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Abstract
This paper describes the free and forced vibration of the doubly curved shells of revolution made of functionally graded (FG) 
material and constrained by various boundary conditions using a convenient and efficient method based on the Jacobi–Ritz 
method. The theoretical formulation is established on the basis of the multi-segment partitioning technique and first-order 
shear deformation theory (FSDT). It is assumed that the material properties of the shell vary smoothly and gradually in 
the thickness direction according to a typical four-parameter power-law function. At both end positions of the shell, the 
artificial spring technique is introduced to model the corresponding boundary conditions. Similarly, the connective spring 
parameters are used to model the continuity conditions between the divided shells. The displacements and rotations of any 
point of the FG doubly curved shell of revolution including the boundary and connection positions are expanded in form 
of Jacobi orthogonal polynomials in the meridional direction and Fourier series in the circumferential direction. Then, the 
dynamic characteristics including natural frequency are easily obtained by the Ritz method. The accuracy and credibility 
of the present method for free and forced vibration analysis are evidenced through comparison with previous literature and 
the results of the finite element method (FEM). In addition, through numerical examples, some interesting results about the 
dynamic behaviors of FG doubly curved shells of revolution with various boundary conditions are investigated, which may 
be provided as reference data for future study.

Keywords  Dynamic analysis · Functionally graded material · Doubly curved shell of revolution · Jacobi polynomials · 
Artificial spring technique

1  Introduction

With a research history of more than 100 years, shell theory 
has been made and developed into a wide variety of classi-
cal and modern theories on the basis of various approxima-
tions and assumptions. The shell theory developed so far 
can be divided into two main theories: classical thin shell 
theory (CST) and shear strain shell theory (SDST). Many 
CSTs, such as Flügge's theory, Donner–Mushtari's theory, 
Reissner–Naghdi's linear shell theory, and Sanders' theory, 
are based on the first approximation of the Love–Kirchhoff 
hypothesis, which does not include the effect of transverse 
shear deformation. According to the literature (Leissa 1973), 
it can be found that most of the vibration analysis results 
based on the CSTs are very similar. While much studies 
have studied the vibrational properties of shells based on 
CSTs, there is also the view that CSTs have a large error in 
predicting the transverse deflections and natural frequencies 
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of moderately thick shells or shells made materials with a 
high degree of anisotropy (Toorani and Lakis 2000). In order 
to accurately predict the dynamic behavior of moderately 
thick shells and to eliminate defects in CSTs, the so-called 
shear deformation shell theory (SDST) has been developed 
which takes into account the effects of shear strain and rota-
tional inertia based on Love's fourth assumption. In SDST, 
the displacement of the shell can be extended in terms of 
shell thickness beyond the first order. In the case of first-
order expansion, the theory is named FSDT (Qatu 2004). 
Since the purpose of this paper is to investigate the dynamic 
characteristics of moderately thick FG doubly curved shells 
of revolution, FSDT is employed to formulate the theoreti-
cal formula.

It is well known that doubly curved shells of revolution 
are widely used in structural and engineering applications, 
such as ship, aerospace, chemical industry and civil engi-
neering, and so on (Zarastvand et al. 2021a, b; 2022a, b; 
Wang et al. 2017a; Asadijafari et al. 2021; Seilsepour et al. 
2022; Rahmatnezhad et al. 2021). With the development of 
science and manufacturing technology, various composite 
materials are being newly developed, and FG material, a 
kind of composite material, is widely applied to structures in 
the aerospace industry due to its convenience in manufactur-
ing and superior physical mechanics. In order to solve the 
problem of the free vibration of FG doubly curved shell of 
revolution, various numerical analysis methods and experi-
mental results have been reported by many researchers. 
Wang et al. performed the analysis of free vibrations of dou-
bly curved shells and panels made of FG material, laminated 
composite material, and FG reinforced carbon nanotubes 
material using the improved Fourier series method (Wang 
et al. 2017b, c) and semi-analytical methods (Wang et al. 
2017d), and presented the frequency parameters and the 
corresponding mode shapes. Atteshamuddin and Yuwaraj 
(2021) analyzed static and free vibration of FG doubly 
curved shells using Hamilton's principle, which is further 
solved analytically using Navier's technique, which assumes 
unknown variables in a double triangular series. Li et al. 
(2019a, b) established an analytical model for free vibration 
analysis of FG doubly curved shells with uniform and un-
uniform thickness by using the Ritz method and verified the 
accuracy of the presented formulation experimentally. Choe 
et al. (2018) studied the free vibration behavior of coupled 
FG doubly curved shell structures with general boundary 
conditions by the using unified Jacobi–Ritz method. Wang 
et al. (Zhao et al. 2019) performed a parameterization study 
for vibration behavior of FG porous doubly curved panels 
and shells of revolution by using a semi-analytical method. 
In this study, the admissible displacement functions are 
expanded as a modified Fourier series of a standard cosine 
Fourier series with the auxiliary functions. Alijani et al. 
(2011a, b) investigated geometrically nonlinear vibrations 

of FG doubly curved shells to be simply supported with 
movable edges by using a multi-modal energy approach and 
the Galerkin method. Based on Hamilton Principle and a 
higher-order shear deformation theory (HSDT), Wang et al. 
(2018) analyzed free vibration and static bending of FG 
graphene nanoplatelet reinforced composite doubly curved 
shallow shells with simply supported boundary conditions. 
Fares et al. (2018) established an improved layerwise theory 
for the bending and vibration responses of multi-layered FG 
doubly curved shells. Chorfi et al. (2010) investigated the 
nonlinear free vibration of the FG doubly curved shallow 
shell of the elliptical plan-form by using the p-version of the 
finite element method in conjunction with the blending func-
tion method. For analyzing the bending and free vibration of 
FG doubly curved shells subjected to uniform and sinusoidal 
loads, Rachid et al. (2022) developed a new formulated 2D 
and quasi-3D HSDT. By using the Navier method, Chen 
et al. (2017) analyzed the free vibration of the FG sandwich 
doubly curved shallow shells with simply supported condi-
tions. Kumar and Kumar (2021) presented a mathematical 
model for free vibration analysis of eccentrically stiffened 
FG shallow shells taking into account the thermo-mechan-
ical loads by using the Galerkin method. Jin et al. (2016) 
presented a unified solution for the vibration analysis of FG 
doubly curved shells with arbitrary boundary conditions by 
using the modified Fourier series method on the basis of the 
first-order shear deformation shell theory considering the 
effects of the deepness terms. Xie et al. (2020) developed 
a unified semi-analytic method for free vibration analysis 
of FG shells with arbitrary boundary conditions and in this 
method, displacements are expanded as power series and 
Fourier series in meridional and circumferential directions. 
Talebitooti and Anbardan (2019) analyzed the free vibration 
of FG generally doubly curved shells of revolution by using 
the Haar wavelet discretization approach. Tornabene et al. 
(2014) contributed to the study for free vibration analysis 
of FG shell using various shell theories and the Generalized 
Differential Quadrature (GDQ) method. Studies related to 
free vibration analysis of various FG shell structures such as 
conical, cylindrical, and spherical shells and their combined 
structures can also be found in the Refs. (Pang et al. 2018; 
Li et al. 2019; Wang et al. 2017, e; Liu et al. 2020; Qin et al. 
2019; Chen et al. 2022; Xie et al. 2015; Kim et al. 2021; 
Qu et al. 2013; Heydarpour et al. 2014a, b; Heydarpour and 
Malekzadeh 2012, 2019).

Through the review of the above literature, it can be 
seen that the Rayleigh–Ritz method (Li et al. 2019a, b), 
GDQ (Tornabene and Viola 2009a, b; Tornabene et  al. 
2014; Malekzadeh and Heydarpour 2013; Malekzadeh 
et al. 2012; Heydarpour and Aghdam 2018) method, Fou-
rier series method (Wang et al. 2017b, c) and numerical 
analysis method have been used for the vibration analysis of 
shell structures. And, we can know that most of the existing 



321Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2023) 47:319–343	

1 3

literature is focused on the free vibration analysis of dou-
bly curved shells. However, in actual engineering, various 
dynamic forces are subjected to these structures along with 
the working conditions and environment, it is very important 
to study the forced vibration characteristics as well as free 
vibration of FG doubly curved shells of revolution. Thus, for 
analyzing the forced vibration of FG doubly curved shells of 
revolution with arbitrary boundary conditions, it is neces-
sary to establish a unified numerical analysis method. This 
paper focuses on the forced vibration analysis of FG doubly 
curved shells of revolution using the unified Jacobi–Ritz 
method. Advantage of this method is that the calculation 
cost is reduced by using the penalty function and the Ray-
leigh–Ritz method and that the selection of the admissible 
displacement functions is generalized by using the Jacobi 
polynomials. The FG doubly curved shell of revolution is 
divided into its segments in the axial direction, and the dis-
placements of individual shell segments are expressed by 
Jacobi polynomials along the axial direction. The bound-
ary conditions and the continuity conditions of the shell 
are modeled by the penalty method, which is applied to the 
Ritz method to obtain the frequency parameters and mode 
shapes. The presented method is capable of investigating 
the dynamic behavior of various FG doubly curved shells 
of revolution structures with arbitrary boundary conditions. 
To identify the applicability and accuracy of the proposed 
method, numerical examples are given for dynamic behavior 
analysis of FG doubly curved shell of revolution with vari-
ous boundary conditions, which may be provided as refer-
ence data for future study.

