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Abstract
In this paper, 3D dynamic modeling and robust control of a flexible robotic arm are performed with considering nonlinear 
effects. The simplifying assumptions such as linear vibration or 2D dynamic modeling of the arm significantly affect the 
accuracy of the arm dynamics. Thus, in this paper, a special robotic arm is modeled using the 3D Euler–Bernoulli model 
considering the nonlinear effects of the beam. The Lagrange approach is used to extract the dynamic equations of motion 
and the coupled states of slow dynamics of the robotic degrees of freedom together with the fast dynamics of beam vibra-
tion is considered simultaneously. In order to control the main DOFs of the system and decrease the vibrating response of 
the system simultaneously, a feedback linearization controller equipped with the input shaping method is proposed through 
which all of the coupled states of the system can be controlled at the same time. It is shown that the response of the pro-
posed model is closer to a real flexible robotics arm and the designed controller can successfully control all of the rigid and 
vibrating states of the system.

Keywords  Flexible robotic arm · 3D Modeling · Nonlinear vibration · Vibration reduction · Input shaping · Feedback 
linearization (FL)

1  Introduction

Nowadays robotic arms are widely applicable in many indus-
tries such as automotive engineering, aerospace engineering, 
and ocean engineering (Dwivedy and Eberhard 2006). Many 
robotic arms cannot be considered as rigid bodies since their 
geometrical properties and manufactured materials result in 
a flexible structure for these arms. One of the most famil-
iar examples of such systems is the robotic manipulators 
mounted on exploring aerospace vehicles. These arms are 
significantly flexible because of their long length. Consid-
ering the fact that in robotic performances, accuracy is one 
of the most critical parameters, this flexibility may increase 

the end-effector error. Thus, in order to compensate for the 
aforementioned errors and increase the accuracy of the sys-
tem, the flexibility of the arm requires to be considered. 
Considering the flexibility of the arm increases the engaged 
degrees of freedom and states of the system. When the flex-
ibility of a robotic system is considered in modeling, not 
only the slow dynamic movement of the arm as a rigid body 
should be studied, but also the fast dynamic related to the 
vibrational response of the arm beam needs to be modeled 
and its related PDE equations should be coupled with the 
ODE equations of the main system.

Some modeling methods for the planner flexible manipu-
lators have been proposed so far. A partial differential equa-
tion model of a planner single-link flexible manipulator is 
derived in Jiang et al. (2018). However, the partial differen-
tial equation model is not suitable for both dynamic analysis 
and controller design of the system. There are three popu-
lar approaches through which the model can be reduced to 
ODE. Assumed mode method (Gao et al. 2019), finite ele-
ment method (Mohamed and Tokhi 2004), and the lumped 
parameter model (Sun et al. 2017). Amongst these studies, 
the assumed mode method is more applicable in researches, 
since the dynamic behavior of a flexible manipulator can 
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be presented more accurately using the model with lower 
dimensions (El-Badawy et al. 2010).

As can be seen, in the mentioned studies, the flexibility of 
the robotic arm is modeled in two dimensions by the use of 
two generalized coordinates. This simplifying assumption is 
in contrast to the real behavior of a robotic arm which actu-
ally has deformation in three dimensions (3D).

There are a few studies in which the manipulators would 
be modeled spatially in 3D space based on their original 
PDE formulations. The orientation and the vibrations of 
the manipulator should be considered simultaneously when 
a flexible manipulator moves within 3D space. Liu et al. 
(2018), the model of a coupled 3D flexible manipulator is 
derived using Hamilton principle and unit quaternion, and 
the resultant model is described with the aid of a set of PDEs 
and ODEs.

On the other hand, all of these researches have another 
significant simplification named linear modeling. This 
assumption again decreases the accuracy of modeling of 
the robotic arm and its related vibrating response since 
the geometrical properties and material structure of these 
beams form a nonlinear dynamic system with nonlinear PDE 
equations.

Sharf (1995) considered the spin-up of a flexible beam 
and compared the different approaches for modeling the 
axial shortening on the basis of nonlinear strain–displace-
ment relations. Damaren and Shart ( 1995), Du et al. (1996), 
Al-Bedoor and Hamdan (2001), Martins et al. (2002), Abe 
(2009) and Fazel et al. (2013) investigated the dynamics 
of flexible manipulators with geometric nonlinearity using 
the finite deformation theory and showed that the effect of 
the nonlinearity on the dynamic responses of a manipulator 
is not negligible when large bending deformations occur. 
Therefore, it can be concluded that it is necessary to con-
sider the effects of geometric nonlinearity to design control-
lers for this kind of manipulators undergoing large flexural 
deformations.

3D and nonlinear modeling of flexible robotic arms 
increase the accuracy of simulation of this system, but 
the actual vibration of the system and its related deviation 
from set-point needs to be compensated by the aid of some 
improvement algorithms. Thus, a proper nonlinear controller 
is proposed in this paper to reduce the unwanted vibration of 
these arms and increase their accuracy.

