
Vol.:(0123456789)1 3

Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2022) 46:1079–1106 
https://doi.org/10.1007/s40997-021-00471-z

RESEARCH PAPER

A Revamped Element‑Free Galerkin Algorithm for Accelerated 
Simulation of Fracture and Fatigue Problems in Two‑Dimensional 
Domains

Ayush Awasthi1 · Mohit Pant1 

Received: 18 April 2021 / Accepted: 31 October 2021 / Published online: 27 January 2022 
© Shiraz University 2021

Abstract
This work presented a revamped element-free Galerkin method algorithm for two-dimensional fracture problems subjected 
to mechanical/thermoelastic loads. The conventional element-free Galerkin (EFG) technique is modified at the level of 
approximation along with a novel blended basis enrichment criterion together with parametric optimization at computational 
level. Further an optimized quadrature point criteria is embedded in the EFGM algorithm to accelerate its computational 
capability. The modified EFG method exhibits a higher computational efficiency and accuracy than the existing one based 
on moving least-squares approximation which is susceptible to generation of an ill-conditioned system of equations. The 
modified algorithm utilizes lesser number of nodes from the problem domain compared to the conventional EFG method 
for the construction of shape function. A variety of two-dimensional fracture/fatigue problems, have been modelled and 
simulated with the revamped algorithm. Results reveal that the revamped element-free Galerkin (REFG) method is a robust 
and efficient technique for modelling two-dimensional fracture problems under both mechanical and thermoelastic loads. 
Moreover, a significant reduction in computational time is achieved with the proposed algorithm which adds to the prowess 
of the proposed REFG method.
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1 Introduction

Computational methods provide an edge over analytical and 
experimental methods by saving manpower, experimentation 
time and need of prototype testing. Finite element method 
(FEM) being one of the earliest and robust numerical tool 
still holds its position when it comes to solution of engi-
neering problems. It holds the credit of being the backbone 
of countless engineering analysis software. This was the 
earliest development in computational methods for analy-
sis of variety of problems linked with design and analysis 
(Afsar and Go 2010; Kaddouri et al. 2006; Ju and Hsu 2014; 
Chao and Chow 2002). Finite element method is a mesh-
based technique hence it does not remains untouched from 
the limitations associated with mesh itself, for example, 

problems of moving mesh boundary, phase change problems 
and problems involving continuous remeshing. Moreover, 
element distortion and low-quality mesh produce spurious 
results which consequentially require intensive manpower 
and excessive time. Mesh-free methods have been developed 
by the continuous improvements in the procedures of mesh-
based methods. Mesh-free methods approximations are built 
with the use of nodal points only, and this helps in eliminat-
ing the limitations associated with mesh-based methods.

Element-free Galerkin Method (EFGM) (Belytschko et al. 
1994a) is one of the mesh-free method that has been applied 
for analysis of a variety of problems(Belytschko et al. 1994b; 
Belytschko et al. 1995; Chen and Wang 2000; Xuan 2002; 
Li et al. 2015; Singh et al. 2003; Pathak et al. 2014). Mod-
elling and simulations performed with EFGM depends on 
predefined EFG parameters like nodal density in problem 
geometry, Gauss quadrature used, support domain size, 
polynomial function used for defining the weight functions, 
and technique for imposing essential boundary conditions 
(Garg and Pant 2016).
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EFGM chalks up other mesh-free techniques used in 
fracture problems by eliminating the demand of remesh-
ing and redistribution of nodal data. EFGM also enables 
high convergence rates and high adaptivity, and can also be 
applied to large distortion problems (Nguyen et al. 2008). 
The application of EFGM for modelling and simulating frac-
ture problems (Pant et al. 2010, 2011a; Pathak et al. 2012; 
Pant and Bhattacharya 2016; Salari-Rad et al. 2011; Garg 
and Pant 2018a) has enabled the researchers to perform the 
crack analysis with a more versatile and robust tools. EFGM 
has emerged out as an outstanding tool for analysis of variety 
of problems (Garg and Pant 2018b) as it has the capability 
to blend with other techniques (Pathak 2017; Pathak et al. 
2016, 2015, 2017). As EFGM established itself as a novel 
technique in the area of design and analysis, the further focus 
was concerned toward its modification and enhancements, so 
that it can be made more flexible and efficient in comparison 
to its conventional form.

The first advancement in EFG method started with use 
of moving least-square (MLS) method (Shepard 1968) for 
constructing the shape function and applying boundary 
conditions with the help of Lagrange's multiplier (Yagawa 
and Furukawa 2000; Belytschko et al. 1993; Günther and 
Liu 1998) approach. Further, there have been continuous 
efforts to improve the procedure for constructing the shape 
function (Lu et al. 1994; Wen et al. 2008) and implement-
ing boundary conditions (Gavete et al. 2000; Lee and Yoon 
2004). Ramp function was used to blend EFGM with FEM 
(Belytschko et al. 1995; Asadpoure et al. 2006) and frac-
tal finite element methods (FFEM)(Rajesh and Rao 2010; 
Reddy and Rao 2008) to remove some inherent flaws of 
EFGM. Later, truly meshless technique emerged on blending 
EFGM with radial point interpolation method RPIM (Cao 
et al. 2013) as compared to coupled FEM-EFG approach. 
Such hybrid techniques inherited the advantages of both par-
ent techniques to fulfil Kronecker delta property simultane-
ously with high-order continuity and smoothness of shape 
functions. Improved element-free Galerkin (IEFG) method 
was purposed (Kaljevic and Saigal 1997) for eliminating the 
singularities linked to weight functions where basis func-
tion was achieved by normalization process. An increase 
in computation speed in IEFG (Zhang et  al. 2008) was 
achieved compared to the standard EFG method as lesser 
nodes are required for defining the domain geometry. While 
few researchers demonstrated the improvement of EFG 
method by engaging on specific parameters (Valencia et al. 
2008, 2009), they did not remark on values or standards 
of these parameters. Wenterodt and Estorff (2011) carried 
out parametric analysis of various EFGM parameters like 
weight function, influence domain size and gauss quadrature 
in order to decrease the effect of dispersion in acoustics. 
Meshless Galerkin least-square method (MGLS) (He et al. 
2011) was employed for problem based on L-shaped cavity 

acoustics by varying the EFGM parameters and was found 
that there is a significant decrement in computational time 
in comparison to EFGM. Computational speed was signifi-
cantly increased by applying extended parametric mesh-
less Galerkin method (Musivand-Arzanfudi et al. 2007) for 
simulating elastostatics problems as this method involved 
enrichments of approximation functions with discontinu-
ous fields through partition of unity method. Sheng et al. 
(2015) proposed a criteria by employing uniform number of 
nodes in support domain but failed to comment about opti-
mum number of nodes in the support domain, instead their 
criteria increased the total computational time of problem. 
The changes made in domain radius selection were flawed 
due to the presence of a scaling parameter (Belytschko et al. 
1994a; Sheng et al. 2015; Dolbow and Belytschko 1998; 
Liu and Tu 2002). To the best of author’s knowledge, very 
limited work has been emphasized on the optimum range 
of EFG parameters ideal for efficient simulations with least 
computational time. Previously performed parametric stud-
ies varied the range of EFG parameters rather than using 
optimization technique for multiple simulations variations.