2 � Theoretical Formulations

2.1 � Description of the FG Doubly Curved Shell 
of Revolution

The geometric model and coordinate system of the FG 
doubly curved shell of revolution are shown in Fig. 1. The 
orthogonal curvilinear coordinate system (φ, θ, z) is fixed on 
the middle surface. The shell displacements in the meridi-
onal, circumferential and radial directions are expressed by 
u, v and w, respectively. The meridional angle φ refers to the 
angle formed by the external normal n to the reference sur-
face and the axis of rotation Oz, or the geometric axis O1z1 
of the meridian curve. The circumferential angle θ is the 
angle between the radius of the parallel circle and the x-axis. 
The horizontal radius is designated as R0, and the radii of 
curvature in the meridional and circumferential directions 
are respectively represented by Rφ and Rθ. The doubly 
curved shell of revolution can be obtained by rotating the 
generatrix c0c1 around the axis of rotation z in the x–z plane. 
Rs is the offset distance of the rotation axis z with respect to 
the geometric central axis O1z1. h denotes the thickness of 
the shell. Due to the curvature characteristics, the engineer-
ing application will involve different doubly curved shells of 
revolution in shape. Thus, in this work, doubly curved shells 
of revolution with elliptical (Fig. 2a), paraboloidal (Fig. 2b), 
and hyperbolical (Fig. 2c) meridian curves are considered.

The geometric relationship of individual doubly curved 
shell structures is expressed as (Wang et al. 2017b; Li et al. 
2019a; Jin et al. 2016):

Fig. 1   Geometry and reference 
system of a doubly curved shell

Fig. 2   The geometric profile 
parameters of doubly curved 
shells of revolution: a elliptical 
shell, b paraboloidal shell, c 
hyperbolical shell
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(1). Elliptical shell, see Fig. 2a

where a and b are the length of the semimajor and semi-
minor axes of the elliptic meridian, respectively. Specially,

(2). Paraboloidal shell, see Fig. 2b

where k is the characteristic parameter of the parabolic 
meridian. Specially,

(3). Hyperbolical shell, see Fig. 2c

where a and b are the length of the semitransverse and semi-
conjugate axes of the hyperbolic meridian, respectively. Rs 
is the distance between the axis of rotation O1z1 and the 
geometric axis of the meridian Oz. Specially,
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2.2 � Material Properties

In this study, it is assumed that FG material is made by mix-
ing ceramic and metal according to the uniform distribution 
law. When two materials are mixed and made according to 
a certain distribution rule, the material property parameters 
of FG material are expressed as (Li et al. 2019b; Tornabene 
and Viola 2009a; Chen et al. 2022):

where E, ρ and μ are Young's modulus, density, and Pois-
son's ratio, respectively. The subscripts m and c denote met-
als and ceramics, respectively. As can be seen from Eq. (4), 
the material property parameters change smoothly in the 
thickness direction z with the volume fraction Vc, where the 
volume fraction Vc follows two general four-parameter(a, b, 
c and p) power-law distributions:

In which, h is thickness of doubly curved shell. Of the 
four parameters, the parameter p is called the power-law 
index. By setting the parameters a = 1 and b = 0 in Eq. (5), a 
classical volume fraction is obtained, and the corresponding 
volume fraction is shown in Fig. 3a. Also, Fig. 3b–d shows 
the changes in different volume fractions when parameters a, 
b, and c are randomly chosen. From Fig. 4, it can be clearly 
seen that the volume fraction changes symmetrically or 
asymmetrically according to the settings of parameters a, 
b, and c.

2.3 � Energy Functional of Shell Segment

According to FSDT, the displacement field of the middle 
surface of the ξth segment of FG doubly curved shell of 
revolution is as follows (Wang et al. 2017b; Li et al. 2019a; 
Jin et al. 2016; Talebitooti and Shenaei Anbardan 2019; Xie 
et al. 2015):
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In Eq. (6), U� , V� and W� are the displacement fields of 
ξth segment of the FG doubly curved shell of revolution in 

(6c)W�(�, �, z, t) = w�(�, �, t)
φ, θ and z directions, respectively. And in the right-hand 
expression of Eq. (6), uξ, vξ and wξ denote translational dis-
placement in φ, θ and z directions, ���

 and ���
 denote the 

Fig. 3   Variations of the volume fraction VC according to change of the power-law index p. a; FGM (a = 1/b = 0/c/p) b; FGM (a = 1/b = 1/c = 4/p), 
c; FGM (a = 1/b = 0.5/c = 2/p), d; FGM (a = 0/b = − 0.5/c = 2/p)
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rotation of transverse normal about φ- and θ-axis, respec-
tively. Based on the FSDT, under the assumption of small 
deformation and rotation, the nonzero strain components of 
composite laminated doubly curved shells of revolution 
according to the above displacement field are expressed as 
follows (Wang et al. 2017b; Li et al. 2019a; Jin et al. 2016; 
Talebitooti and Shenaei Anbardan 2019; Xie et al. 2015):

where the strains are defined as(Wang et al. 2017b; Jin et al. 
2016; Talebitooti and Shenaei Anbardan 2019):
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According to Hooke’s law, the relationship between the 
stress and strain are obtained as (Wang et al. 2017b; Jin et al. 
2016; Talebitooti and Shenaei Anbardan 2019):
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Fig. 4   Percentage error of the natural frequencies for the Jacobi parameters α and β. a elliptical shell, b paraboloidal shell, c hyperbolical shell
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the normal strain components, �x�� , ��z� , ��z� are the shear 
strain components of the ξth shell segment, respectively. 
Qij(z) are the elastic constants, which are functions of thick-
ness coordinate z and are defined as(Wang et al. 2017b; Jin 
et al. 2016; Talebitooti and Shenaei Anbardan 2019):

The governing equations, which describe the relationship 
between the force and moment resultants and curvatures in 
the reference surface, are given in the following matrix form 
(Jin et al. 2016; Talebitooti and Shenaei Anbardan 2019):

where Nφξ, Nθξ and Nφθξ are the forces in-plane, Mφξ, Mθξ 
and Mφθξ are bending and twisting moments, and Qφξ, Qθξ 
are shear forces, respectively. κs is the shear correction fac-
tor. Where Aij, Bij, and Dij(i,j = 1, 2 and 6) are tensile, ten-
sile-bending coupling, and bending stiffness, respectively, 
defined as:

The strain energy Uξ of ξth segment in the FG doubly 
curved shell of revolution yields (Li et al. 2019a; Choe et al. 
2018):
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defined as (Li et al. 2019a; Choe et al. 2018):

(10a)Q11(z) =
E(z)

1 − �2(z)

(10b)Q12(z) =
�(z)E(z)

1 − �2(z)

(10c)Qk
66

=
E(z)

2[1 + �(z)]

(11)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

N��

N��

N���

N���

M��

M���

Q��

Q��

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A11 A12 0 B11 B12 0 0 0
A12 A11 0 B12 B11 0 0 0
0 0 A66 0 0 B66 0 0
B11 B12 0 D11 D12 0 0 0
B12 B11 0 D12 D11 0 0 0
0 0 B66 0 0 D66 0 0
0 0 0 0 0 0 �sA66 0
0 0 0 0 0 0 0 �sA66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�0��

�0��
�0���
k�
k�
k��
�0�z
�0�z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)
(
Aij,Bij,Dij

)
=

h∕2

∫
−h∕2

(
1, z, z2

)
Qij(z)dz, i, j = 1, 2, 6

(13)

U� =
1
2 ∫

�
∫
�

⎛

⎜

⎜

⎝

N��
�0��

+ N�� �
0
��

+ N��� �
0
���

+M��
k��

+

M��
k�� +M��� k��� + Q��

�0�z� + Q�� �
0
�z�

⎞

⎟

⎟

⎠

R0�R��
d�d�

where the dot above the displacement components represents 
differentiation with respect to time.

For the study of the dynamic characteristics of the FG 
doubly curved revolution shells, the work of external forces 
can be expressed as follows (Li et al. 2019a; Choe et al. 
2018):

2.4 � Boundary and Continuity Conditions

In this analysis, the boundary and the continuity conditions 
of the FG doubly curved shell of revolution are modeled 
using the penalty method, where penalty parameters are 
defined by the stiffness values representing artificial trans-
lational and rotational springs (Wang et al. 2017b, c, d; Choe 
et al. 2018). In other words, the various boundary conditions 
of the doubly curved shells of revolution can be realized by 
appropriate penalty parameter values. The penalty param-
eter can represent various boundary conditions and conti-
nuity conditions of the doubly curved shell of revolution, 
permit the flexible selection of the admissible displacement 
functions, and the appropriate value of the penalty param-
eter ensures fast convergence of the solution. The potential 
energy stored in the boundary springs can be described as 
(Li et al. 2019a; Choe et al. 2018):

where kϕ,0(ϕ = u,v,w,φ,θ) and kϕ,1 denote the boundary 
spring stiffness of both ends of the doubly curved shell of 
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revolution, respectively. That is, the boundary at both ends 
of the shell can be modeled as an arbitrary boundary condi-
tion according to the stiffness value of the artificial spring.