The vibration control of flexible link manipulators has 
also received significant interest in the literature. The control 
schemes developed can be classified into two categories: 
feedback control and open-loop control. The main feedback 
control strategies, which use the measurements of system 
states to control the vibrations in a closed-loop way, include 
the proportional-integral-derivative control (Tokhi and Azad 
1996), delayed feedback control (Qiu and Wu 2015), positive 
position feedback control (Shan et al. 2005), linear quadratic 

regulator (Chan and Modi 1990), adaptive control (Liu et al. 
2016), sliding-mode control (Chang and Chen 1998), fuzzy 
control (Subudhi and Morris 2003), and artificial neural net-
works-based control (Talebi et al. 2000). The last two items 
are numerical methods which are not preferable for robotic 
applications since their efficiency for online and real-time 
processes is not good. These closed-loop controllers have a 
good compensating effect on the main dynamic of the system 
while the oscillatory response of the flexible arm cannot be 
properly controlled. The open-loop control strategies, which 
filter the inputs to produce a desirable motion with minimal 
vibrations, include the optimal trajectory planning (Heidari 
et al. 2013), and the input shaping method (Mohamed and 
Tokhi 2004; Díaz et al. 2010). Again, using these open-loop 
approaches alone do not result in a robust response in the 
whole dynamics of the flexible system. Ren et al. (2020) and 
Zhao et al. (2019, 2021) used the boundary control method 
to control the flexible manipulator. Here, the linear dynamic 
system is modeled in two-dimensional space. The advantage 
of this control method is for trajectory tracking. On the other 
hand, for the systems with parametric uncertainties, such as 
non-linear dynamics and unknown payload, the design of 
this type of controller is challenging.

The aforementioned controlling strategies are either 
open-loop which cannot compensate for the uncertainties 
and disturbances or closed-loop with a delay which is not 
suitable for controlling the fast dynamic response of the arm 
vibrating response. In this paper, a combination of an open-
loop vibrational controller, i.e., input shaping (IS) with a 
closed-loop controller of feedback linearization is proposed 
to compensate the vibrational response of the system and 
dynamic error of the system simultaneously.

Input shaping is one of the algorithms in which the feed-
forward term is used for controlling the system. Input shap-
ing suppresses the tip vibration by reshaping the desired 
trajectory in order to produce a new commanded trajectory 
that does not excite the resonance frequency of the flexible 
manipulator. The first advantage of this control method is its 
efficiency toward damping the vibrations instantly, result-
ing in zero residual vibration. Another benefit of the men-
tioned method is its good robustness and fast convergence 
rate. This method was first introduced in Singer and Seering 
(1990). The IS method is one of the subdivisions of the finite 
impulse response filters. In (Mohamed and Tokhi 2004) 
using the IS method, a smooth path is designed to trans-
fer the flexible robot with small deflections, in a rest-to-rest 
motion. Additionally, the IS method is compared with the 
other finite impulse response filters. Ghorbani et al. (2019) 
have studied several shaping methods including ZV, ZVD 
and EI, with negative and positive amplitudes for the systems 
which include both rigid and flexible motions. Experimental 
investigations corresponding to the development of feed-
forward and feedback controls are presented in Mohamed 
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et al. (2005). A collocated PD controller has initially been 
developed in this paper for controlling rigid body motion. 
Afterward, feed-forward control based on input shaping and 
low-pass filtering technique has been developed which is 
equipped with strain feedback and PD control for increas-
ing the efficiency of the designed vibration control of the 
manipulator. Singer and Seering (1990), an efficient dynamic 
modeling and tracking/vibration integrated control for a par-
allel manipulator was done. In addition, in formulation, the 
servo motor dynamics were considered.

In most of the researches, the system dynamic modeling 
has been simplified. These simplifications have been applied 
for ease of analysis, increasing the stabilization, and increas-
ing the efficiency of the designed controller. It should be 
noted that some of these assumptions and simplifications 
have a significant impact on the system response. One of the 
most important assumptions that should be considered in the 
modeling is the number of engaged mode shapes required 
to discretize the equations. Here the required number of 
engaged mode shapes is extracted by analyzing the conver-
gence of the response. The second important item which 
should be taken into account is the number of the engaged 
generalized coordinates for the system which works in three-
dimensional space. The vibrational response of this system 
is performed so far in 2-dimensional space. Here it is shown 
that modeling the system in three dimensions will increase 
the accuracy of the system response since the model states 
are more compatible with the real system. However, this 
improvement also increases the number of equations.

There are also simplifications in the field of controlling 
the flexible arm. For example, most of the traditional studies 
have linearized the system around their related equilibrium 
points and have employed linear controllers such as propor-
tional-derivative or optimal linear control methods. On the 
other hand, in most similar researches the main purpose of 
the controller is to control the slow dynamics of the main 
system states while the solution is proposed to control or 
reduce the fact dynamics of the system vibrations. Dynamic 
linearization of the system around a point can only con-
trol the system locally and decreases the active workspace 
of the arm. Therefore, in this paper, global linearization is 
employed and the controller design is based on nonlinear 
system dynamics.

