102 1.75 ⋅ 102

−3.46 ⋅ 102 8.71 ⋅ 102 103 2.62 ⋅ 102 3.92 1.16 ⋅ 102

3.73 ⋅ 102 1.25 ⋅ 102 2.61 ⋅ 102 1.57 ⋅ 103 −92.10 41.07

2.82 ⋅ 102 2.18 ⋅ 102 3.92 −92.1 −3.68 ⋅ 102 11.85

30.90 1.76 ⋅ 102 1.17 ⋅ 102 41.07 11.85 88.10

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

From the three cases, it can be noted that the rigidity matrix 
of the kinematic manipulator gets enlarged whenever the 
robot gains more links. Furthermore, the robot’s joint deflec-

tion is given with regard to the applied force, and as a result, 
Figs.  6–11 stand for joint deflection of both parts, transla-
tion, and rotation deflection of the different cases of study. 
It is noteworthy to point out that as long as the kinematic 
manipulator gains links, the deflection gets reduced. From 
the graphical representation, the blue areas stand for the 

Fig. 6  Joint deflection in x, y, and z axes for the translation part case 1
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lowest parts of joint deflection, while the yellow areas rep-
resent the critical ones that must be avoided in accordance 
with the robot’s orientation ( �1 , �2 ). Based on the numerical 
calculation, Table 1 presents the maximum and minimum 
deflection values on both parts, the translation part along 
the x, y, andzaxes, and the rotation part along �x , �y , and 
�z . The derived results demonstrate the advantages of using 
the kinematic redundancy, of which the deflection has been 
decreased.

6  Comparative Study of MSA with VJM 
in Modeling SPM Stiffness

In this section, a comparison study is conducted to validate the 
proposed method in this paper with VJM. The robot’s physical 
and mechanical parameters were previously defined in Sect. 5. 

Axiomatically, the deformation has an impact on any mechani-
cal structure; it does not exclusively affect its body, but also its 
links and joints. Accordingly, the virtual joint method (VJM) 
concerns the study of the deformations of the mechanical 
structure by considering virtual spring joints.

In the following section, the mathematical model using 
VJM is presented through the kineto-static of the ith leg and 
which can be given as follows:

where Si
�
= Ji

�
.(ki

�
)
−1
.JiT
�

 stands for the compliance of the 
spring with the frame reference R0 on the mobile plat-
form, where JiT

q
 is the Jacobian matrix. Furthermore, (ki

�
)
−1 

describes the stiffness matrix of both the actuators and the 
virtual springs, which takes the following equation:

(47)

[
Si
�

Ji
q

JiT
q

02×2

]

.

[
fi
Δqi

]
=

[
Si
0

02×1

]

Fig. 7  Joint deflection in x, y, and z axes for the rotation part case 1
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where ki
act

 denotes the ith actuator stiffness, while ki
L1

 and 
ki
L2

 are the stiffness matrices of the proximal and distal link 

(48)ki
�
=

⎡
⎢
⎢
⎣

ki
act

01×6 01×6
06×1 ki

L1
02×2

06×1 06×6 ki
L2

⎤
⎥
⎥
⎦

of the ith leg. The Cartesian matrix of the ith leg takes the 
following equation:

and

(49)ki
Li
=

[
Si
�

Ji
q

JiT
q

02×2

]

(50)ki
L1

= ki
L2

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4, 96.10
5 − 1, 47.10

5
6, 97.10

2 − 1, 15.10
3 − 2.10

3
2, 70.10

4

−1, 47.105 4, 9.10
5 − 2, 32.10

3
3, 82.10

3
7.10

3 − 8, 05.10
3

6, 97.10
2 − 2, 32.10

3
2, 8.10

5 − 6, 2.10
3 − 1, 37.10

4
38, 07

−1, 15.103 3, 82.10
3 − 6, 2.10

3
4.10

4
2, 3.10

4 − 62, 76

−2.103 7.10
3 − 1, 37.10

4
2, 3.10

4
4.10

4 − 1, 11.10
2

2, 70.10
4 − 8, 05.10

3
38, 07 − 62, 76 − 1, 11.10

2
2, 8.10

5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 8  Joint deflection in x, y, and z axes for the translation part case 2
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As a consequence, the global stiffness matrix of the SPM 
is defined as