In the case of two adjacent shell segments at each shell 
component, the potential energy stored in the connective 
springs can be described as (Li et al. 2019a; Choe et al. 
2018):

where kuc, kvc, kwc, kφc and kθc denote the stiffnesses of the 
connective springs between the shell components, respec-
tively. The superscripts, ξ and ξ + 1, represent the ξth and 
ξ + 1th shell segments. Therefore, the total potential energy 
reflecting boundary conditions and connective conditions 
can be expressed as

Thus, the arbitrary boundary conditions are freely mod-
eled in the present model by assigning the stiffnesses of the 
springs to the proper values.

2.5 � Displacement Components and Solution 
Procedure

It is very important to select the suitable allowable displace-
ment function for ensuring a stable convergence and accu-
racy of the solution. The displacement functions of the FG 
doubly curved shell of revolution can be flexibly selected by 
the penalty parameter, and fast convergence of the accurate 
solution can be ensured with the appropriate value of the 
penalty parameter. On the treatment of continuous boundary 
conditions, it makes the choice of the admissible function 
flexible to introduce the spring stiffness, which is the penalty 
parameter in nature (Wang et al. 2017b, c, d; Choe et al. 
2018). The classical Jacobi polynomials (Choe et al. 2018; 
Heydarpour and Aghdam 2017), as we all know, are defined 
on the interval of � ∈ [−1, 1] and their recurrence formula 
P
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The orthogonality condition for the classical Jacobi poly-
nomials can be written as

where w(α,β)(x) = (1-x)α(1 + x)β. The Jacoby polynomials 
are generalized orthonormal polynomials containing some 
orthonormal polynomials such as Legendre, Chebyshev, and 
Gegenbauer polynomials. For example, when α = β = -0.5, 
the Chebyshev polynomials of the first kind are obtained, 
whileα = β = 0.5 leads to the Chebyshev polynomials of 
the second kind. And when α = β = 0 is set, the Legendre 
polynomials are realized, while α = β provides the Gegen-
bauer polynomials. Therefore, in this paper, the allowable 
displacement function of the FG doubly curved shell of 
revolution is uniformly extended to the Jacobi polynomials 
regardless of the element shape and displacement type. The 
displacement functions of the shell segments can be written 
in the forms:

where Um,ξ, Vm,ξ, Wm,ξ, Φm,ξ, and Θm,ξ are the corresponding 
Jacobi expanded coefficients; Pm

(α,β)(ϕ) are the mth order 
Jacobi polynomial for the displacement components in the 
meridional direction; ω is an angular frequency, t denotes 
time. The nonnegative integer n represents the circumferen-
tial wave number of the corresponding mode shape. M is the 
highest degree taken into admissible functions. In mathemat-
ics, the orthogonal Jacobi polynomials are defined on the 
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interval ϕ ∈ [1-, 1]. Thus, for use of the Jacobi polynomials 
in the interval φ (for the ξth shell segment, φ ∈ [φξ, φξ+1]), 
should proceed with a linear transformation for each shell 
segment, i.e., φ = [(φξ+1-φξ)/2]ϕ + (φξ+1 + φξ)/2. The total 
Lagrangian energy functions ( L ) of the FG doubly curved 
shell of revolution can be written in the forms:

By using the Rayleigh–Ritz method, minimizing the total 
expression of the Lagrangian energy functional with respect 
to the undetermined coefficients;

By substituting Eqs. (13), (14), (16), (19) and Eq. (24) 
into Eq.  (25), it can be summed up in a matrix form as 
follows:

where, K, M and A represent the stiffness matrix, mass 
matrix, vector of the unknown coefficients for the shell and 
F is external force, respectively. By solving Eq. (26) the 
frequencies and the corresponding eigenvectors of the FG 
doubly curved shells of revolution can be easily obtained. 
The detailed expressions for the elements in these matrices 
can be found in “Appendix A”.

3 � Numerical Results and Discussions

In this section, the study of the dynamic analysis of the FG 
doubly curved shells of revolution will be given by means 
of the MATLAB code compiled by ourselves in the MAT-
LAB 15.0 platform. Some numerical examples are per-
formed to verify the convergence, accuracy, and reliability 
of the present method. This section is organized as follows: 
Firstly, the convergence of the present method is examined 
through some numerical examples. Then, the accuracy of 
the present method is verified with the results of previous 
literature. On the basis of the accuracy verification of the 
presented method, some dynamic analysis results of FG 
doubly curved shells of revolution are presented. For the 
simplicity of study, it is assumed that the property param-
eters of FG material in all numerical examples of this paper 
are as follows (Li et al. 2019a, b; Talebitooti and Shenaei 
Anbardan 2019): Em = 70Gpa, Ec = 168Gpa, ρm = 2707 kg/
m3, ρc = 5700 kg/m3, μm = 0.3, μm = 0.3. In addition, unless 
otherwise mentioned, the geometric dimensions of FG 
doubly curved shells of revolution are set as follows; for 
elliptical shell: ae = 1 m, be = 2 m, R0 = 0.2 m, R1 = ae, for 

(24)L =
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− UBC

(25)
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Paraboloidal shell: R0 = 0.2 m, R1 = 1 m, L = 1 m, Rs = 0, for 
hyperbolical shell: R0 = 0.2 m, R1 = 1 m, Rs = 4 m, L = 4 m, 
and thickness h = 0.05 m.

3.1 � Convergence Study

In order to verify the convergence and accuracy of the pre-
sented method, some convergence studies are needed to 
study.

From the theoretical formulation, it can be seen that the 
Jacobi polynomial series can be expanded to infinite terms. 
However, the number of series terms must be truncated at 
an appropriate finite number by considering the effective-
ness of computation and the accuracy of the solution. For 
this purpose, convergence studies are needed to establish 
the maximal order of series that should be used to obtain 
accurate results. Table 1 shows the change of frequency 
parameters of the FG doubly curved shells of revolution 
according to increases in the maximal order of the series 
of Jacobi polynomials. From Table 1, it can be clearly seen 
that the frequency parameters of shells steadily converge to a 
certain value as the maximal order M of the series of Jacobi 
polynomial increases. In particular, when M has a value of 
8 or more, it can be seen that the frequency parameters of 
shells hardly change. Therefore, the maximal order of the 
series of Jacobi polynomial for all numerical examples is 
uniformly set as M = 8.

Table 2 shows the change of the natural frequencies with 
the increase in the number of shell segments. As can be seen 
from Table 2, the values of natural frequency converge stead-
ily as the number of shell segments increases. It can also be 
seen that there is almost no change in the frequency value 
when the number of segments is four or more. Of course, 
in some cases (e.g. mode 1 for elliptical shells, mode 4 for 
parabolic shells, and modes 4 and 5 for hyperbolic shells), 
the frequency parameters converge more when the number 
of segments increases, however, the error is very small. it 
is clear that convergence to a more accurate solution as the 
number of segments increases, However, on the other hand, 
increases the computational cost. Therefore, in this paper, 
for simplicity of calculation, the number of shell segments 
is set as N = 4.

The percentage errors 
(
Ω�,� − Ω�=0,�=0

)
∕Ω�=0,�=0 × 100 

of the solution for the Jacobi polynomials param-
eter,  in the FG doubly curved rotation shell 
(FGMI(a = 1/b = 0.5/c = 2/p = 1)), is shown in Fig. 4. The 
natural frequencies, where α = 0 and β = 0, are chosen as 
the reference value. From Fig. 4, it can be seen that changing 
the characteristic parameters α and β of the Jacobi polyno-
mials does not affect the convergence of the solution, and 
the maximum value of the percentage error does not exceed 
10–5. Especially, in the case of the hyperbolical shell, the 
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percentage error is the greatest, however, in this case, it does 
not exceed 2 × 10–5 and it can be seen that even if α and β 
change, the frequency value hardly changes. Therefore, the 
characteristic parameters α and β of the Jacobi polynomials 
are set into α = β = 0.5 in the following numerical analysis.