The aforementioned controllers are employed so far have 
been implemented on 2D models or linear systems for which 
both of them do not deliver a real perspective of the effi-
ciency of the proposed controllers. In this paper, closed-loop 
input shaping is designed and implemented for 3D nonlinear 
model of which is the most accurate model of these systems.

As a result, to provide a real model of a flexible robotic 
arm and reduce its related vibrations at the same time with 
compensating its dynamic errors, a nonlinear 3D robotic arm 
is modeled in this paper and a closed-loop input shaping 

controller is designed and implemented for it to control the 
fast and slow dynamics of the system simultaneously. To 
cover the mentioned target, a 3D flexible model of a robotic 
arm is extracted considering geometric nonlinear effects 
and its related kinematics and kinetics are derived. The kin-
ematic of the system is extracted using the Jacobian matrix 
and the dynamic formulation of the system is provided 
employing Lagrange equation. Euler–Bernoulli model is 
employed to model the beam of the robotic arm and assumed 
mode is used to discretize the system. Then a closed-loop 
input shaping controller is designed and implemented on 
the system. The open-loop input shaping improves the input 
of the system in a way to reduce the vibrating response of 
the beam while feedback linearization compensates for its 
dynamic error related to uncertainties or disturbances. In 
order to show the superiority of the proposed 3D nonlinear 
model of the system, the arm is modeled in MATLAB and 
its related results are compared with previous models. In 
addition, to verify the efficiency of the proposed control-
ling strategy, some analytic and comparative simulation 
scenarios are conducted in MATLAB. It will be shown that 
the improved model provides a more realistic scheme of the 
dynamic system, and the proposed controller has a signifi-
cant effect on compensating the vibration and error of the 
system through which the accuracy of the flexible robotic 
arm can be improved.

2 � Kinematics

In order to check the necessity of 3D and nonlinear modeling 
of a robotic arm, a new model needs to be developed here in 
order to compare its related response with previous simpli-
fied models. In addition, the coupled model of the robotic 
arm and beam vibration is required to control the arm move-
ment and its related vibrations. Thus, the dynamic equation 
of a nonlinear 3D flexible arm is derived here. The arm is 
considered here as an Euler–Bernoulli beam in two-plane 
bending. Axial deformation of the beam is also considered 
in this model which has nonlinear effects on the beam vibra-
tion in the flexible arm system. The general scheme of the 
considered system is shown in Fig. 1. Axes XiYiZi constitutes 
an inertia frame while XbYbZb is the body-fixed frame whose 
origin is on the arm’s joint. The workspace rigid position of 
the arm is described by the aid of two joint space angles �1 
and �2 which are controlled by torques �1 and �2 . The cor-
responding deflections with respect to the body-fixed frame 
are denoted by y(x, t) and z(x, t) . Here x and t are the inde-
pendent spatial and time variable, respectively. Also, u(x, t) 
is the axial deformation of the beam. Thus, the position vec-
tor of the point p in the body-fixed frame is:
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The relationship of each coordinate system can be repre-
sented by two rotation transformation matrices. Let Rr(�1) 
and Rr(�2) to be the rigid joint rotation matrices for rotating 
degrees of �1 and �2 as:

The position vector of the system in the inertial coordinate 
frame can be computed as:

The orientation of the body fixed frame XbYbZb with respect 
to inertia frame XiYiZi is denoted by � =

[

0 �1 �2
]T where 

�1 and �2 are the rotation angles about Yi and Zi axis, respec-
tively. In addition, the corresponding angular velocity of the 
body-fixed frame XbYbZb with respect to the inertia frame 
is presented by vector � =

[

0 �1 �2

]T . The vector r can be 
defined as:

(1)rb =
[

x + u(x, t) y(x, t) z(x, t)
]T

(2)

Rr

(

�1
)

=
[

cos cos �1 0 sin sin �1 0 1 0 − sin sin �1 0 cos cos �1
]

Rr

(

�2
)

=
[

cos cos �2 − sin sin �2 0 sin sin �2 cos cos �2 0 0 0 1
]

(3)ri = Rr

(

�1
)

⋅ Rr

(

�2
)

⋅ rb

(4)rb = D + d

where D = [x 0 0]T and d =
[

u(x, t)y(x, t)z(x, t)
]T . Here the 

vector d represents the beam deformation at point p relative 
to the body-fixed frame.

3 � Dynamic Modeling

The time derivative of the position vector in the inertia frame 
and body-fixed frame is expressed by ṙi and ṙb, respectively; 
considering the relative velocity relation we have:

Therefore, the kinetic energy of the system including the 
hub, beam and tip mass will be as follows:

where mp and Ih are the tip mass and the inertia of the joints, 
respectively. The inertia of the joints, assuming the sym-
metry of the beam, can be stated as follow:

The potential energy of the system with neglecting of gravity 
can be expressed as:

where �2
y
 and �2

z
 are the nonlinear curvatures of the beam 

about Zb and Yb axis, respectively, that can be computed as 
follows:

Assume mode method is used to discretize the continuous 
system. To meet this goal, the transversal deformations of 
the beam are assumed to be a multiplication of mode shape 
function by a time function as follows:

where �i(x) and �i(x) are the vibrating modes for a non-rotat-
ing cantilever beam. In addition, �i(t) and �i(t) are general 
coordinates. It is also assumed that the neutral axis of the 