In the present work, a novel revamped structure of ele-
ment-free Galerkin algorithm has been proposed by the 
authors which includes:

• Use of improved moving least-square (IMLS) approxima-
tion method rather than conventional moving least-square 
(MLS) approximation method.

• Optimization of EFGM parameters using Taguchi’s 
optimization to reduce the actual number of simulations 
required.

• Employing a newly proposed blended basis enrichment 
criterion rather than using conventional full basis enrich-
ment function.

• Use of newly proposed optimized quadrature criteria for 
integration purpose.

The novelty of present work lies in enhancing the con-
ventional element-free Galerkin method by blending it with 
Improved moving least-square method (IMLS) (Liew et al. 
2005, 2006) along with optimization of EFGM parameters 
using Taguchi's technique into a unified EFG algorithm 
wherein the proposed algorithm can be used as a generic tool 
to model and simulate a wide variety of fracture problems 
with high accuracy and least computational time.

Optimization will help to choose a suitable predetermined 
value of the nodes (under domain of influence) thereby 
eliminating the confusion about suitable value of scaling 
parameter. Moreover, the algorithm has been blended with 
newly proposed enrichment criteria in order to enhance 
computational efficiency of the method. Algebraic equa-
tions in case of IMLS approximation are not ill conditioned 
and can be solved with the use of inverse matrix. Moreover, 
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fewer coefficients in IMLS approximation further enhance 
the computation speed of algorithm. The simulation so 
performed using the optimized parameters blended with 
new enrichment criteria along with improved moving least-
square method (IMLS) will drastically decrease the compu-
tational time (TEFGM) of EFGM analysis while keeping the 
accuracy intact. The new proposed algorithm is tested for 
various fracture problem simulations under different load-
ings and also in complex geometry problems. Further, the 
method has been extended to simulate the fatigue life esti-
mation where the simulation needs to run for a very high 
number of repetitive cycles, and thus the total computational 
time becomes a significant parameter to be worked upon. 
Results reveal that the modified algorithm proposed in this 
article works efficiently with significantly lesser number of 
nodes and provide nearly 75% reduction in the computa-
tional time required for simulation.

2  EFGM Formulation for Two‑Dimensional 
Elasticity Problems

Figure 1 shows a 2D domain bounded by Γ , subjected to 
various forces.

The governing equilibrium equations (Nguyen et al. 2008) 
are as follows: 

Subjected to boundary conditions mentioned below:

here � represents the stress tensor, as � = �(�) [�] , �(�) is 
the material matrix, � is the strain vector,� is the body force 
vector, � is the displacement vector, � is the traction force 
and � is the unit normal. Now, using Lagrange multiplier 
approach (Belytschko et al. 1994a) to enforce boundary con-
ditions and applying variational principle (Belytschko et al. 

(1)∇.� + � = 0 overΩ

(2)� = � overΓu (Essential)

(3)�.� = � overΓt(Natural)

1994b; Nguyen et al. 2008), discrete equations as mentioned 
below is obtained from Eq. (1)

where,

where ΦIdenotes the mesh-free shape function whose 
expression is derived in next section.

�K is a 1D Lagrange interpolant

3  Shape Function Evaluation Using Moving 
Least‑Square (MLS) Approximation

MLS approximation used in EFGM for nodal point inter-
polation (Belytschko et al. 1994a, b) has been developed 
by Lancaster and Salkauskas (Lancaster and Salkauskas 
1981). Interpolation of displacement u by MLS approxima-
tion, uh(x) is given as:

where m is the total number of nodes in problem domain and
pT(x) a vector of complete basis functions (usually polyno-
mial) is given as:

and aT(x) is a vector of unidentified coefficients

(4)

[
� �

�T 0

]{
�

�

}
=

{
�

�

}

(5)KI J = ∫
Ω

�T
I
��I dΩ

(6)fI = ∫
Γt

�ΦI dΓt, qK = −∫
Γu

�K u dΓu

(7)�I =

⎡⎢⎢⎣

ΦI,x 0

0 ΦI,y

ΦI,y ΦI,x

⎤⎥⎥⎦
, �K =

�
NK 0

0 NK

�
,

(8)

� =
E

1 − �

⎡
⎢⎢⎣

1 � 0

� 1 0

0 0 (1 − �)∕2

⎤
⎥⎥⎦

(for plane stress)

=
E

[1 + �] [(1 − 2� )]

⎡⎢⎢⎣

1 − � � 0

� 1 − � 0

0 0 (1 − 2�)∕2

⎤⎥⎥⎦
(for plane strain)

(9)uh(�) =

m∑
j=1

pj(�) aj(�) ≡ �T (�) �(�)

(10)�T (�) = [1, x, y, xy, ... xk
�

, yk
�

]

(11)�T (�) = [a1(�), a2(�), a3(�),… am(�)]

Fig. 1  Domain representation with boundary conditions
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a(x) for any location of point x can be obtained by minimiz-
ing the weighted least-square sum of the difference between 
local approximation, uh(x) and field function nodal param-
eters, uI . This can be expressed as:

w(x − xI ) is the weight function linked to support domain 
of node I, and n represents the number of nodes within 
domain of influence corresponding to point x, i.e., w(x − xI ) ≠ 0

By minimization of Lw.r.t.a , we get:

where M0(x) and B0(x) are defined as:

By using Eqs. (9) and (13), the approximation function 
is generated as:

where,

The mesh-free shape function ΦI(�) is defined as:

Choice of weight function greatly affects the approxima-
tion function uh(�I) in EFG method.

(12)L(x) =

n∑
I=1

w
(
x − xI

)[
pT (x)a(x) − uI

]2

(13)M0(x)a(x) = B0(x)u

(14)a(x) =
(
M0

)−1
(x)B0(x)u

(15)M0(�) =

n∑
i=1

w(x − xI) �(xI)�
T (xI) = w(x − x1)

[
1 x1
x1 x2

1

]
+⋯ + w(x − xn)

[
1 xn
xn x2

n

]

(16)B0(�) = [w(x − x1)p(x1),… ,w(x − xn)p(xn)] =

{
w(x − x1)

[
1

x1

]
,… ,w(x − xn)

[
1

xn

]}

(17)uh(�) =

n∑
I=1

ΦI(�)uI = ΦT (�)�

(18)ΦT (�) =
{
Φ1(�), Φ2(�), Φ3(�), ... Φn(�)

}

(19)�T = [u1, u2, u3, ... un]

(20)ΦI(�) =

m∑
j=1

pj(�)
((

M0
)−1

(x)B0(x)
)
jI
= �T

(
M0

)−1
B0
I

4  EFGM shape Function Using Improved 
Moving Least‑Square (IMLS) 
Approximation

In the MLS approximation, Eq. (13) because of ill-con-
ditioned matrix, it sometimes becomes difficult to get the 
numerical solution correctly. To prevent this, Liew et al. 
(2005) the IMLS approximation as follows.

For ∀f (x), g(x) ∈ span(p) , define

(f, g) represents the inner product, and span(p) represents a 
Hilbert space.

For the set of points 
{
xi
}
 and the weight functions 

{
��

}
 , 

if the functions p1(x) , p2(x),….. pm(x) in the Hilbert space 
span(p) satisfies the conditions:

(21)(f , g) =

n∑
I=1

w(x − xI)f (xI)g(xI).