Next, the convergence study is performed to establish 
boundary conditions. As mentioned in Sect. 2.4, boundary 
conditions can be set differently depending on the value of 

artificial spring stiffness. That is, to determine the boundary 
condition, the spring stiffness value corresponding to the 
boundary condition must be selected. Figure 5 shows the 
change characteristics of the frequency parameters of the FG 
doubly curved shell of revolution according to the increase 
of the spring stiffness value. The material of the shell is 
FGMI and the parameters characterizing the distribution of 

Table 1   Convergence of frequency parameters (Ω = ωR1(ρc/Ec)1/2)with the increasing of the degree M of the Jacobi polynomials (n = 1)

Shell type Mode M

2 3 4 5 6 7 8 9 10 Ref. Li 
et al. 
(2019a)

Elliptical 1 0.6926 0.6041 0.5792 0.5737 0.5728 0.5726 0.5726 0.5726 0.5726 0.5739
2 1.3129 1.0427 0.9631 0.9274 0.9217 0.9215 0.9215 0.9215 0.9215 0.9237
3 1.7206 1.2507 1.1961 1.1174 1.0868 1.0857 1.085 1.0849 1.0849 1.0874
4 1.9437 1.3948 1.2409 1.1983 1.1798 1.1736 1.1735 1.1733 1.1733 1.1763
5 3.0488 1.7864 1.6162 1.3823 1.3078 1.3022 1.2989 1.2982 1.2982 1.301

Paraboloidal 1 1.1806 0.9737 0.9151 0.895 0.8909 0.8905 0.8905 0.8905 0.8905 0.8928
2 2.0862 1.4219 1.3152 1.2226 1.1912 1.1869 1.1868 1.1868 1.1868 1.1903
3 2.7241 1.9608 1.8555 1.6684 1.5662 1.5444 1.5436 1.5435 1.5435 1.5485
4 3.1927 2.1785 1.9265 1.9146 1.9057 1.8916 1.8883 1.8883 1.8883 1.8931
5 4.799 2.6316 2.5262 2.3618 2.1436 2.0696 2.0638 2.0633 2.063 2.0691

Hyperbolical 1 1.3162 0.9583 0.9057 0.8881 0.8826 0.8808 0.8802 0.8802 0.8802 0.8826
2 2.191 1.1681 1.123 1.0905 1.0791 1.0769 1.0764 1.0764 1.0764 1.0796
3 2.6352 1.867 1.5315 1.4518 1.3842 1.3598 1.3551 1.3551 1.3551 1.3588
4 3.6033 2.4202 2.1412 2.0517 1.9502 1.8687 1.8412 1.8412 1.8412 1.8438
5 4.5616 2.6655 2.3972 2.2875 2.2464 2.1993 2.1721 2.1721 2.1721 2.1714

Table 2   Convergence and 
comparison of the frequency 
parameters(Ω = ωR1(ρc/Ec)1/2) 
with the increasing of the 
number of the shell segments 
(n = 1)

Shell type Mode Number of the segment

2 3 4 5 6 7 8 Ref. Li 
et al. 
(2019a)

Elliptical 1 0.573 0.573 0.573 0.573 0.573 0.573 0.572 0.5739
2 0.922 0.922 0.922 0.921 0.921 0.921 0.921 0.9237
3 1.093 1.086 1.085 1.085 1.085 1.085 1.085 1.0874
4 1.19 1.174 1.174 1.173 1.173 1.173 1.173 1.1763
5 1.343 1.305 1.299 1.298 1.298 1.298 1.298 1.301

Paraboloidal 1 0.891 0.891 0.89 0.89 0.89 0.89 0.89 0.8928
2 1.193 1.187 1.187 1.187 1.187 1.187 1.187 1.1903
3 1.581 1.544 1.544 1.543 1.543 1.543 1.543 1.5485
4 1.912 1.892 1.888 1.888 1.888 1.888 1.887 1.8931
5 2.222 2.07 2.064 2.063 2.063 2.063 2.063 2.0691

Hyperbolical 1 0.883 0.881 0.88 0.88 0.88 0.88 0.88 0.8826
2 1.08 1.077 1.076 1.076 1.076 1.076 1.076 1.0796
3 1.403 1.36 1.355 1.354 1.354 1.354 1.354 1.3588
4 2.017 1.872 1.841 1.837 1.837 1.837 1.836 1.8438
5 2.293 2.205 2.172 2.165 2.163 2.163 2.162 2.1714
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the material are a = 1, b = 0, c = 0, p = 1. In addition, the case 
of the circumferential wave number n = 1 is investigated.

As shown in Fig. 5, when the spring stiffness is less than 
106, the displacement is not greatly affected by the spring 
stiffness. Also, if it is larger than 1012, it can be seen that 
there is little displacement. However, when the spring 
stiffness increases from 106 to 1012, the displacement also 
changes, and the change in displacement causes an increase 
in frequency.

Based on this, in order to simulate the clamp boundary 
condition, 1014 is assigned to the boundary spring stiff-
ness and the stiffness value is set to 0 for the free boundary 
condition.

On the other hand, when the spring stiffness value 
increases from 106 to 1012, the frequency parameter 
changes significantly. Therefore, spring stiffness values 
can be set at intervals [106, 1012] to model elastic bound-
ary conditions. Table 3 shows the stiffness values of artifi-
cial springs for classical and elastic boundary conditions. 
For the convenience of presentation, classical boundary 
conditions such as clamped, free, simply supported and 
shear-diaphragm are as symbols C, F, SS and SD, respec-
tively. Also, in this example, denoted as E1, E2 and E3, 
three kinds of elastic boundary conditions are considered.

Through the convergence study on the boundary spring, 
it can be seen that when the artificial spring stiffness value 
is 1014, it can be regarded as a completely fixed case. 
Therefore, in Eq. (18), the value of the connecting spring 
stiffness, which characterizes the connective condition of 
the shell segments, is set to 1014.

3.2 � Free Vibration Analysis of FG Doubly Curved 
Shell of Revolution

In the above subsection, calculation parameters such as the 
polynomial maximum order, polynomial parameters, and the 
value of the boundary spring stiffness are to be used in the 
dynamic analysis of the FG doubly curved shell of revolu-
tion were determined through convergence studies. In this 
subsection, the results of the free vibration analysis of the 
FG doubly curved shells of revolution will be reported. First, 
the accuracy of the current method for free vibration of the 
shell of revolution is verified through comparison with pub-
lished literature. Tables 4, 5, 6 show the comparison results 
of frequency parameters of the FG doubly curved shells 
of revolution with different boundary conditions includ-
ing classical and elastic boundary conditions. As shown in 
Tables 3, 4, 5, the results of the frequency parameters of the 
FG doubly curved shell of revolution by the current method 
agree very well with the results of the previous literature for 
all boundary conditions, and it can be seen that the current 

Fig. 5   Convergence of frequency parameters of the FG doubly curved shells of revolution on the boundary spring stiffness: a elliptical shell, b 
paraboloidal shell, c hyperbolical shell

Table 3   The spring stiffness value corresponding to the boundary 
conditions

BC ku,0, ku,1 kv,0, kv,1 kw,0, kw,1 kφ,0, kφ,1 kθ,0, kθ,1

F 0 0 0 0 0
SD 0 1014 1014 0 0
SS 1014 1014 1014 0 1014

C 1014 1014 1014 1014 1014

E1 108 1014 1014 1014 1014

E2 1014 108 1014 1014 1014

E3 108 108 1014 1014 1014
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method has high accuracy for analyzing the free vibration 
of the FG doubly curved shells of revolution.

Based on the verification of the accuracy of the current 
method for the free vibration of the FG doubly curved shell 
of revolution, the next step will be to present the free vibra-
tion results such as the natural frequencies and mode shapes 
of the FG doubly curved shells of revolution according to 
several parameters through numerical examples. Tables 7, 
8, 9 presents the first four natural frequencies of the FG 
doubly curved shells of revolution for different power-law 
index p under classical and elastic boundary conditions. The 
geometric dimensions of FG doubly curved shells of revolu-
tion are set as follows; for elliptical shell (Table 7): ae = 1 m, 
be = 2 m, φ0 = π/3, φ1 = 2π/3, for Paraboloidal shell (Table 8): 

R0 = 0.2 m, R1 = 1 m, L = 1 m, Rs = 0, for hyperbolical shell 
(Table 9): ah = 1 m, R1 = 1 m, Rs = 2 m, C = 3 m, D = 4 m and 
For all types of shells, the thickness is the same, h = 0.05 m. 
The material of the shell is selected as FGMI (a = 1/b = 0.5, 
c = 2/p).

In Table 7, in the case of the classical boundary condi-
tions, when the power-law index p increases, the natural 
frequencies of the FG elliptical doubly curved shell of 
revolution decrease. However, in the case of elastic bound-
ary conditions, an interesting phenomenon is detected. In 
the case of the elastic boundary condition E1, the natural 
frequencies are changed with a tendency similar to that of 
the classical boundary condition. However, in the case of 
elastic boundary conditions E2 and E3, if the power-law 

Table 4   Comparison of frequency parameters of a FG elliptical doubly curved shell of revolution

Type n m Boundary conditions

C–C SS–SS F–C SD-SD E1–E1 E2–E2

Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present

FGMI 1 1 0.5739 0.5726 0.5705 0.5691 0.3344 0.3334 0.5155 0.5142 0.5197 0.5216 0.3405 0.3479
2 0.9237 0.9215 0.9047 0.9026 0.8612 0.8591 0.6675 0.6661 0.6731 0.6778 0.8532 0.8533
3 1.0874 1.0849 1.0561 1.0537 0.9331 0.931 0.9151 0.9131 0.9334 0.9314 1.049 1.0485
4 1.1763 1.1734 1.1578 1.1548 1.0994 1.0967 1.0554 1.053 1.0876 1.0851 1.0802 1.0783
5 1.301 1.2987 1.2651 1.2629 1.206 1.203 1.2031 1.2005 1.2447 1.2423 1.2246 1.2224

2 1 0.4919 0.4907 0.4853 0.4842 0.4358 0.4344 0.4797 0.4786 0.4863 0.4852 0.4221 0.4226
2 0.8052 0.8031 0.7887 0.7867 0.674 0.6716 0.7828 0.7809 0.8006 0.7986 0.7416 0.7407
3 1.0153 1.0128 0.9828 0.9804 0.8998 0.8971 0.9787 0.9763 1.0122 1.0096 0.987 0.9848
4 1.2136 1.2109 1.1682 1.1655 1.0954 1.0925 1.1627 1.16 1.2092 1.2065 1.1906 1.1882
5 1.4404 1.4406 1.3797 1.3777 1.2991 1.2971 1.2733 1.2711 1.2746 1.2781 1.4195 1.4193