(5)ṙi = ṙb + 𝜔 × rb = ḋ + 𝜔 × rb

(6)K =
1

2

(

𝜔TIh𝜔 + 𝜌∫
l

0

[

ṙi
]T[

ṙi
]

dx + mp

[

ṙi,
]T

x=l

[

ṙi
]

x=l

)

(7)Ih =
[

I1 0 0 0 I2 0 0 0 I3
]

(8)U =
EI

2 ∫
l

0

(

�2
y
+ �2

z

)

dx

(9)

�2

1
=

(

�2y

�x2

)2
{

1 +

(

�y

�x

)2

+⋯

}

�2

2
=

(

�2z

�x2

)2{

1 +

(

�z

�x

)2

+⋯

}

(10)

y(x, t) =

n
∑

i=1

�i(x)�i(t)

z(x, t) =

n
∑

i=1

�i(x)�i(t)

Fig. 1   Schematic of 3D flexible robotic manipulator
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flexible manipulator is in-extensional; hence the inextensi-
bility condition can be expressed as:

The above equation can be expanded up to the second-order 
for y and z . Solving for u′ and neglecting the terms of order 
higher than three we obtain:

Finally, u can be expressed as:

The equation of motion for the flexible manipulator, consid-
ering one mode for each deformation, can be then obtained 
using the following Lagrange approach:

where L = K − U and q , Q are as follows:

By substituting Eqs. (10) and (13) into Eqs. (6) and (8) 
and applying the Lagrange formulation, the equations of 
motion of the system are obtained as follows:

where M is inertia, C is centripetal and K is elastic matrices 
as follows:

There are four coupled dynamic states here including the 
first rotation angle of the arm, the second rotation angle of 
the arm, the first mode shape of the arm, and the second 
mode shape of the arm [Eq. (15)]. Considering the fact that 
these four generalized coordinates are coupled, in order to 
explain the system in state space and extract the related con-
trolling input, it is required to state the dynamic formulations 
in a matrix form of size 4.

4 � Control Schemes

In this section, the proposed control schemes for control-
ling the position of the arm and simultaneously reducing its 
vibration are introduced. To cover this goal, a combination 

(11)
√

(1 + u�)2 + y
�2
+ z�2 − 1 = 0

(12)u� =

√

1 − y�2 − z
�2
− 1 ≈ −

1

2

(

y�
2
+ z�

2
)

(13)u(x, t) = −
1

2∫
x

0

(

y�
2
+ z�

2
)

dx

(14)
𝜕

𝜕t

(

𝜕L

𝜕q̇

)

−
𝜕L

𝜕q
= Q

(15)
q =

[

�1 �2 �1 �1
]

Q =
[

�1 �2 0 0
]

(16)Mq̈ + Cq̇ + K = Q

(17)
M =

[

Mrr Mrf Mfr Mff

]

C =
[

Crr Crf Cfr Cff

]

K =
[

0 0 K1 �
3 + K2�

]T

of a feed-forward control based on input shaping and a feed-
back control based on feedback linearization is proposed 
here. Initially, a collocated feedback linearization control is 
developed in order to control the rigid body motion of the 
flexible manipulator. Afterward, the calculated controlling 
signal is modified according to the input shaping method to 
reduce the vibrational response of the arm.

4.1 � Feedback Linearization Control

In this section, using the feedback linearization technique, 
the rigid motion of the flexible manipulator is controlled. 
For this purpose, the equations of motion of the system 
described in the previous section are rewritten in the fol-
lowing form:

where qr =
[

�1 �2
]T are the main dynamic generalized coor-

dinate of the system, � = [� � ]T is the vibrating generalized 
coordinate and � =

[

�1 �2
]T is the controlling torques of the 

motors. Index r refers to the main dynamic parameters of 
the system while index f shows the vibrating parameters. 
Mrr and Mff  are positive definite inertia matrices and hence 
invertible. 𝜉 can be found from Eq. (19) as:

where the mentioned matrices for our case study are:

Substituting (20) into (18), the dynamic equation of the 
system can be expressed as:

where

The required torque of the motors according to feedback lin-
earization control can therefore be defined for the system as:

where � the outer loop input of feedback linearization and 
must be determined according to pole placement approach. 