(51)kGlobal(VJM) =

n∑

i=1

ki

(52)k
Global(VJM)

=102.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4, 1.10
3 − 3, 96.10

2 − 9, 11 1, 38.10
2
1, 84.10

2 − 6, 54

−3, 96.102 4, 45.10
3

1, 7.10
2

1, 29.10
2

2.10
2

0

−9, 11 1, 7.10
2

6, 11.10
3 − 2, 3 0 56, 18

1, 38.10
2

1, 29.10
2 − 2, 3 9, 44.10

2 − 35, 49 0

1, 84.10
2

2.10
2

0 − 35, 49 1, 83.10
2

0

−6, 54 0 56, 18 0 0 56, 48

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

And the SPM deformation screw is found as (Wu et al. 2014)

(53)S� =
[
Δ�T ΔpT

]
= k−1.f

Fig. 9  Joint deflection in x, y, and z axes for the rotation part case 2
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whereΔ� and Δp are the orientation and translation displace-
ment, respectively, where f  is a (6 × 1) vector that represents 
the external wrenches.

Remarkably, from Tables 1, 2, and 3, the obtained values from 
both methods show that the MSA technique provides quite simi-
lar results. Based on the simulated results using MSA, the robot’s 
behavior, namely the joints’ deflection, has acceptable values 
according to the simulation results. In this respect, MSA can be 
considered as a reliable method to model the complexity of the 
studied robot. It is noteworthy that the comparative study is mainly 
based on case 1 for i = 3 . The relative error (%) between MSA 
and VJM methods can be mathematically represented as follows:

noting that �p and �� signify the translation and orientation 
displacement, respectively. The average relative error for �p 
is around (1.48%) , and the average error for �� is approxi-
mately (3.75%) . As shown in Fig. 12, the obtained results 
from both VJM and MSA methods are considerably similar, 
which supports the proposed theory.

7  Conclusions

This paper investigates a coaxial spherical parallel manipula-
tor (SPM) using the matrix structural analysis (MSA) method. 
The proposed numerical approach is mainly established based 

(54)� =∣
�MSA − �VJM

�VJM
∣ .100%

Fig. 10  Joint deflection in x, y, and z axes for the rotation part case 3
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on Castigliano’s theorem. This theorem is adopted to derive 
the robot’s curved beams included in the stiffness matrix. The 
MSA technique offers a simple and real time-based method 
that can deal with multiple cases involving rigid and flexible 
body structures, passive and active joints, and rigid and elas-
tic joints, as well as a variety of the robot’s kinematic chains, 
namely serial, parallel, and hybrid kinematic architectures. This 
paper provides an elaborate step-by-step mathematical calcula-
tion starting with the robot’s kinematics modeling and ending 
with the stiffness modeling, which paves the way to a thorough 
understanding of the studied robot. Additionally, kinematic 
redundancy is represented based on adding extra links to the 

Fig. 11  Joint deflection in x, y, and z axes for the rotation part case 3

Table 2  Max and Min translational deflection

Max Δp
x(mm)Δpy(mm) Δpz(mm) MinΔp

x
(mm)Δpy(mm) Δpz(mm)

0.1685 0.1042 0.4096 0.029 0.0124 0.0022

Table 3  Max and Min rotational deflection

MaxΔp
x(rad) Δpy(rad) Δpz(rad) MinΔp

x
(rad) Δpy(rad) Δpz(rad)

0.00106 0.006 0.0013 0.0047 0.0017 0.0136
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uniform 3-RRR coaxial SPM. Interestingly, the obtained results 
show a higher stiffness matrix by increasing the robot’s redun-
dant links. Moreover, joint deflection is represented according 
to an applied external loading (forces). It is remarkable that 
joint deflection in both components, translational and rotational 
parts, decreases when adding extra links, which proves the the-
ory developed in this work. To validate the efficiency of the 
proposed method, MSA is purposefully compared with VJM.
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