Then the function set p1(x) , p2(x),….. pm(x) can be 
termed as weighted orthogonal function set with a weighted 
function 

{
��

}
 about points 

{
xi
}
 . If p1(x) , p2(x),….. pm(x) are 

polynomials, then the function set p1(x) , p2(x),….. pm(x) 
is known as a weighted orthogonal polynomial set with 
weighted functions 

{
��

}
 about points 

{
xi
}
.

From Eqs. (21) and (13) are written as

If the basis function set p
i
(x) ∈ span(p), i = 1, 2,…… .,m, is 

a weighted orthogonal function set about points 
{
xi
}
 , i.e., if 

( pi, pj) = 0, (i ≠ j),
Then Eq. (23) becomes

(22)
(
pk, pj

)
=

n∑
i=1

wipk(xi)pj(xi)

=

{
0 k ≠ j

Ak k = j
(k, j = 1, 2,… , m),

(23)

⎡⎢⎢⎢⎢⎣

(p
1,
p1)

�
p1,p2

�
……… .

�
p1,pm

�
�
p2,p1

��
p2,p2

�
…………

�
p2,pm

�
⋮⋮⋱⋮�

pm,p1
��
pm,p2

�
…………

�
pm,pm

�

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a1(x)

a2(x)

.

⋮

am(x)

⎤
⎥⎥⎥⎥⎥⎦

⋯ =

⎡
⎢⎢⎢⎢⎢⎣

�
p1,u1

�
�
p2,uI

�
.

⋮�
pm,uI

�

⎤⎥⎥⎥⎥⎥⎦



1083Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2022) 46:1079–1106 

1 3

We ai(x) can be obtained directly as:

where,

From Eqs. (25) and (9), approximation function uh(x) can 
be obtained as:

where �(x)is the shape function and

As coefficients ai(x) are obtained directly and simply, 
which eliminates the scope of obtaining an ill conditioned 
or singular equation system, and thus we obtain a correct 
solution.

From Eq. (27), we have

which represents the shape function of the IMLS approxi-
mation for the corresponding node I. We can then obtain the 
partial derivatives of �I(x) as

The weighted orthogonal basis function set p = (pi) can 
be formed with the Schmidt method

(24)

⎡⎢⎢⎢⎢⎣
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0⋯ 0
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�
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�
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⎡⎢⎢⎢⎢⎢⎣

a1(x)

a2(x)

.

⋮

am(x)

⎤
⎥⎥⎥⎥⎥⎦

⋯⋯ = ⋯

⎡
⎢⎢⎢⎢⎢⎣

�
p1,u1

�
�
p2,uI

�
.

⋮�
pm,uI

�

⎤⎥⎥⎥⎥⎥⎦

ai(x) =

(
pi,uI

)
(
pi,pi

) ;… i = 1, 2,…m,

(25)i.e., a(x) = A(x)B(x)u,

A(x) =

⎡
⎢⎢⎢⎢⎢⎣

1

(p1,p1)
0…… 0

0
1

(p2,p2)
…… 0

⋮⋮⋱⋮

00… .…
1

(pm,pm)

⎤⎥⎥⎥⎥⎥⎦

(26)uh(x) = �(x)u =

n∑
I=1

�I(x)uI

(27)
�(x) =

((
�1(x),�2(x),… ..,�n(x)

))
= pT(x)A(x)B(x).

(28)�I(x) =

m∑
j=1

pj(x)[A(x)B(x)]jI ,

(29)�I,i(x) =

m∑
j=1

[pj,i

(
AB)jI + pj(A,iB + AB,i)jI

]
.

With r = x1 for one-dimensional problem, r =
√

x2
1
+ x2

2
 

or r = x1 + x2 for two-dimensional problems, and 
r = x2

1
+ x2

2
+ x2

3
 or r = x1 + x2 + x3 for three-dimensional 

problems.
In addition, the Schmidt method can be used to for the 

weighted orthogonal basis function set p = (pi)

Weighted orthogonal basis function set can be obtained 
by relation:

Because of weighted orthogonal basis functions, the total 
number of coefficients in the trial function are reduced. Less 
number of nodes are required in influence domain for IMLS 
approximation as compared to MLS approximation. This 
provides an edge to the IMLS approximation over the MLS 
approximation.

5  Blended Basis Enrichment Criteria

A new enrichment criterion has been proposed in order to 
enhance the computational efficiency of element-free Galer-
kin method (EFGM). The new enrichment criteria will be a 
blend of full intrinsic basis enrichment function and a lin-
ear basis function. For this, two concentric circular areas 
are created in the proximity of crack tip as represented in 
Fig. 2a. The degree of enrichment will be decided by the 
location of evaluation point (gauss point) under considera-
tion, within these areas. Figure 2a demonstrates the method-
ology of newly proposed criteria with a schematic diagram. 
Two circular zones are defined having the same center. The 
radius of inner circle is equal to the length of crack a , while 
the outer circle is of radius ( c × a) . The value of area ratio, 
i.e., c2 , will be determined by performing a parametric opti-
mization analysis for area ratio as discussed later. The three 
different regions are marked as A,B and C , respectively. 
Firstly, the location of evaluation point is obtained by cal-
culating the distance of that evaluation point from the crack 
tip. If the evaluation point lies in the inner most region A , 
then a full intrinsic enrichment basis will be employed for 
imparting contribution to global stiffness matrix [��] For 
all evaluation points lying in region C , a linear basis is used 
for constituting stiffness matrix.

(30)

p1 = 1,

pi = ri−1 −

i−1∑
k=1

(
ri−1, pk

)
(
pk,pk

) pk, i = 2, 3…

(31)p =
(
pi
)
= (1, x1,x2,x

2
1
, x1x2,x

2
2
,…),

(32)pi = pi −

i−1∑
k=1

(
pi, pk

)
(
pk, pk

)pk, i = 1, 2, 3…
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But if, the evaluation point lies in the transition zone, 
i.e., region B , then instead of a sudden truncation of enrich-
ment basis, the contribution to global stiffness matrix will 
be calculated using a blend of both linear and full enriched 
basis as follows:

where the parameter R will decide the contribution of each 
basis function to the global stiffness matrix. The value of R 
can be obtained as:

wherec is a parameter which determines the area bounded 
within region B , a is the crack length and rg is distance 
between evaluation point and crack tip. Contribution of 
enriched basis to the global stiffness matrix will be maxi-
mum for those points (in region B) which are nearer to the 
boundary of region A while contribution of linear basis will 
be minimum for these points. The contribution of enrich-
ment basis continuously decreases as the location of evalu-
ation point shifts from region A to region B . At the outer 
boundary of region B , the contribution of linear basis to 
the global stiffness matrix will be maximum. Figure 2b 
clearly illustrates the use of linear basis, full enriched basis 
or a combination these two according to the zone in which 
an evaluation point lies. The proposed criterion not only 
reduces the computational time of algorithm but is also 

(33)
[��]Total = [��]Enriched basis × R + [��]Linear basis × (1 − R)

(34)R =
(c × a − rg)

(c − 1) × a

capable of simulation crack tip fields in both convex and 
non convex domains. Figure 3 presents a flowchart for the 
above mentioned criterion that has been embedded in the 
revamped EFGM algorithm.