(18)Mrrq̈r +Mrf 𝜉 + Crrq̇r + Crf 𝜉̇ = 𝜏

(19)Mfrq̈r +Mff 𝜉 + Cfrq̇r + Cff 𝜉̇ + K1𝜉
3 + K2𝜉 = 0

(20)𝜉 = −M−1
ff

(

Mfrq̈r + Cfrq̇r + Cff 𝜉̇ + K1𝜉
3 + K2𝜉

)

(21)

Mrf =
[

M13 M14 M23 M24

]

Mrr =
[

M11 M12 M21 M22

]

Mff =
[

M33 M34 M43 M44

]

Mfr =
[

M31 M32 M41 M42

]

Crf =
[

C13 C14 C23 C24

]

Crr =
[

C11 C12 C21 C22

]

Cff =
[

C33 C34 C43 C44

]

Cfr =
[

C31 C32 C41 C42

]

K2 =
[

K21 0 0 K22

]

K1 =
[

K11 0 0 K12

]

(22)Nq̈r = 𝜏 − D

(23)

N = Mrr −MrfM
−1
ff
Mfr

D = Crrq̇r + Crf 𝜉̇ −MrfM
−1
ff

(

Cfrq̇r + Cff 𝜉̇ + K1𝜉
3 + K2𝜉

)

(24)� = N� + D
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By applying Eq. (24) to Eq. (22), nonlinear terms disappear 
and the linear system of Eq. (22) will be achieved:

Considering e = qr − qd as the error of the states, the input 
� can be supposed as follows:

where k1 and k2 are positive parameters and qd is the desired 
state. Substituting (26) into (25), the error dynamic of the 
system is:

The controlling gains should be tuned according to pole 
placement technique.

4.2 � Input Shaping

One of the most useful shaping methods is input shap-
ing. This method is real-time and robust. Input shaping is 
designed to reduce, or eliminate command-induced system 
vibrations. The formulation that shows the impulse times 
and impulse amplitudes is written in a matrix form. The 
first row indicates the time by which each impulse is delayed 
while the second row indicates the amplitude of the related 
impulses. Each impulse can be completely defined by one 
column: a time delay and amplitude value. A generic input 
shaper depicted in matrix form is shown in the following 
equation. Note that the first impulse ( A1 ) occurs at time 
t1 = 0 for all input shapers described in this section.

The oldest and simplest input shaper is the Zero Vibration 
(ZV) shaper. This input shaper is designed to filter the sig-
nals which excite the natural frequency of the system. A ZV 
shaper has two impulses. The related formulation describing 
the ZV shaper is:

where � = exp exp
�

��
√

1−�2

�

.

Also, � and �d are the damping ratio and damped natu-
ral frequency of the oscillatory mode addressed by the ZV 
shaper. However, the ZVD shaper is more preferable since 
it has an additional constraint and thus increases the robust-
ness of the controller. In this method, not only the vibration 

(25)q̈r = 𝜈

(26)𝜈 = q̈d − k1ė − k2e

(27)ë + k1ė + k2e = 0

(28)
[

0 t2 t3 … A1 A2 A3 …
]

(29)
[

t1 t2 A1 A2

]

=

[

0
�

�d

1

1 + �

�

1 + �

]

is forced to be decreased to zero at the modeled frequency, 
but also the related derivatives of the vibration amplitudes 
with respect to frequency are forced to be reduced to zero. 
The corresponding formulation of the ZVD shaper can be 
written as:

where � was introduced in Eq. (29). If the robustness cor-
responding to the damping ratio variation wants to be also 
included, the shaper will consist of four impulses as follow:

The vibration reduction can be accomplished by the afore-
mentioned open-loop strategy while the same motion can be 
covered simultaneously by filtering the input according to 
the above-mentioned method. Therefore, the shaped inputs 
are as follows:

4.3 � Feedback Linearization Control Employed 
by Input Shaper

The input shaping method is an excellent means to form rest-
to-rest commands which do not excite oscillatory motions. 
However, its open-loop nature limits its usage for the cases 
in which the system is subject to external disturbances or 
parameter uncertainties. However, this method cannot be 
used to control the rigid motion of a flexible system. On 
the other hand, the feedback linearization method is not 
designed to reduce the vibrations of a flexible manipulator. 
Therefore, it is proposed in this paper to combine these two 
methods to guide the flexible arm within a desired motion at 
the same time by reducing its related vibrations.

There are two methods by which the input shaper can be 
implemented on a closed-loop controller. In the first method, 
the shaper is located within the feedback loop. This method 
is called closed-loop input shaping and permits the shaper 
to act directly on the plant. This implementation ensures 
that the control signal is always fully shaped. However, the 
controlling gains of closed-loop input shaping should be 
tuned so that the stability of the system could be assured 
subject to the time delay caused by the input shaper. This 
kind of combination is suitable for a system that is under 
unwanted disturbances. The second approach is to place the 
input shaper outside the loop. In this case, the inputs of the 

(30)

[

t1 t2 t3 A1 A2 A3

]

=

[

0
�

�d

2�

�d

1

�2 + 2� + 1

2�

�2 + 2� + 1

�2

�2 + 2� + 1

]

(31)IS =

[

0 t
2
t
3
t
4
A
1
A
2
A
3
A
4

]

=

[

0
�

�
d

1

�3 + 3�
2
+ 3� + 1

3�

�3 + 3�
2
+ 3� + 1

2�

�
d

3�

�
d

3�2

�3 + 3�
2
+ 3� + 1

�3

�3 + 3�
2
+ 3� + 1

]

(32)
�s1 = �1 ∗ IS

�s2 = �2 ∗ IS
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shaper are the desired states of the system and the outputs of 
the shaper are the shaped desired states as follows:

where qs is the shaped desired states. Therefore, the input � 
for this case is found as follows:

where es = qr − qs . Since the external disturbances are 
ignored here, this method of outside-the-loop input shaping 
is used in this paper (Fig. 2). 