3 1 0.4729 0.4718 0.4631 0.462 0.4722 0.4711 0.4592 0.4582 0.4695 0.4684 0.4478 0.4471
2 0.7466 0.7447 0.7263 0.7245 0.7425 0.7406 0.725 0.7233 0.7463 0.7444 0.7151 0.7137
3 0.9853 0.9828 0.9514 0.9489 0.9739 0.9712 0.9489 0.9466 0.9843 0.9817 0.9636 0.9612
4 1.2213 1.2186 1.1739 1.1713 1.1955 1.1923 1.1707 1.1681 1.2196 1.2169 1.2047 1.2021
5 1.4832 1.4839 1.422 1.4204 1.4333 1.4321 1.4174 1.4156 1.4811 1.4817 1.4688 1.469

FGMII 1 1 0.5713 0.5725 0.5666 0.5677 0.3324 0.3335 0.5123 0.5135 0.5176 0.522 0.3391 0.3478
2 0.919 0.9207 0.896 0.8977 0.8568 0.8592 0.6644 0.6657 0.6702 0.6776 0.8489 0.8528
3 1.0817 1.0838 1.0485 1.0506 0.9284 0.9305 0.9111 0.9127 0.9287 0.9307 1.0437 1.0481
4 1.1697 1.1728 1.1365 1.1395 1.0934 1.0958 1.0501 1.0522 1.0817 1.0839 1.075 1.0779
5 1.2946 1.2984 1.2706 1.2745 1.1982 1.2014 1.1963 1.1994 1.237 1.2405 1.217 1.2207

2 1 0.4894 0.4903 0.4819 0.4827 0.4322 0.4332 0.4777 0.4786 0.4838 0.4847 0.42 0.4221
2 0.8008 0.8023 0.7867 0.7882 0.6676 0.6695 0.7795 0.7809 0.7962 0.7977 0.7374 0.7398
3 1.0093 1.0113 0.979 0.9809 0.8934 0.8954 0.9742 0.9761 1.0061 1.0082 0.981 0.9833
4 1.2056 1.2087 1.1628 1.1657 1.0878 1.0903 1.1568 1.1596 1.2012 1.2043 1.1827 1.186
5 1.43 1.4373 1.3723 1.3774 1.2896 1.2942 1.2688 1.2713 1.2702 1.2785 1.409 1.416

3 1 0.4701 0.4709 0.4588 0.4595 0.4694 0.4702 0.457 0.4577 0.4667 0.4675 0.4452 0.4462
2 0.7419 0.7432 0.7231 0.7244 0.7376 0.739 0.7214 0.7227 0.7415 0.7429 0.7106 0.7122
3 0.9786 0.9805 0.9473 0.9491 0.9668 0.9688 0.9439 0.9457 0.9776 0.9795 0.9569 0.959
4 1.2123 1.2154 1.168 1.1709 1.1857 1.1886 1.1638 1.1667 1.2106 1.2137 1.1957 1.1989
5 1.4715 1.4795 1.4136 1.419 1.4202 1.4269 1.4084 1.4138 1.4693 1.4772 1.4571 1.4645
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index p increases, the first natural frequency increases, but 
the frequency changes randomly in the remaining modes. 
This is because, in the case of elastic boundary conditions 
E2 and E3, when p increases, the stiffness of the shell cor-
responding to the mode shape changes randomly. It can be 
seen from Tables 8 and 9 that these phenomena also occur 
in paraboloidal and hyperbolical doubly curved shells of 
revolution.

To help the reader understand the free vibration charac-
teristics of the FG doubly curved shells of revolution with 
different boundary conditions, Figs. 6, 7, 8 shows some of 
the shell modes corresponding to Tables 7, 8, 9.

3.3 � Forced Vibration Analysis of FG Doubly Curved 
Shell of Revolution

In this section, studies on the forced vibration analysis of 
the FG doubly curved shells of revolution are conducted.

3.3.1 � Steady‑State Vibration Response

First, the steady-state vibration responses of the FG doubly 
curved shells of revolution under different external excitation 
forces are investigated. In this study, three common loads: 
point force, line force and surface forces are discussed. The 
diagrammatic sketch of three applied load types for the dou-
bly curved shells of revolution is shown in Fig. 9.

Table 5   Comparison of frequency parameters of a FG paraboloidal doubly curved shell of revolution

Type n m Boundary conditions

C–C SS–SS F–C SD–SD E1–E1 E2–E2

Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present

FGMI 1 1 0.8928 0.8905 0.8679 0.8657 0.695 0.6928 0.6523 0.6509 0.6903 0.701 0.4794 0.4925
2 1.1903 1.1868 1.1112 1.1081 1.1438 1.1402 0.887 0.8849 0.9026 0.9015 1.1697 1.1664
3 1.5485 1.5436 1.4225 1.4177 1.3601 1.3561 1.1116 1.1086 1.1941 1.1907 1.4606 1.46
4 1.8931 1.8883 1.8036 1.7977 1.5221 1.5164 1.4321 1.4274 1.5488 1.544 1.6878 1.6913
5 2.0691 2.0638 1.953 1.9488 1.7676 1.76 1.8282 1.8221 2.0285 2.0223 1.8324 1.8284

2 1 0.7128 0.7107 0.6825 0.6807 0.5604 0.5582 0.6779 0.6761 0.708 0.706 0.581 0.582
2 1.14 1.1365 1.056 1.0529 0.9435 0.94 1.0267 1.0239 1.1167 1.1142 1.0821 1.0793
3 1.5599 1.555 1.4308 1.4261 1.3116 1.3073 1.3786 1.3755 1.3837 1.389 1.5261 1.5215
4 2.098 2.0913 1.9107 1.9044 1.7743 1.7686 1.4229 1.4185 1.5536 1.5486 2.0523 2.0477
5 2.4633 2.4578 2.4492 2.4436 2.1733 2.1676 1.8974 1.8911 2.0961 2.0895 2.2048 2.2042

3 1 0.6852 0.6834 0.6451 0.6434 0.6772 0.6753 0.6399 0.6383 0.681 0.6791 0.6348 0.6338
2 1.1491 1.1455 1.0634 1.0602 1.1096 1.1058 1.0542 1.0513 1.1445 1.141 1.1101 1.107
3 1.6392 1.634 1.5122 1.5073 1.5354 1.5295 1.5026 1.4978 1.6355 1.6303 1.6158 1.6108
4 2.2301 2.2231 2.0578 2.0515 2.0354 2.0275 2.0312 2.026 2.0521 2.056 2.2069 2.2001
5 2.9355 2.9308 2.7166 2.7154 2.6284 2.6202 2.0635 2.0588 2.2267 2.2198 2.8464 2.8456

FGMII 1 1 0.888 0.89 0.869 0.8709 0.6903 0.6925 0.647 0.6485 0.6869 0.7007 0.477 0.4922
2 1.1824 1.1852 1.1011 1.1036 1.1361 1.1389 0.8817 0.8838 0.898 0.9014 1.1616 1.1648
3 1.5364 1.5404 1.4217 1.4255 1.3508 1.3556 1.1055 1.108 1.1863 1.1891 1.4511 1.4579
4 1.8817 1.8878 1.7408 1.7462 1.5096 1.5154 1.4235 1.4272 1.5368 1.5408 1.6795 1.6913
5 2.0548 2.0611 1.9929 1.9994 1.7494 1.7561 1.8136 1.8189 2.011 2.0167 1.8223 1.8293

2 1 0.7083 0.7098 0.6794 0.6807 0.5542 0.5558 0.6756 0.6769 0.7036 0.7051 0.5774 0.5811
2 1.1318 1.1343 1.0582 1.0605 0.9347 0.9373 1.0232 1.0254 1.109 1.1122 1.0739 1.0772
3 1.547 1.5509 1.4268 1.4303 1.3001 1.3038 1.3713 1.3745 1.378 1.3893 1.5132 1.5174
4 2.079 2.0847 1.8958 1.9013 1.7579 1.7635 1.4173 1.4207 1.5407 1.5446 2.0352 2.0422
5 2.4517 2.4596 2.4487 2.4567 2.1579 2.1662 1.8867 1.8921 2.0771 2.0828 2.1938 2.2043

3 1 0.6802 0.6815 0.6384 0.6396 0.672 0.6733 0.6371 0.6383 0.676 0.6773 0.6302 0.632
2 1.1396 1.1421 1.0624 1.0646 1.0992 1.1017 1.049 1.0512 1.1351 1.1376 1.1007 1.1034
3 1.6244 1.6283 1.5048 1.5083 1.5185 1.5226 1.4936 1.4971 1.6206 1.6245 1.6009 1.605
4 2.2089 2.2148 2.0451 2.0509 2.0119 2.0179 2.0221 2.0274 2.0449 2.0567 2.1858 2.1918
5 2.9073 2.9196 2.6963 2.7114 2.5988 2.6085 2.0528 2.0574 2.2055 2.2114 2.8305 2.8434
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Figure 9a is in case of subject to the harmonic point force 
fw applied at the Load Point A (φA = φ, θA = θ) in the thick-
ness direction and vertical acting on the surface of the dou-
bly curved shell of revolution. The point load in expressed 
as fw = f w sin(�t)�(� − �A)�(� − �A) , where the amplitude 
of the harmonic force is taken as qw = 1N and � is the fre-
quency of the harmonic point force; �(�) is the Dirac delta 
function. The displacement response measured at Point B in 
the vertical direction is illustrated. The Fig. 7b is in the case 
of the axisymmetric line force fu = f u sin(�t)�(� − �0) are 
acted on the surface of the doubly curved shell of revolu-
tion, which is applied at the left end of doubly curved shell 
of revolution in the φ direction. The last case concerns the 
vibration responses of the doubly curved shell of revolution 

subjected to the normal distributed unit surface force fw over 
the surface ([φ1,φ2], [θ1, θ2]).