6  Optimized Quadrature Criteria 
for Integration

Stiffness matrix ( � ), displacement matrix ( � ), and force 
vector ( � ) are evaluated by area integration over domain in 
two dimensions. Gauss quadrature is required for evalua-
tion of stiffness matrix and force vector which subdivides 
the domain and helps in numerical integration. Unlike finite 
elements, mesh-free methods do not subdivide the domain 
into finite elements. In order to cope with this situation, ele-
ment quadrature (background mesh) is the widely used cri-
teria for element-free Galerkin method. In conventional EFG 
method, a uniform Guass quadrature is employed for the 
entire domain. In the present work, a new optimized quad-
rature criteria have been proposed and employed for revamp-
ing the conventional EFG method. The proposed optimized 
quadrature criteria are embedded in EFG algorithm such that 
it is efficient in simulation both straight and kinked crack. 
The proposed criterion is as follows:

1. In element quadrature method, the nodal locations itself 
are utilized to form a background mesh of virtual ele-
ments for generation of gauss points within them. Fig-

Fig. 2  Blended basis enrichment criteria a geometry definition and b degree of enrichment
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ure 4a shows the uniformly distributed nodes over the 
entire problem domain along with a crack of length a.

2. For a single crack, define one circular region with center 
at the midpoint of crack length and radius as half the 
crack length.

3. Define second circular region with center at the crack tip 
and radius as half the length of crack.

4. Select all nodes lying within these two circular domains 
and name them as NE.

5. For all the virtual elements having at least one of the 
nodes as NE , define a higher-order quadrature compared 
to the rest of domain.

As shown in Figs. 4a and 5a, the circular domains are 
defined by circle 1 and circle 2 and circle 3. All the virtual 
element lying within these two circular domains are used 
to define a higher-order gauss quadrature. Also the virtual 
elements (highlighted with star) which share at least one of 
the nodes from NE are also embedded with a higher-order 

fieslEfieslEfiesl

Based on distance calculated, identify whether 
the evaluation point lies on area A,B, or C.   

START 

Calculate the distance of 
each evaluation point from 

the crack tip

If the evaluation point lie on 
region  A 

Global stiffness matrix [K] for 
all whole problem domain 

constituted. 

END 

Selection of optimum areas 
of Regions (B & C)

Divide the region near the crack
into three Regions.  Region A, B
and C 

Constitute the global 
stiffness matrix [K]using 

full enriched basis 
function.

If the evaluation point lie on 
region  B

If the evaluation point lie on 
region  C 

Constitute the global 
stiffness matrix [K]using 

the proposed Eq. 33.

Constitute the global 
stiffness matrix 

[K]using linear basis 
function.

Fig. 3  Flowchart for the blended basis enrichment criteria
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Gaussian quadrature compared to rest of domain. Figures 4b 
and 5b shows the variable gauss quadrature generated inline 
with the above mentioned criteria. Figure 6 presents the 
flowchart for the proposed optimized quadrature criteria that 
has been embedded in revamped EFGM algorithm.

7  Modelling of Kinked Crack Segments

Near-tip asymptotic displacement field (Nguyen et al. 2008) 
functions are used to intrinsically enrich (Nguyen et al. 
2008) the basis function of EFGM, for simulation of crack 
tip stress fields in fracture mechanics problems. An enriched 
basis (Nguyen et al. 2008) used in the present work is given 
as:

Fig. 4  Optimized quadrature criteria for straight crack

Fig. 5  Optimized quadrature criteria for kinked crack
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where r is the distance of evaluation point form the crack tip, 
and � is the angle with respect to a coordinate system located 
at crack tip as shown in Fig. 7.

Discontinuity along � = ±� from the crack line is sim-
ulated by Eq.  (35). In case of kinked crack, mapping is 
required for aligning the discontinuous fields with the seg-
ments of actual crack. Modification in the angular orienta-
tion of an evaluation point has been carried out, for model-
ling a kinked crack in the present analysis. The proposed 
method for modelling a kinked crack is based on the modifi-
cation in angular orientation of an evaluation point. Angular 

(35)
�T (�) =

�
1, x, y,

√
r cos

�

2
,
√
r sin

�

2
,
√
r sin

�

2
sin �,

√
r cos

�

2
sin �

�

Fig. 6  Flowchart for optimized 
quadrature criteria

 For each jth crack tip define a 
circular domain of radius (rsj/2) 

with centre at the crack tip 

Calculate the total number of crack
segments and crack tips in the domain 

For each ith crack segment 
define a circular domain of 
radius rsi with centre at the 

mid point of segment. 

START

Identify all the integration (virtual) 
elements which share atleast one 

node from the set of nodes 
identified in previous steps. 

Define a higher order quadrature for these 
identified integration elements and a 
lower order quadrature for rest of domain 

Using distance formulae identify the 
nodes lying on the interior of above 
defined circular domains.  

END 

Fig. 7  Local coordinate system ( x, y ) at crack tip
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orientations are modified such that all the evaluation points 
in the proximity of crack segments exhibits a discontinuity 
along � = ±� . RS and ST are segments of kinked crack as 
shown in Fig. 8. Alignment of the local coordinate system is 
done along the leading crack segment such that ST is aligned 
with x-axis having origin at the tip. Now, Consider an evalu-
ation point P which is located in the vicinity of crack having 
the angular position � . This angular position � will require a 
mapping to new coordinate system where � → ±� , in order 
to exhibit a discontinuity along the crack line. Mapping the 
angular positions of evaluation points to new coordinate sys-
tem is done in way that there is discontinuity in displacement 
fields along the points lying near to crack line.

7.1  Methodology for Mapping a Kinked Crack

Consider a kinked crack as shown in Fig. 9. Following steps 
are to be followed for mapping the near-tip stress field in a 
kinked crack:

1. Divide the domain (containing the kinked crack) into 
segments like RS, ST where T is tip of leading crack.

2. Draw normal at common point of both segments in order 
to discretize the region above the crack, i.e., point B, on 
which normal are drawn as SQ and SP which are per-
pendicular to crack segments RS and ST, respectively.

3. Draw normal at tip of leading crack segment ST.
4. Draw the bisector of angle RST in order to divide the 

region below the crack into two parts such that a total 
of six regions are formed in the vicinity of kinked crack 
and similar procedure must be applied for cracks having 
multiple kinks.

5. Apply proposed geometrical and mathematical expres-
sions to obtain the new mapped orientation of evaluation 
point.

In region 1 which is after the tip of leading crack, all 
angular measurements are done with respect to local coor-
dinate axis, such that:

Proposed modified angular orientation of evaluation 
points lying in regions 2, 3, 4 and 5 is as follows:

where r signifies the distance between tip of the leading 
crack i.e. Point T and the evaluation point, h′ signifies the 
normal distance between the crack segment in that region 
and the evaluation point. For points inside the region QSP 
and h′ is calculated as the distance between the evaluation 
point and point representing that region, i.e., Point S. In per-
forming so, a transformation achieved as point approaches to 
the crack line such that h′ → 0 then �� → ±� , and thus clear 
discontinuity is achieved along the crack line.