The overall scheme of the proposed controller flowchart 
is depicted in Fig. 3. As can be seen, the error signals which 
are supposed to be employed for calculation the outer loop 
signal of feedback linearization are filtered firstly by the aid 
of the aforementioned shaper.

(33)qs = qd ∗ IS

(34)𝜈 = q̈s − k1ės − k2es

5 � Simulation Verification of Modeling

The cycle time is set on 0.001 S The reason is contributed to 
the fact that in order to observe the complete performance 
of a vibrating system, the cycle time should be less than the 
period related to the vibrating states of the system. Consid-
ering the fact that the range of frequency of the system con-
sidering its mass and elasticity mode is about 3.42395 HZ 
thus the selected cycle time of 0.001 S can show all of the 
vibrating performance of the system properly. In order to 
verify the accuracy of the modeling, the effect of considered 
modes and the necessity of nonlinear modeling, some simu-
lation scenarios are studied in this section.

Fig. 2   Controlling flowchart of 
input shaping method

Fig. 3   Controlling flowchart of shaped feedback linearization method
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5.1 � Verification of the Developed Model

Ren et al. (2020), a planar nonlinear vibration of a single 
link robot is studied using FEM. To investigate the accuracy 
of the developed model, vibration along one lateral direc-
tion is analytically extracted in this paper and its response is 
compared with the results of the mentioned paper. Consider 
the input moment of Fig. 4a as the input of the system. A 
comparison of the system response between the mentioned 
reference and the presented model of this paper is depicted 
in Fig. 4b.

A good agreement can be observed which shows the 
correctness of the nonlinear vibration model of the robotic 
beam.

5.2 � Effect of the Number of Modes

In order to verify the proposed controlling method, it is nec-
essary to examine it on a real plant. Here instead of the real 
robotic arm, the direct dynamics of the mentioned robotic 
arm is employed as the plant which is subject to control. 
However, since this arm is flexible, modeling the direct 
dynamics of the arm is extremely dependent on the number 
of engaged vibrating modes. This is contributed to the fact 
that each mode has a dependent differential equation that 

needs to be coupled to the main dynamics of the arm. As 
a result, the proper number of the engaged vibrating mode 
needs to be extracted first, so that the number of the cou-
pled equations for the simulation plant can be identified. 
The modes which could be excited during this simulation 
should be considered as the required engaged mode which 
is defined in this section.

Here, the effect of included modes in discretization of 
the system is investigated for the two first modes. Since the 
mechanical and geometrical specifications of the studied arm 
are similar along with two lateral directions, the effect of the 
number of modes is investigated for a two-dimensional arm.

Fig. 4   Simulation verification: 
a input moment of paper (Ren 
et al. 2020), b comparison of 
the system response between 
paper (Ren et al. 2020) and this 
study

Table 1   Specification of the system

Parameter Value

l 1 m
EI 8N m2

mp 2 kg 
� 0.2

kg

m

I
1
, I

2
, I

3
0.195 kg m2

�n 3.423956344
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The simulation is performed for a robotic arm with the 
parameters presented in Table 1:

To check the arm response, the first torque input is con-
sidered zero while the second torque is implemented accord-
ing to Fig. 5.

The system response including �2 and beam deflection 
along Yb are compared for one and two included modes.

It can be seen that the effect of considering the second 
mode is negligible for the present arm and thus the second 
mode is neglected in the analysis (Figs. 6, 7 and 8).

5.3 � Investigation of the Effect of Nonlinear Terms

The nonlinear terms which can be observed in the mod-
eling of the system are related to two sources: geometrical 
and inertia. The geometrical nonlinearity has hardening 
effect while the inertia one has softening effect in the first 
mode. Here, the geometric nonlinearity is dominant; so, the 
effective nonlinearity is of hardening type. This behavior 
is reflected in response amplitude. In order to investigate 
this effect, a comparison study is performed between the 
response of a linear arm and a nonlinear one. Figure 9 shows 
the effect of different sources of nonlinearities on the deflec-
tion of arm tip. This figure proves that the nonlinear mod-
eling of the system is inevitable to obtain accurate results.

It can be seen that the response amplitude of the system 
in which its related nonlinearities are considered is sensibly 
different compared to the simplified linear system and this 
difference is considerable. This study shows that the sim-
plification related to linearizing the vibrating model of the 
system is not an acceptable approximation and thus consid-
ering the nonlinear effects on modeling and simulation of 
the flexible robotic arm is necessary.

6 � Simulation Verification of the Proposed 
Controller

In this section, the efficiency of the proposed compound 
controller is investigated in vibration reduction of the mod-
eled flexible robotic arm. In order to show the superiority of Fig. 5   The bang-bang input applied to the system

Fig. 6   Effect of the different number of assume modes: a vibration 
responses of the flexible arm, b rigid motion responses of the flexible 
arm

Fig. 7   Effect of the different nonlinear terms on the vibration 
response
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the proposed compound controller over traditional ordinary 
controllers, the system is firstly controlled using an ordinary 
feedback linearization method and its results are compared 
with the proposed controller in which the controlling input 
is modified using the input shaping method.