Before investigating the forced vibration of the FG dou-
bly curved shell of revolution, it is necessary to verify the 
accuracy of the presented method to analyze the steady-state 
vibration of the FG doubly curved shell of revolution. It 
is assumed that all shells compared have the property of 
FGMI (a = 1/b = 0/c = 0/p = 1).The forced vibration param-
eters used for verification studies to analyze the steady-state 
vibration of the FG doubly curved shell of revolution are 
following: the Load Point A of concentrated point force; 
A(φ,θ) = (5π/12, 0), and detection point; B(φ,θ) = (π/4,0), 
concentrated point force; fw = f w�

(
� − �A

)(
� − �A

)
 , 

where f w = −1N , Δf = 1Hz , and C–C boundary condition 

Table 6   Comparison of frequency parameters of a FG hyperbolical doubly curved shell of revolution

Type n m Boundary conditions

C–C SS–SS F–C SD–SD E1–E1 E2–E2

Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present Ref. Li 
et al. 
(2019a)

Present

FGMI 1 1 0.8826 0.8802 0.8743 0.8717 0.6332 0.6312 0.5778 0.5765 0.5859 0.6026 0.5091 0.5197
2 1.0796 1.0764 1.0208 1.0177 0.9775 0.9744 0.8938 0.8917 0.8978 0.8967 1.0231 1.0208
3 1.3588 1.3551 1.2578 1.2537 1.233 1.2287 0.9801 0.9769 1.0486 1.046 1.3146 1.3118
4 1.8438 1.8412 1.7098 1.7045 1.6384 1.6332 1.2777 1.2734 1.3962 1.3927 1.565 1.5697
5 2.1714 2.1721 2.1398 2.1374 1.8177 1.814 1.712 1.707 1.8994 1.8998 1.8468 1.844

2 1 0.6973 0.6959 0.6765 0.6744 0.4813 0.48 0.6723 0.6704 0.6954 0.6941 0.622 0.6224
2 1.1435 1.1401 1.1142 1.1105 1.0757 1.0719 0.9493 0.9461 0.9936 0.9967 1.0688 1.0671
3 1.3982 1.3948 1.2721 1.2678 1.2099 1.2065 1.2641 1.2604 1.3253 1.3275 1.3726 1.37
4 1.9535 1.9515 1.7763 1.7708 1.716 1.713 1.3289 1.3254 1.4073 1.4044 1.9232 1.9237
5 2.4158 2.4208 2.325 2.3264 2.037 2.0336 1.7684 1.7633 1.9635 1.9622 2.0925 2.0923

3 1 0.7314 0.7293 0.7231 0.7208 0.7066 0.7044 0.7168 0.7147 0.7284 0.7263 0.7115 0.7097
2 1.1981 1.1942 1.1749 1.171 1.1672 1.1631 1.0658 1.0621 1.1181 1.1159 1.1504 1.1472
3 1.5536 1.5487 1.4388 1.4339 1.485 1.4798 1.3978 1.3933 1.5181 1.5139 1.5305 1.526
4 2.1091 2.1038 1.9384 1.9319 1.9704 1.9653 1.8983 1.893 1.9231 1.9256 2.0939 2.089
5 2.7348 2.743 2.5618 2.5608 2.5005 2.5052 1.956 1.9509 2.112 2.1068 2.6796 2.6808

FGMII 1 1 0.8771 0.8795 0.8688 0.871 0.6289 0.6307 0.5735 0.5758 0.5825 0.6027 0.5056 0.5192
2 1.0712 1.0741 1.0078 1.0107 0.9697 0.9724 0.889 0.8919 0.8927 0.8966 1.0149 1.0184
3 1.3471 1.3513 1.2352 1.2386 1.2227 1.2261 0.9722 0.9749 1.04 1.0435 1.3036 1.3083
4 1.827 1.8355 1.6598 1.6648 1.6231 1.629 1.267 1.2705 1.3833 1.3882 1.556 1.5706
5 2.1574 2.1707 2.1198 2.131 1.8029 1.812 1.6954 1.701 1.8804 1.8923 1.8304 1.8385

2 1 0.6922 0.6948 0.6735 0.6752 0.4749 0.4767 0.67 0.6717 0.6904 0.6929 0.6174 0.6212
2 1.1343 1.1375 1.1091 1.1119 1.0657 1.0687 0.9446 0.9471 0.9859 0.9949 1.0598 1.0643
3 1.3848 1.3897 1.2604 1.2638 1.1985 1.2023 1.256 1.2595 1.3178 1.3278 1.3594 1.3649
4 1.9334 1.9432 1.7457 1.7511 1.6963 1.7049 1.3196 1.3243 1.3934 1.3991 1.9038 1.9159
5 2.3986 2.4179 2.2809 2.296 2.0198 2.029 1.7526 1.7582 1.9428 1.9535 2.0806 2.0933

3 1 0.725 0.7269 0.7168 0.7184 0.6996 0.7012 0.7114 0.7131 0.722 0.7239 0.7052 0.7073
2 1.1871 1.1902 1.1705 1.1734 1.1554 1.1582 1.0594 1.062 1.1076 1.112 1.1396 1.1431
3 1.5375 1.5418 1.4373 1.4411 1.4678 1.4718 1.3855 1.3894 1.5017 1.5067 1.5142 1.5187
4 2.0856 2.0932 1.9171 1.9225 1.9449 1.9529 1.8844 1.8904 1.9125 1.9267 2.0704 2.0783
5 2.7073 2.7319 2.5165 2.5305 2.4698 2.4909 1.9411 1.9481 2.0894 2.097 2.6609 2.6786
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Table 7   First four natural frequencies of the FG elliptical doubly curved shells of revolution with different boundary conditions

p Frequency(Hz) BCs

C–C F–C C–SS SS–SS C–SD SD–SD E1–E1 E2–E2 E3–E3

0.1 1 290.192 72.7898 288.959 287.754 288.713 108.632 158.499 52.4198 52.4198
2 293.003 93.9249 291.432 289.88 291.03 287.266 289.652 229.876 158.499
3 330.893 199.45 330.257 329.633 330.136 289.082 292.093 272.186 175.504
4 342.524 247.101 341.532 340.557 341.14 329.395 330.68 286.723 185.281

1 1 287.52 72.4719 286.336 285.178 286.03 107.652 158.162 54.0525 54.0525
2 290.041 92.9693 288.529 287.034 288.05 284.573 286.985 227.763 158.162
3 328.389 198.495 327.78 327.183 327.629 286.085 289.14 269.507 174.394
4 338.961 244.47 338.002 337.054 337.555 326.886 328.179 284.105 185.422

10 1 278.289 72.1714 277.133 276.003 276.788 104.47 157.456 59.6506 59.6506
2 279.19 89.4737 277.699 276.228 277.173 275.183 277.775 220.249 157.456
3 321.029 197.019 320.445 319.871 320.275 275.322 278.321 259.838 170.821
4 325.805 234.817 324.853 323.912 324.366 319.537 320.83 275.111 186.303

50 1 274.072 69.7868 272.903 271.76 272.648 102.733 156.094 60.5545 60.5545
2 2l75.955 88.4706 274.459 272.982 274.052 271.255 273.564 217.673 156.094
3 314.125 190.903 313.527 312.94 313.401 272.174 275.098 256.622 168.703
4 322.367 232.473 321.421 320.489 321.033 312.692 313.927 270.865 185.558

100 1 273.022 68.9112 271.859 270.722 271.621 102.247 155.61 60.6092 60.6092
2 275.354 88.2865 273.87 272.404 273.484 270.251 272.514 217.117 155.61
3 311.974 188.689 311.376 310.789 311.259 271.639 274.499 255.959 168.098
4 321.805 232.111 320.869 319.947 320.494 310.559 311.775 269.789 185.224

Table 8   First four natural frequencies of the FG paraboloidal doubly curved shells of revolution with different boundary conditions

p Frequency(Hz) BCs

C–C F–C C–SS SS–SS C–SD SD–SD E1–E1 E2–E2 E3–E3

0.1 1 607.483 495.743 572.512 571.877 411.052 231.92 331.396 133.618 108.886
2 635.748 600.134 611.411 610.105 570.507 569.392 603.683 430.632 133.618
3 672.038 621.86 624.677 624.59 611.233 583.394 620.2 517.195 331.396
4 798.589 671.628 746.07 746.064 621.312 606.796 631.489 561.866 430.674