Hence, the new enriched basis function in term of modi-
fied angular orientation �′ becomes:

(36)�� = � for −
�

2
≤ � ≤ �

2

(37)

⎧⎪⎪⎨⎪⎪⎩

� − Sin−1
�
h�

r

�
above the crack

−� + Sin−1
�
h�

r

�
above the crack

⎫⎪⎪⎬⎪⎪⎭

Fig. 8  Scheme for kinked crack mapping

Fig. 9  Domain description for modelling kinked crack
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where, (1, x,y ) that is the first three terms represents standard 
basis and the rest four terms composes of enrichment part 
for the kinked crack.

8  Interaction Integral Approach 
for Calculating Stress Intensity Factors

The J-integral for a isotropic cracked body is as follows (Rao 
and Rahman 2003):

where W = ∫ �

0
�d� is the strain energy density, � is the stress 

and n is outward unit normal vector to a discretional curve 
surrounding the crack tip as shown in Fig. 10. For linear 
elastic materials,W = �ij�ij∕2 . Green’s theorem (Rao and 
Rahman 2003) can be applied to covert contour integral in 
Eq. 39 into area integral.

where A represents the area under the curve and q is a 
weight function, which has zero value along the boundary 
of domain and unity at the crack. Now assume two states for 
a cracked body, State 1 which is primary state or real state 
having some predefined boundary conditions and the other 
state 2 which is a secondary or auxiliary state. The J-integral 
in the superimpose states is as follows:

(38)�T (�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, x, y
⏟⏟⏟

standard

basis

,
√
r cos

�
�

2
,
√
r sin

�
�

2
,
√
r sin

�
�

2
sin �

�

,
√
r cos

�
�

2
sin �

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
enrichment terms

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)J = ∫ Γ

(
W�ij − �

ij

�ui

�x1

)
njdΓ

(40)J = ∫ A

(
�ij

�ui

�x1
−W�ij

)
�q

�xj
dA

where i, j = 1, 2, and U specifies fields and quantities associ-
ated with primary, secondary and unified states, respectively.

On expanding Eq. (41):

where

This is interaction integral which is employed for comput-
ing stress intensity factors (SIFs) under mechanical loads. 
Thermal interaction integral for homogeneous materials 
under the thermal loading is precisely elaborated by Pant 
et al. (2010) as follows:

Here, the terms represented in bold are the additional 
terms that are needed for thermal interaction integral calcu-
lation. T represents Temperature applied, � is thermal expan-
sion coefficient and �kk is the thermal stress.

(41)

JU = ∫ A

⎡
⎢⎢⎢⎣

�
�
(1)

ij
+ �

(2)

ij

��
�
u
(1)

i
+ u

(2)

i

�

�xi
−WU�ij

⎤
⎥⎥⎥⎦

�q

�xj
dA

(42)JU = J(1) + J(2) +M(U)

(43)M(U) = ∫ A

[
�
(1)

ij

�u
(2)

i

�x1
+ �

(2)

ij

�u
(1)

i

�x1
−WU�ij

]
�q

�xj
dA

(44)

M(U) = ∫
A

[
�
(1)

ij

�u
(2)

i

�x1
+ �

(2)

ij

�u
(1)

i

�x1
−WU�ij

]
�q

�xj
dA + � ∫

A

�T

�x1
�2
kk
qdA

Fig. 10  Crack surrounded by 
area Ao
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9  Results and Discussion

This section presents optimization of EFGM parameter 
along with implementation of proposed algorithm to model 
and simulate few numerical problems of fracture and fatigue 
life estimation. The revamped EFG algorithm incorporates:

• IMLS approximation.
• Blended enrichment criteria.
• Optimized quadrature criteria
• Criteria for modelling kinked crack.

The application of the revamped EFGM algorithm has 
been demonstrated for a variety of fracture problems with 
different geometric and loading conditions. Finally, pro-
posed the method has been extended to simulate fatigue 
crack growth problem in order to establish its worth and 
robustness for efficiently reducing the computation time.

9.1  Parametric Optimization

The number of nodes in problem domain (nd) , order of 
Gauss quadrature, scaling factor  (dmax) and area ratio (c2) 
influences the total time of EFGM simulation. Earlier para-
metric studies (Musivand-Arzanfudi et al. 2007; Sheng et al. 
2015) on EFGM were mainly focused on multiple number 
of simulations (range 600–1000) instead of using some opti-
mization technique. Taguchi optimization (Kosaraju et al. 
2012) technique has been applied in current work and L16 
orthogonal array has been selected for the analysis which in 
turn reduces the actual number of simulations required for 

finding the optimum parameters, thus providing the compu-
tationally efficient form of EFGM.

Optimization technique is applied here for analysis of 
an edge crack problem with different EFGM parameters. 
In this Taguchi analysis (Kosaraju et al. 2012; Mahapatra 
and Patnaik 2007; Wang et al. 2016; Elizalde-Gonzalez and 
Garcia-Diaz 2010) relative deviation has be considered as 
the response value for the analysis. In the current optimiza-
tion analysis, four parameters namely, total number of nodes, 
gauss quadrature type, scaling factor (dmax) , and area ratio 
 (Ar) are selected as the input parameters for finding the opti-
mum combination of these parameters for simulations.

For finding the optimum values of these parameters, a 
cracked rectangular domain having height (H) = 2 units 
and width (W) = 1 units and having mechanical properties (
E = 1 × 106units, � = 0.3

)
 subjected to tensile load of �0 = 

1 unit, under plane stress conditions is selected for this study 
as shown in Fig. 11.

Crack orientation is parallel to the horizontal axis located 
at coordinates x = 0 and y = H/2 and a size of a = 0.4 units.

The variable range of parameters used in the present 
analysis are: Number of nodes ranging from 200–300, gauss 
quadrature ranging from order of 2*2 to 8*8, Scaling factor 
(dmax) from 1.5 to 3 and area ratio (c2) ranging from 1.5 to 
3. Table 1 represents the various control parameters along 
with their respective levels. Sixteen simulations analysis 
have been performed as per the Taguchi’s L-16 orthogonal 
array (Elizalde-Gonzalez and Garcia-Diaz 2010). Results of 
simulation are shown in Table 2. The values of Mode-I stress 
intensity factor (SIF) values thus obtained, are compared 
with Ref. 1 (Salari-Rad et al. 2011) results and the relative 
deviation is calculated using: 

(
RD =

||||
(

KRef.1
1

−KEFGM
1

KRef.1
1

)
× 100

||||
)

.

MINITAB 17 software has been used for the Taguchi’s 
design of experiments and optimization analysis. All EFGM 
simulations are performed using algorithm written in MAT-
LAB coding platform with HP workstation having Xeon 
(Quad-core)-CPU with 16 GB RAM.

Signal-to-noise (S/N) ratio for the results have been cal-
culated using MINITAB 17 software. Taguchi’s characteris-
tic of “minimum is better” is applied in the present analysis, 
as a less relative deviation is required for our simulations, 

Fig. 11  Problem geometry along with boundary conditions

Table 1  Process parameters and their levels for Taguchi design of 
experiments

Process parameters Symbol Levels

I II III IV

Total number of nodes 
(
nd
)

A 200 800 1800 3200
Gauss quadrature B 2 × 2 4 × 4 6×6 8 × 8

Scaling factor dmax C 1.5 2 2.5 3
Area ratio D 1.5 2 2.5 3
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to obtain optimum results. The loss function L for objective 
is defined as follows:

where yRD is the value of relative deviation (RD) and n is 
number of experiments.