6.1 � Controlling the System Using Feedback 
Linearization Method

Here, a nonlinear feedback-based controller is employed to 
manage and improve the dynamic response and vibrating 
behavior of the flexible robotic arm simultaneously. Note 
that the flexibility of the system increases the number of 
engaged states of the system while the feedback of the rigid 
states of the beam �1 , �2 is just sensed and fed to the control-
ler to be employed for constructing the controlling input of 
this controlling method.

Here, a regulation process is supposed to be performed 
with zero initial conditions for the angular position and 
deflection of the beam. The setpoint of the rigid motion of 
the system is supposed as follows:

Also, the final velocity and acceleration of the arm are set 
to be zero, and of course, the desired set point of vibrational 
deflections of the beam along all of its directions is sup-
posed to be zero. According to the mentioned formulation 
of Sect. 4, the internal controlling input is:

For this regulation process, the following controlling inputs 
are tuned so that the Eigen-values related to the main rigid 
states would be −2:

The extracted elements related to the matrices and 
v e c t o r s  o f  N = N(𝜃1, 𝜃2, 𝜃̇1, 𝜃̇2, 𝜁1, 𝜂1, 𝜁̇1, 𝜂̇1)  a n d 
D = D(𝜃1, 𝜃2, 𝜃̇1, 𝜃̇2, 𝜁1, 𝜂1, 𝜁̇1, 𝜂̇1) are calculated and can be 
observed in the Appendix. In Fig. 8 the actual response of 
the beam angle which is controlled using the FL method 
can be seen.

It can be observed that the desired angular position and 
velocity of the beam are obtained using this controller within 
4 s. The overshoot of the second angle is larger since the ini-
tial error of this state is larger. The corresponding response 
of the robot deflection can also be observed in Fig. 9.

It can be seen that the amplitude of the workspace vibra-
tion along Y is more than X, and this is contributed to the fact 
that the required torque of the second motor is more than the 
first one to compensate for more initial error of the second 
angle. The related controlling input of the motors using the 
FL method is extracted as Fig. 10.

As was expected, the controlling input is oscillatory to 
compensate for the flexible nature of the beam. Also, as 
mentioned before, the required torque amplitude of the sec-
ond motor is more than the first one to realize the desired set 
point of both angles during a unique time period.

�1 = 0.2 and �2 = 0.5 rad

(35)𝜈 = −k1q̇ − k2(q − qd)

(36)k1 = [−4 0 0 − 4] k2 = [−4 0 0 − 4]

Fig. 8   Rigid states of the arm using FL controller: a angular positions 
of the arm, b angular velocities of the arm

Fig. 9   Tip deflections of the arm using FL controller
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6.2 � Investigating the Effect of Nonlinearity Terms 
in Designing the Controller

Note that, the mentioned nonlinear terms which exist in the 
nature of the studied system, not only significantly affect 
the modeling of the robot plant, and deliver a more realistic 
model of the system with less parameter uncertainties, but 
also help us to design a more efficient controller for the sys-
tem since the controller is nonlinear and extremely depend-
ent on considering the real nonlinear terms which should 
be taken into account in its feed-forward portion of con-
trolling signal. Here, this necessity is shown by comparing 
the response of the real nonlinear plant of the flexible arm 
between two controllers in which the nonlinear terms are 
considered in one and are ignored in the other. In Fig. 11a, 
b this comparison can be observed.

It can be seen that the system in which the nonlinearities 
are considered in the designed controller can be controlled 
properly while the system which is controlled using the 
controller with the linearized formulation of the model is 
unstable and its response has diverged. This shows that for 
controlling the real nonlinear vibrating system of the flex-
ible robotic arm, the nonlinear modeling and its usage in the 
controller is inevitable (Fig. 12).

6.3 � Controlling the System Using the Proposed 
Shaped Feedback Linearization Method

In the previous section, the flexible robotic arm was con-
trolled using an ordinary FL method. It was seen that the 
required motors’ torque and workspace movement of the 
arm using this method are oscillatory since the feedback 
of vibrating states is not included in designing the control-
ling input. Besides the destructive effect of this vibrating 
response on the accuracy of the system, producing this oscil-
latory torque using the ordinary motors is either impossible 
or extremely harmful for the system since a considerable 

shock will be implemented on the devices. That’s why a 
new controller compound of FL and input shaping method is 
proposed here to control the arm and reduce its related vibra-
tions simultaneously. The parameters of the input shaper 
can be evaluated by the aid of the natural frequency of the 
system while the gains of FL are again selected using pole 
placement. For previous regulation movement, a comparison 
between the response of the system controlled by simple FL 
and the proposed compound controller is shown in Fig. 13.

As expected, a delay can be observed for the system in 
which the input is shaped by the designed input shaper and 
this is contributed to the fact that the dynamic of the input 
shaping section of the controller increases the final time con-
stant of the system. The related comparison for the deflec-
tion of arm tip can be seen in Fig. 14.