1 1 602.48 491.84 568.113 567.439 407.303 229.979 329.95 139.303 112.67
2 629.715 595.234 605.476 603.977 565.335 564.173 598.722 427.624 139.303
3 667.542 615.469 621.171 621.082 605.068 577.819 614.909 512.785 329.95
4 790.563 667.138 742.844 742.838 616.625 600.474 625.506 557.496 427.879

10 1 586.615 479.034 552.203 551.505 393.665 223.58 325.595 158.125 125.447
2 608.368 579.721 583.86 582.181 548.829 547.635 582.993 417.878 158.125
3 656.148 592.115 610.036 609.947 583.213 556.43 595.603 498.322 325.595
4 761.344 655.761 735.06 735.054 603.059 578.494 604.275 544.489 419.289

50 1 575.588 469.811 541.943 541.321 388.333 219.573 321.554 162.018 127.842
2 599.987 568.702 576.456 575.124 539.773 538.693 572.031 412.428 162.018
3 639.872 585.475 594.459 594.376 576.212 549.861 589.472 490.195 321.554
4 752.396 639.486 712.791 712.785 590.834 571.945 596.004 533.346 413.46

100 1 572.371 467.085 539.185 538.583 387.104 218.427 320.279 162.525 128.09
2 598.055 565.471 574.933 573.687 537.24 536.188 568.83 410.898 162.525
3 634.436 584.28 589.546 589.463 574.749 548.579 588.238 487.945 320.279
4 750.669 634.051 705.237 705.231 586.271 570.583 594.108 529.907 411.722
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is selected. Due to the lack of prior literature on the steady-
state vibration of the FG doubly curved shell of revolution, 
the comparisons are made with the results of the finite ele-
ment analysis software ABAQUS. The comparison results 
are shown in Fig. 10. From Fig. 10, it can be seen that the 
steady-state vibration response by the current method agrees 
very well with the results of FEM regardless of the shape 
of the shell and it can be concluded that this method is a 
reasonable method for the steady-state vibration analysis of 
the FG doubly curved shells of revolution.

Figure 11 presents the displacement-frequency charac-
teristic of the FG double-curved shells of revolution with 
C–C boundary conditions under three types of load-point 
force, line force, and surface force. Forced vibration param-
eters are set as follows; for the elliptical and paraboloi-
dal shell, the load point of point force: A(φ,θ) = (π/3, 0), 
Load position of line force: A(φ,θ) = ([π/3, 0], [π/4, π/3]), 
Load position of surface force: A(φ,θ) = ([π/6, π/3], [π/4, 
π/3]), for hyperbolical shell, Load point of point force: 
A(φ,θ) = (π/3, 0), Load position of line force: A(φ,θ) = ([π/3, 
0], [π/4, π/3]), Load position of surface force: A(φ,θ) = ([π/4, 
π/3], [π/4, π/3]), for all shells, detection points are set as 
B(φ,θ) = (π/3,0) and B(φ,θ) = (π/4,0). And concentrated 
force: fw = f w�

(
� − �A

)(
� − �A

)
 ,  where  f w = −1N  , 

Δf = 1Hz.
From Fig. 11, it can be seen that, for the same natural 

frequency, regardless of the detected point and the type of 

the shell, the displacement is the largest in the case of a 
point force and the smallest when a surface force is applied. 
It is obvious that this result occurs because the displacement 
due to the point force is greatest when the magnitude of the 
force is the same.

3.3.2 � Transient Vibration Response

As the last part of this study, the methodology mentioned 
previously is applied to obtain the transient responses of the 
FG doubly curved shells of revolution subjected to different 
four shock loads, namely rectangular pulse, triangular pulse, 
half-sine pulse, and exponential pulse. The sketch of the load 
time domain curve is shown in Fig. 12.

These load curves can be described by the following 
formulas:

(27a)Rectangular pulse ∶ f (t) =

{
ft 0 ≤ t ≤ 𝜏

0 t > 𝜏

(27b)

Triangular pulse ∶ f (t) =

⎧⎪⎨⎪⎩

2t

𝜏
ft 0 ≤ t ≤ 𝜏

2

ft −
2

𝜏

�
t −

𝜏

2

�
ft

𝜏

2
≤ t ≤ 𝜏

0 t > 𝜏

Table 9   First four natural frequencies of the FG hyperbolical doubly curved shells of revolution with different boundary conditions

p Frequency(Hz) BCs

C–C F–C C–SS SS–SS C–SD SD–SD E1–E1 E2–E2 E3–E3

0.1 1 68.2251 35.9135 67.0202 66.4547 47.9782 17.4497 21.953 36.8414 12.2487
2 72.8542 41.3335 71.4367 71.1015 49.9701 26.3827 22.2929 67.9083 22.2929
3 75.9343 44.8809 74.5173 73.6434 56.6919 37.4951 36.6566 72.6512 33.4131
4 93.8282 52.4109 91.3433 89.5739 60.5254 39.2897 43.2038 72.8243 36.8414

1 1 67.648 35.6092 66.6462 64.932 47.6393 17.2857 20.6344 41.5917 10.1313
2 72.3213 41.0461 71.1279 69.9598 49.5158 26.1115 27.453 67.3336 27.453
3 75.1948 44.425 73.9987 71.3222 56.3492 37.1212 35.9791 71.9462 32.7015
4 92.8471 52.0802 90.813 88.1859 59.9003 39.0951 42.9188 72.2917 41.5917

10 1 65.9873 34.7278 65.0887 64.932 46.9105 16.7484 14.9534 55.6469 8.18033
2 71.0871 40.4365 69.9807 69.9598 48.0896 25.1489 33.5228 65.6802 30.0949
3 72.6972 42.8198 71.6368 71.3222 55.856 35.8255 40.9833 69.599 33.4177
4 89.3034 51.5199 88.4424 88.1859 57.6704 39.037 42.5733 71.0583 40.9833

50 1 64.676 34.0424 63.5778 63.3474 45.7142 16.4872 13.0045 58.6738 10.7429
2 69.3485 39.3941 68.0367 67.9991 47.2622 24.8447 32.6788 64.3732 29.1877
3 71.647 42.2805 70.3624 69.973 54.2123 35.3452 41.0967 68.5362 30.2786
4 88.2926 50.0654 86.9735 85.594 56.983 37.7221 43.7583 69.3202 40.6792

100 1 64.2705 33.8315 63.1389 62.8935 45.2983 16.4171 12.6387 59.1355 11.1504
2 68.7546 39.0303 67.4153 67.3746 47.0281 24.7831 32.4998 63.9691 28.9944
3 71.3891 42.1664 70.063 69.6598 53.6107 35.2361 40.5484 68.2644 29.6722
4 88.109 49.54 86.2046 84.7855 56.8478 37.2201 43.7504 68.7263 40.1261
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Fig. 6   Mode shapes of the FG 
elliptical doubly-curved shells 
of revolution (p = 10); a C–C, b 
F–C, c E1–E1

(a)

(b)

(c)

Fig. 7   Mode shapes of the FG 
paraboloidal doubly curved 
shells of revolution (p = 10); a 
C–C, b F–C, c E1–E1

(a)

(b)

(c)
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Fig. 8   Mode shapes of the FG 
hyperbolical doubly curved 
shells of revolution(p = 10); a 
C–C, b F–C, c E1–E1

(a)

(b)

(c)

Fig. 9   The diagrammatic sketch of three applied load types for the FG doubly curved shells of revolution; a Point force, b Line force, c Surface 
force
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where ft is the load amplitude; τ is the pulse width; t is the 
time variable.

As in all analysis problems, the accuracy of the proposed 
method must be verified in this study. Therefore, first, a 
study to verify the accuracy of the current method for tran-
sient response analysis is performed. As in the steady-state 
vibration analysis, the finite element analysis software 
ABAQUS is used in this verification study due to the lack 
of prior literature. The material properties, geometric dimen-
sions, and forced vibration parameters of all shells are set the 
same as in the case of Fig. 10.

The calculation time t and calculation step Δt is set at 
10 ms and 0.01 ms, respectively. Comparing the theoreti-
cal results with the results obtained by FEM, we can see 
that the theoretical results show a good agreement with 
the FEM results (Fig. 13). From the comparison result of 
Fig. 13, it can be confirmed that the current method is a 
reasonable method that has high accuracy not only in the 

(27c)Half − sine pulse ∶ f (t) =

{
ft sin

(
𝜋t

𝜏

)
0 ≤ t ≤ 𝜏

0 t > 𝜏

(27d)Exponential pulse ∶ f (t) =

{
fte

−𝜉t 0 ≤ t ≤ 𝜏

0 t > 𝜏

steady-state vibration of the shell but also in the transient 
response analysis.

After having investigated the accuracy of the present 
method on the transient vibration problems, the effects 
of different types of loads on the transient vibration 
responses of the FG doubly curved shells of revolution 
are presented (Fig.  14). The geometric and material 
parameters are the same as in Fig. 11. Point force is con-
sidered as the type of load. for all shells, Load point of 
point force: A(φ,θ) = (π/3, 0), detection points are set as 
B(φ,θ) = (π/3,0) and B(φ,θ) = (π/4,0). And concentrated 
force is fw = f w�

(
� − �A

)(
� − �A

)
 , where f w = −1N  , 

Δf = 1 Hz . The calculation time t and calculation step 
Δt is set at 10 ms and 0.01 ms, respectively. As shown 
in Fig. 14, in all cases, the transient response charac-
teristics for the rectangular pulse and exponential pulse 
appear very disordered. On the other hand, in the case of 
triangular pulse and half-sine pulse, the transient response 
characteristic decreases gently at first and then increases 
again in the vicinity of the intermediate position. This is 
because, due to the inertia after the load is applied, and 
after a certain period of time (half an hour according to the 
result), the displacement is maximized, and as the force 
is decreased, the displacement also decreases in the same 
way.