(45)LLB =
1

n

n∑
i=1

y2
RD

Table 2  L16 Orthogonal array 
for experimentation along with 
response outputs

L16  (44) A B C D KI (EFGM) KI
Ref. 1

RD (%) S/N ratio (db)

1 200 2 × 2 1.5 1.5 1.7418 2.3570 26.100 − 28.3331
2 800 4 × 4 2 1.5 2.454 2.3570 4.1196 − 12.2972
3 1800 6 × 6 2.5 1.5 2.369 2.3570 0.4921 6.1580
4 3200 8 × 8 3 1.5 2.4309 2.3570 3.1353 − 9.9257
5 1800 4 × 4 1.5 2 2.3437 2.3570 0.5642 4.9702
6 3200 2 × 2 2 2 2.1604 2.3570 8.3411 − 18.4245
7 200 8 × 8 2.5 2 2.4542 2.3570 4.1238 − 12.3061
8 800 6 × 6 3 2 2.3554 2.3570 0.0678 23.3648
9 3200 6 × 6 1.5 2.5 2.6303 2.3570 11.595 − 21.2856
10 1800 8 × 8 2 2.5 2.2488 2.3570 4.5905 − 13.2374
11 800 2 × 2 2.5 2.5 2.3233 2.3570 1.4297 − 3.1054
12 200 4 × 4 3 2.5 2.7230 2.3570 15.590 − 23.8603
13 800 8 × 8 1.5 3 2.8605 2.3570 21.361 − 26.5928
14 200 6 × 6 2 3 2.5248 2.3570 7.1192 − 17.0486
15 3200 4 × 4 2.5 3 2.359 2.3570 0.7636 2.3417
16 1800 2 × 2 3 3 2.0028 2.3570 15.027 − 23.5378

Fig. 12  Plot for mean of S/N 
ratios

Table 3  Computational time comparison

Process parameters Method

Conventional 
EFGM

Revamped EFGM

Number of nodes (nd) 800 800
Gauss quadrature 6 × 6 Variable

Scaling factor (dmax) 2.5 2.5
Area ratio – 2
Computational time 110 s 22 s
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Signal-to-noise ratio can also be calculated by logarith-
mic transformation as follows:

The effect of control parameters on relative deviation is 
shown in Table 2. Figure 12 shows the mean of S/N ratio 
with the condition that minimum is better. Plot reveals that 
the control factors at levels  A2,  B3,  C3, and  D2 contribute 
maximum in obtaining low relative deviations, and thus, 
they may be regarded as the optimum levels for carrying 
out further simulations.

Next, the simulations at these corresponding optimum 
levels have been performed; using proposed revamped ele-
ment-free Galerkin method (REFGM), to calculate the val-
ues of  KI and relative deviation. Value of KI = 2.3365 units 
and a relative deviation of 0.85% were observed and time 
consumed for this simulations was found to be 22 s.

In order to have a relative comparison of the computa-
tional time, the same problem was simulated using conven-
tional EFGM approach. All other simulation parameters 
were kept same as shown in Table 3. A relative comparison 
of computational time predicts that the revamped element-
free Galerkin method (REFGM) is faster than the conven-
tional method by 80% with nearly equal accuracy of results.

The revamped EFG method is further employed for mod-
elling of a variety of fracture and fatigue problem to ensure 
and establish its accurate simulation capabilities with least 
computational time.

9.2  Bimetallic Interfacial Cracks

Both conventional EFGM and revamped EFGM have been 
employed for solving bimaterial interface crack problems. 

(46)S/N ratio for relative deviation = −10 log10
(
LLB

)

Jump function (Pant et al. 2011b) has been used to model the 
material discontinuity, i.e., weak discontinuity and intrinsic 
enrichment (Nguyen et al.2008) has been used to model the 
strong discontinuities. Interaction integral (Sukumar et al. 
2004; Yau et al.1980) in domain form has been used for 
calculating the stress intensity factors as follows:

where, q is a weight function which has zero value on the 
contour C and unity at the tip of crack. Relation between 
stress intensity factor and integration integral is given as 
(Sukumar et al. 2004):

Kaux
I

 and Kaux
II

 are auxiliary stress intensity factors and 
E∗ is equivalent Young’s Modulus ( E∗ = 2E1E2

/(
E1 + E2

)
 ) 

and �̃� is the bimaterial constant (Sukumar et al. 2004). Kaux
I

 
can be calculated by considering Kaux

I
= 1 and Kaux

II
= 0 , and 

similarly KII can also be calculated.
A bimetallic rectangular plate having a Width 

W = 100 mm and Height, H = 200 mm, with an interface 
crack located at the center has been considered for analy-
sis, as shown in Fig. 13a. Horizontal material interface is 
located at a distance of H∕2 from the bottom of plate. A ten-
sile load of 9.8 MPa has been applied perpendicular to the 
interface of the crack. A nodal density of (20 × 50) nodes is 
used to define the problem domain. Near-tip nodal arrange-
ment and selection of higher quadrature regions are shown in 
Fig. 13b. As per the optimized quadrature criteria discussed 
in previous section, all the cells lying within the circular 

(47)M = −∫
A

(
�ik�

aux
ik

�1j − �iju
aux
i,1

− �aux
ij

ui,1

)
q,j dA

(48)Mi =
2

E∗ cosh2(𝜋�̃�)
(KIK

aux
II

+ KIK
aux
II

) with i = 1, 2

(a) (b)

Fig. 13  a Bimetallic plate with an interface crack, b nodes and optimized quadrature cells
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regions along with partially intersected cells (highlighted 
with star) will employ a higher Gaussian quadrature (6 × 6) 
as compared to the rest of domain having a (4 × 4) Gaussian 
quadrature.

Cracks with different lengths, i.e., 40 mm and 60 mm, 
are considered in the present analysis. Poisson’s ratio for 
both materials is taken as 0.3 and value of Young’s modulus 
(E1) for lower material is fixed at 205.8 GPa while that of 
upper material (E2) is varied. For different ratio of Young’s 
modulus, i.e., E2∕E1 = 1, 2, 3, 4, 10, 100, the values of stress 
intensity factors are calculated.

The normalized stress intensity factor is defined as 
Ki

�
�
√
�a ( i = 1, 2). This is done so as to get a non-dimen-

sional value of stress intensity factor corresponding to both 
mode-I and mode-II stress intensity factors. The results were 
compared with those obtained by Ref. 2 (Miyakazi et al. 
1993; Nagashima et al. 2003). Variation of normalized stress 
intensity factors corresponding to varying modular ratio 
E2∕E1 for a crack length of 40 mm is shown in Fig. 14. A 
good agreement has been found between the REFGM results 
and the reference results. Next simulation has been per-
formed for a crack length of 60 mm, and the results were 
compared with the Ref. 2 (Miyakazi et al. 1993; Nagashima 
et al. 2003) as shown in Fig. 15. Tables 4 and 5 show com-
parison of the values of normalized stress intensity factors 
for various material mismatch ratios with the reference val-
ues along with comparison of simulation time of the pro-
posed REFGM algorithm with the conventional EFGM 
results.