It can be seen that the vibrating response of the arm work-
space is significantly decreased using the proposed input 
shaping in the employed FL controller. The amplitude of the 
vibrations is decreased by about 0.13 m along Y and about 
0.05 m along Z-direction. This unwanted vibration reduction 
increases the accuracy of the system and makes it possible 
to use them for more accurate applications. Also, as stated 
before, the proposed controller can decrease the required 

Fig. 10   The required controlling inputs based on the FL method

Fig. 11   Comparison of the angular position of the arm using FL 
method between linear and non-linear models: a first angular posi-
tion, b second angular position



1168	 Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2022) 46:1157–1173

1 3

oscillatory torque of the motors as follow (Fig. 15) which 
increases the effective lifetime of the devices.

Finally, the comparison of the workspace response of 
the robot, considering the kinematics of the system can be 
extracted as Fig. 16a–c show.

It can be seen that not only the vibrating deflections of 
the system is reduced, but also the rigid motion of the arm 
is controlled appropriately without any vibrating response. 
Again, here, a short delay needs for the proposed controller 
to shape the input and reduce the unwanted vibrations of all 
of the rigid and vibrating states and also their related torque 
profiles.

Finally, in order to investigate the robustness of the pro-
posed controlling method against the parametric uncertain-
ties, a 30% parametric uncertainty related to the arm module 
of elasticity has been engaged in the simulation (The actual 
value of the module of elasticity is 8 Nm2 and the value 
included in the controller design is 11 Nm2 ). The results of 
the closed-loop system are compared to the performance 
of the system equipped with inverse dynamics. According 
to the following profiles, which show the X, Y and Z coor-
dinates of the end-effector movement, it can be concluded 

that the proposed controller is robust enough against the 
parametric uncertainties (Fig. 17).

7 � Conclusion

In this paper, a 3D flexible robotic arm with nonlinear vibra-
tion was modeled and a new nonlinear feedback controller 
was designed and implemented based on the shaped feed-
back linearization method in order to reduce the vibration 
of the flexible arm and increase its accuracy. The robotic 
formulation of the link was derived considering its rigid 
and vibrational motions along longitudinal and lateral direc-
tions simultaneously. Kinematic of the flexible robot was 
first calculated in order to make a relation between its joint 
space and workspace. Then, considering both of geometri-
cal and inertia nonlinearities of the beam, the kinetic and 
dynamic model of the considered flexible arm was derived 
using Lagrange method, and the model response was ana-
lyzed. In order to increase the accuracy and guarantee the 
stability of the robotic arm in the presence of flexibility, a 
new compound nonlinear feedback controller was developed 
employing the shaped feedback linearization method and its 
efficiency was compared with the ordinary FL method. The 
accuracy of the modeled system was proved by simulating 
the system in MATLAB and comparing the response of the 
system with the results of previous references using the FEM 
method. A good agreement of the response showed the cor-
rectness of the 3D modeling. Then, the effect of the number 
of included modes was investigated and it was observed that 
considering the second mode does not have a significant 
effect on the accuracy of the system and can be ignored to 
increase the speed of the system process and its real-time 
and online applicability. On the other hand, investigating the 
response of the system in which the nonlinearities are con-
sidered and its comparison with the system in which these 
items are ignored showed that the vibrating amplitude of 
the nonlinear model which is more close to a real system 
is significantly less than the approximated linearized one 
and this observation shows the necessity of considering the 
nonlinearities of the system. It was also seen that another 
reason to consider the nonlinear terms is in designing a con-
troller for the system. It was shown that the approximated 
linearized inverse dynamic of the system, which should be 
used as the feed-forward controlling term of the designed 
controller, causes instability of the real nonlinear system 
while considering the nonlinearities in feed-forward not only 
provides the stability of the system but also results in a good 
accuracy for the regulation process of the system. Moreover, 
comparing the results of the closed-loop system using the 
ordinary FL method and the proposed shaped FL method 
showed that the former one cannot control the vibrating 
deflections of the system since their related feedback is not 

Fig. 12   Comparison of the tip deflection using FL method between 
linear and non-linear models: a tip deflection in the y-direction, b tip 
deflection in the z-direction
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used in the corresponding controlling input, and this phe-
nomenon results in oscillatory torque of the motors, which 
is not desired. However, the proposed shaped FL method can 
control all of the rigid and vibrational states of the system 

simultaneously with good accuracy and no fluctuation in the 
system. Finally, with the aid of a simulation study, it was 
proved that the proposed controller is also robust against the 
parametric uncertainties, especially the parameter related 

Fig. 13   Comparison of the rigid states of the arm between FL and shaped FL methods: a angular positions of the arm, b angular velocities of the 
arm
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to the elasticity module of the arm. Thus, it can be con-
cluded that nonlinear modeling of the system together with 

the proposed shaped FL method can successfully control the 
robot motions with good accuracy and robustness while its 
related deflections can also be reduced significantly at the 
same time that guarantees the robot stability.
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where �i are the coefficients of the linear or nonlinear terms.
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