Fig. 10   The comparison of 
normal displacement of the 
FG doubly curved shell of 
revolution; a elliptical shell, b 
paraboloidal shell, c hyperboli-
cal shell
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In addition, it can be seen that the displacement of the 
rectangular pulse is always greater than the displacement 
of the exponential pulse and the displacement of the trian-
gular pulse is always greater than the displacement of the 
half-sine pulse at the measurement position 1. However, at 
measurement position 2, the displacements of rectangular 

pulse and exponential pulse are almost the same, and the 
displacements of triangular pulse and half-sine pulse are 
almost the same. As such, when different impact loads are 
applied, the transient response characteristics are very dif-
ferent depending on the measurement points for the same 
FG doubly curved shell of revolution.

Fig. 11   The displacement-frequency characteristic of FG double-curved shell of revolution under three types of load; a elliptical shell, b parabo-
loidal shell, c hyperbolic shell



339Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2023) 47:319–343	

1 3

4 � Conclusions

In this paper, a semi-analytic method for analyzing the forced 
vibrations of the FG doubly curved shells of revolution with 
elastic boundary conditions by using Jacobi polynomials is 
presented. The Jacobi polynomials are applied to generalize 
the choice of the allowable displacement function and the 
Rayleigh–Ritz method is used to get the formulation on the 
basis of the first-order shear deformation theory. The boundary 
spring technique is adopted to realize the kinematic compati-
bility and physical compatibility conditions at arbitrary bound-
ary conditions and the continuity conditions at two adjacent 

segments were enforced by the penalty method. The studies 
of the convergence, accuracy and reliability for the FG doubly 
curved shells of revolution with various boundary conditions 
of the classical, elastic and their combinations are made. And 
the results show good agreement between the present method 
and the existing literature and FEM. Also, several numerical 
examples for the dynamic behavior of the laminated composite 
doubly curved shell of revolution with elastic boundary condi-
tions are also presented. Moreover, some numerical parameter 
studies to analyze forced vibration of FG doubly curved shells 
of revolution are also carried out.

(a) (b) (c) (d)

Fig. 12   The sketch of load time domain curve. a Rectangular pulse; b Triangular pulse; c Half-sine pulse; d Exponential pulse

Fig. 13   The comparison of nor-
mal displacement response of 
the FG doubly curved shells of 
revolution with C–C boundary 
condition; a elliptical shell, b 
paraboloidal shell, c hyperbolic 
shell
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Appendix A: Detailed Expressions 
of the Matrices

The generalized mass and stiffness matrices of the FG doubly 
curved shell of revolution used in Eq. (26) are given as:

(28)� = diag
[
�1,�2, ⋅ ⋅ ⋅,�� , ⋅ ⋅ ⋅,�N

] (29)

�� =

��+1

∫
��

2�

∫
0

⎡
⎢⎢⎢⎢⎢⎣

��,uu 0 0 ��,u� 0

0 ��,vv 0 0 ��,v�

0 0 ��,ww 0 0

��,u� 0 0 ��,�� 0

0 ��,v� 0 0 ��,��

⎤
⎥⎥⎥⎥⎥⎦

R�d��d��

Fig. 14   The displacement response of doubly curved shells under different loads. a elliptical shell, b paraboloidal shell, c hyperbolic shell
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where

(30)

��,uu = I0�T�, ��,vv = I0�T�, ��,ww = I0�T�, ��,�� = I2ΦTΦ,

��,�� = I2ΘT�, ��,u� = I1�TΦ, ��,v� = I1�TΘ

(31)
� = �m ⊗ �n, � = �m ⊗ �n, � = �m

⊗�n, Φ = �m ⊗ �n, Θ = �m ⊗ �n

(32)�m = [P
(�,�)

0
(�),P

(�,�)

1
(�), ⋅ ⋅ ⋅,P(�,�)

m
(�), ⋅ ⋅ ⋅,P

(�,�)

M
(�)]

(33)�n = [cos(0��), cos(1��), ⋅ ⋅ ⋅ cos(n��), ⋅ ⋅ ⋅, cos(N��)]

(34)�n = [sin(0��), sin(1��), ⋅ ⋅ ⋅ sin(n��), ⋅ ⋅ ⋅, sin(N��)]

(35)� = �u +�b +�c

(36)�u = diag
[
�1,�2 ⋅ ⋅⋅,�� , ⋅ ⋅ ⋅,�N

]

(37)

�� =

��+1

∫
��

2�

∫
0

⎡
⎢⎢⎢⎢⎢⎣

��,uu ��,uv ��,uw ��,u� ��,u�

�
T
�,uv

��,vv ��,vw ��,v� ��,v�

�
T
�,uw

�
T
�,vw

��,ww ��,w� ��,w�

�
T
�,u�

�
T
�,v�

�
T
�,w�

��,�� ��,��

�
T
�,u�

�
T
�,v�

�
T
�,w�

�
T
�,��

��,��

⎤
⎥⎥⎥⎥⎥⎦

R�d��d��

(38)

��,uu =
A11

R2
�

��

��

T ��

��
+

A22

R2
�
T2
�

�
T
� +

A66

R2
�
S2
�

��

��

T ��

��

+
A12

R�R�T�

(
��

��

T

� + �
T ��

��

)
+

�sA66

R2
�

�
T
�

(39)

��,uv =

(
A22C�

R2
�
S2
�

� +
A12

R�R�S�

��

��

)T

��

��
+

A66

R�S�

��T

��
�1

(40)
��,uw =

[(

A11

R2
�

+
A12
R�R�

)

��
��

+

(

A22

R2
�T�

+
A12

R�R�T�

)

�
]T

� −
�sA66

R2
�

�T ��
��

(41)

��,u� = −
�sA66

R�

�
T
�+

B11

R2
�

��

��

T ��

��
+

B12

R�R�T�

��

��

T

�

+
B12

R�R�T�
�

T ��

��
+

B22

R2
�
T2
�

�
T
� +

B66

R2
�
S2
�

��

��

T ��

��

(42)

��,u� =
B12

R�R�S�

��

��

T ��

��
+

B22

R2
�
T�S�

�
T ��

��
+

B66

R�S�

��

��

T

�1

where

(43)��,vv =
A22

R2
�
S2
�

��

��

T ��

��
+ A66�

T
1
�1 +

�sA66

R2
�

�
T
�

(44)��,vw =

(
A22

R2
�
S�

+
A12

R�R�S�

)
��

��

T

� −
�sA66

R2
�
S�

�
T ��

��

(45)

��,v� =
B12

R�R�S�

��

��

T ��

��
+

B22

R2
�
T�S�

��

��

T

� +
B66

R�S�
�

T
1

��

��

(46)��,v� = −
�sA66

R�

�
T
� +

B22

R2
�
S2
�

��

��

T ��

��
+

B66

R�S�
�

T
1
�1

(47)

��,ww =

(

A11

R2
�
+

A22

R2
�

+
2A12
R�R�

)

�T�+�s

A66

(

1
R2
�

��
��

T ��
��

+ 1
R2
�S2�

��
��

T ��
��

)

(48)
��,w� =

�sA66

R�

��
��

T
Φ +

B11

R2
�
�T �Φ

��

+
B12

R�R�T�
�TΦ +

B12
R�R�

�T �Φ
��

+
B22

R2
�T�

�TΦ

(49)

��,w� =
�sA66

R�S�

��

��

T

� +
B12

R�R�S�
�

T ��

��
+

B22

R2
�
S�

�
T ��

��

(50)

��,�� = �sA66�
T
� +

D11

R2
�

��

��

T ��

��
+

D22

R2
�
T2
�

�
T
�

+
D66

R2
�
S2
�

��

��

T ��

��
+

D12

R�R�T�

(
�

T ��

��
+

��

��

T

�

)

(51)��, � =
D22

R2
�T�S�

ΦT �Θ
��

+
D66
R�S�

�Φ
��

T
Θ1 +

D12
R�R�S�

�Φ
��

T �Θ
��

(52)��,�� = �sA66�
T
� +

D22

R2
�
S2
�

��

��

T ��

��
+ D66�

T
1
�1

(53)C� = cos(�), S� = sin(�), T� = tan(�)

(54)�1 =
1

R�

��

��
−

1

R�T�
�, �1 =

1

R�

��

��
−

1

R�T�
�

(55)�b = diag
[
�b0, 0 ⋅ ⋅⋅,�b1

]
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(56)�b0 = ∫

2�

0
diag

[

�b0,uu,�b0,vv,�b0,ww,�b0,��,�b0,��
]

��=�0
R0d�

(57)

�b0,uu = ku0�
T
�, �b0,vv = kv0�

T
�, �b0,ww = kw0�

T
�,

�b0,�� = k�0�
T
�, �b0,�� = k�0�

T
�
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0
diag
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