Further, the revamped EFGM algorithm was utilized to 
generate the contours of �YY and �YY for large material mis-
match ratio at the interface, i.e., E2∕E1 = 100 . In this case, 
the stress contours of �YY is almost continuous as shown in 
Fig. 16a while strain contours of �YY shows a discontinuity at 
the interface as shown in Fig. 16b. Table 6 presents a com-
parison of average computational time of REFGM algorithm 
for simulation of bimetallic interfacial crack problem with 
respect to conventional EFGM technique. It can be clearly 
observed that the revamped EFGM algorithm is capable of 
reducing the average computational time by 76%.

9.3  Fracture in Functionally Graded Material

A cracked plate made of functionally graded material with 
properties varying as hyperbolic tangent function have been 
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Fig. 14  SIFs variation for 2a = 40mm
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Fig. 15  SIFs variation for 2a = 60mm

Table 4  Normalized of stress intensity factors for crack length 40 mm

E2/E1 KI (Ref. 2) KII (Ref. 2) KI (EFGM) KII (EFGM) KI (REFGM) KII (REFGM) TEFGM (s) TREFG (s)

1 1.111 0.000 1.095 0.000 1.1032 0.000 120 27
2 1.104 − 0.073 1.0924 − 0.0718 1.110 − 0.076 118 29
3 1.096 − 0.0109 1.0703 − 0.1064 1.095 − 0.011 117 28
4 1.089 − 0.130 1.0531 − 0.1263 1.087 − 0.110 121 27
10 1.066 − 0.173 1.0465 − 0.1669 1.065 − 0.176 124 30
100 1.039 − 0.203 0.9856 − 0.1942 1.037 − 0.200 119 28
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analyzed in this section. Dimensions of this functionally 
graded plate having an edge crack of length a are width = 2 
units and height = 4 units as shown in Fig. 17a. Constraints 
are applied in y-direction for both top and bottom edges. 
Steady state thermal loadings in form of temperatures 
T1 = −10 ◦C and T2 = 0 ◦C is applied to the plate. Top and 
bottom edges are considered to be insulated so that there is 
no heat flux across them. Plane strain condition has been 
assumed to simulate this problem along a uniform distribu-
tion of 1250 nodes. The values of Young's modulus (E) , 

Poisson's ratio (�) , thermal expansion coefficient (�) , and 
thermal conductivity (k) are obtained by its hyperbolic tan-
gent function as:

w h e r e  
(
E−,E+

)
= (1, 3)  ,  

(
�−, �+

)
= (0.3, 0.1)  , (

�−, �+
)
= (0.01, 0.03) ,  

(
k−, k+

)
= (1, 3)𝛿 = 15 ,  

⌢

𝛿 = 5 , 
d = 0 . The steady state temperature distribution over the 
problem domain has been generated and shown in Fig. 17b. 
The near-tip nodal distribution along with optimized quad-
rature cells for defining higher quadrature is shown in 

(49)E(X1) =
E− + E+

2
+

E− − E+

2
tanh

[
𝛿
(
X1 + d

)]

(50)𝜈(X1) =
𝜈− + 𝜈+

2
+

𝜈− − 𝜈+

2
tanh

[
⌢

𝛿
(
X1 + d

)]

(51)𝛽(X1) =
𝛽− + 𝛽+

2
+

𝛽− − 𝛽+

2
tanh

[
⌢

𝛿
(
X1 + d

)]

(52)k(X1) =
k− + k+

2
+

k− − k+

2
tanh

[
⌢

𝛿
(
X1 + d

)]

Table 5  Normalized of stress intensity factors for crack length 60 mm

E2/E1 KI (Ref 2) KII (Ref 2) KI (EFGM) KII (EFGM) KI (REFGM) KII (REFGM) TEFGM (s) TREFG (s)

1 1.305 0.000 1.308 0.000 1.307 0.000 117 29
2 1.296 − 0.085 1.299 − 0.077 1.295 − 0.084 125 27
3 1.284 − 0.127 1.289 − 0.116 1.282 − 0.125 115 27
4 1.273 − 0.150 1.273 − 0.139 1.275 − 0.152 113 28
10 1.239 − 0.198 1.242 − 0.189 1.238 − 0.195 120 28
100 1.201 − 0.228 1.207 − 0.226 1.202 − 0.229 127 30

Fig. 16  �xx and �xx contours for 
E2∕E1 = 100

Table 6  Computational time comparison for crack in bimaterial 
domain

Process parameters Method

Conventional 
EFGM

Revamped EFGM

Total number of nodes (nd) 1000 1000
Gauss quadrature 6 × 6 Variable

Scaling factor (dmax) 2 2
Area ratio – 2
Average computational time 120 s 28 s
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Fig. 17c. As proposed by the optimized quadrature criteria, 
the cells lying within the circular regions along with the 
boundary cells (highlighted with star) will employ a higher 
Gaussian quadrature compared to the rest of domain. Equa-
tions (49–52) are plotted to visualize the gradation of mate-
rial properties across the width and a sharp jump in these 
material properties has been observed at the mid of width as 
shown in Figs. 18 and 19.

By analyzing the displaced nodal positions from Fig. 20a, 
it has been observed that edge crack exhibited only mode 1 
displacements under these prescribed loading and boundary 
conditions.

For different 
(

a

W

)
 ratios, the mode-I stress intensity factor 

has been plotted as shown in Fig. 20b, a good agreement can 

be seen between the obtained REFGM results and reference 
FEM solution (Kc et al. 2008). A decrement in the value of 
KI , with increasing crack length (due to the gradation in 
material properties) has been observed. Table 7 shows a 
comparison of mode-I stress intensity factors and computa-
tional time for both EFGM and REFGM algorithm with the 
FEM reference values. It can be clearly observed that 
REFGM algorithm is capable of generating accurate results 
with least computational time for simulation of interfacial 
crack domain problem in comparison to conventional EFGM 
scheme. Moreover, a comparison of average computational 
time reveals that revamped EFGM algorithm is faster than 
its predecessor EFGM method by around 75% as shown in 
Table 8.

Fig. 17  a Problem geometry, b temperature distribution over the domain, c nodes and optimized quadrature cells
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9.4  Thermoelastic Fracture

This section describes the application of REFGM for simu-
lation of fracture problems under thermoelastic loading. At 
first, the temperature distribution over the cracked domain 
is obtained by solving the heat transfer equation across the 
domain. The temperature field so obtained is then employed 
as an input to determine the nodal displacements and near-
tip stress fields.

In the present simulation, a rectangular plate of dimen-
sions width = 5 units and height = 1 units containing inclined 
adiabatic crack (Pant et al. 2010) as shown in Fig. 21a has 
been analyzed. Uniform discretization of the plate geometry 

has been done by taking 32 nodes in x direction and 64 nodes 
in y-direction. Top and bottom edges of this rectangular plate 
were kept at equal and opposite temperatures (T1 = 10 ◦C) , 
while right and left edges were kept insulated so that there 
is not heat flow across them and crack surface is considered 
adiabatic. Discontinuous temperature field is observed at the 
center of the plate as shown in Fig. 21b.

Next, a rectangular plate of dimensions width = 1 units 
and height = 2 units containing isothermal center crack (Pant 
et al. 2010) as shown in Fig. 22a has been analyzed. Uniform 
nodal density has been used to define the domain by con-
sidering 32 nodes in x direction and 64 nodes in y-direction. 
All edges of the rectangular plate has been kept at same 
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temperature (T2 = 10◦C)) , while temperature of the crack 
surface has been kept at (T1 = 0◦C)) such that T1 < T2 . As 
can be seen from Fig. 22b continuous temperature field has 
been observed since the crack surface having a prescribed 

temperature value is considered as a part of essential 
boundary.

The value of stress intensity factors KI and KII have been 
calculated using the modified thermal interaction integral 
(Pant et al. 2010). The normalization of stress intensity fac-
tors is done by by � Θ (W∕H)E

√
2W  for the adiabatic crack 

and �
�
T2 − T1

�
E
√
2W  for the isothermal crack (Pant et al. 

2010), where E is the Young's modulus of elasticity, � is 
the Poisson's ratio, � is the coefficient of linear expansion, 
Θ = To − T  with To is the applied temperature and T  is the 
ambient temperature.

Figures 21c and 22c represent the near crack tip arrange-
ments of nodes and implementation of optimized quadrature 
criteria for both adiabatic and isothermal crack modelling, 
respectively. For a particular angular orientation of the crack 
circular regions are defined as stated in optimized quadrature 
criteria. For this particular case all the cells lying within 
circular regions along with partially intersected cells (high-
lighted with star) are determined as shown in Figs. 21c and 
22c. A higher Gaussians quadrature is employed for all such 
cells, while a lower Gaussian quadrature is used for rest of 
the domain.

Variation of normalized stress intensity factor for an adi-
abatic crack with respect to inclination angle is shown in 
Fig. 23a. Figure 23a shows that value of mode-I stress inten-
sity factor is zero at inclination angle � = 0◦ and 90◦ and 
maximum at inclination angle of 45°, while value of mode-II 
stress intensity factor is found maximum at inclination angle 
of 0° and decreases to zero for inclination angle 90°. It has 
been seen that the calculated values of KI and KII are in good 
agreement with the results of literature Ref. 3 (Prasad and 
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Fig. 20  Displaced nodal positions and variation of stress intensity factor

Table 7  Comparison of stress intensity factors and computational 
time

a/W KI (FEM) KI(EFGM) KI(REFGM) TEFGM (s) TREFG (s)

0.1 0.8713 0.8619 0.8723 124 33
0.2 1.1700 1.1670 1.1710 129 34
0.3 1.2840 1.2320 1.2640 132 31
0.4 1.2620 1.2520 1.2540 129 34
0.5 0.9417 0.9317 0.9437 121 36
0.6 0.3737 0.3537 0.3727 137 29
0.7 0.2588 0.2688 0.2498 136 31
0.8 0.1774 0.1674 0.1714 137 30

Table 8  Comparison of average computational time

Process parameters Method

conventional 
EFGM

Revamped EFGM

Total number of nodes (nd) 1250 1250
Gauss quadrature 6 × 6 Variable

Scaling factor (dmax) 2 2
Area ratio – 2
Computational time 130 s 32 s
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Aliabadi 1994; Duflot 2008). Table 9 represents the varia-
tion of normalized stress intensity factors with varying crack 
inclination along with a comparison of simulation time for 
conventional EFG technique and proposed REFG algorithm.

Variation of normalized stress intensity factor for an iso-
thermal crack with respect to inclination angle is shown in 
Fig. 23b.Value of both mode-I stress intensity factor and 
mode-II stress intensity factors has been calculated. Fig-
ure 23b shows that the value of mode-I stress intensity fac-
tor decreases from its maximum value at angle � = 0◦ to a 
minimum value at 90◦ , while value of mode-II stress inten-
sity factor is found maximum at inclination angle of 45º 
and decreases to zero for inclination angle � = 0◦ and 90◦ . 
It has been seen that the calculated values of KI and KII are 
found in good agreement with the results of literature Ref. 
3 (Prasad and Aliabadi 1994; Duflot 2008). Table 10 rep-
resents the variation of normalized stress intensity factors 
with varying crack inclination along with a comparison of 
conventional EFGM technique and proposed REFGM algo-
rithm in terms of computational efficiency. Results show that 

algorithm is quiet faster than the EFGM technique without 
any compromise in accuracy of results.

Table 11 represents a comparison of average computa-
tional time for thermoelastic problems simulated using both 
EFGM and REFGM algorithm with same parameters. The 
proposed REFGM algorithm has an edge over the computa-
tional time by about 76% as compared to EFGM algorithm.

9.5  Fatigue Crack Growth

Finally, a fatigue crack growth analysis for a two-dimen-
sional homogeneous cracked domain is performed under 
a cyclic mechanical loading of fixed amplitude. Paris law 
has been used to calculate fatigue life cycles for each crack 
increments. The change in stress intensity factor (ΔK) for 
constant cyclic loads is as follows:

(53)ΔK = Kmaximum − Kminimum

(a) (b)

(c)

Fig. 21  Adiabatic inclines crack: a problem geometry, b temperature profile
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whereKmaximum is the stress intensity factor corresponding 
to maximum applied load (�max) and Kminimum is the stress 
intensity factor corresponding to minimum applied load 
(�min).Small linear increments of crack have been used in 
current work for modelling quasistatic crack growth. At the 
crack tip, the local direction of crack growth �c is determined 
on the basis of maximum principal stress theory (Sukumar 
and Prevost 2003). So, direction for the crack growth �c is 
obtained from relation:

Simplifying above equation, we obtain

(54)KI sin �c + KII(3 sin �c − 1) = 0

From Eq. (55), we get two values of �c , out of which 
one is the maximum value. ΔKIeq can be calculated using 
Eq. (54) by using the value of �c corresponding to maximum 
equivalent stress intensity factor and is written as follows:

(55)�c = 2 tan−1

⎛⎜⎜⎜⎝

KI −
�

K2
I
+ 8K2

II

4KII

⎞⎟⎟⎟⎠

(56)

ΔKIeq = ΔKI cos
3

(
�c

2

)
− 3ΔKII cos

2

(
�c

2

)
sin

(
�c

2

)

(a) (b)

(c)

Fig. 22  Isothermal inclines crack: a problem geometry, b temperature profile
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Paris law is applied for calculating fatigue life of a propa-
gating quasi-static crack under cyclic loading using the fol-
lowing expression:

where a represents length of crack, N is number of load 
cycle, m and C are material constants of Paris model. Crack 
length is modified after obtaining the direction and magni-
tude of crack increment. For crack growth simulations we 

(57)
da

dN
= C(ΔKIeq)

m

require optimum value of crack extension as larger crack 
increments will not represent real path of crack. Simulations 
for fatigue crack growth problems are provided with incre-
ment of 1 mm (optimum increment size). Table 12 shows the 
material properties considered for calculation of fatigue life.

9.5.1  Fatigue Crack Growth an Inclined Edge Crack

A problem domain with dimensions 100 mm × 200 mm 
with an inclined edge crack has been considered for fatigue 

(b) Isothermal crack(a) Adiabatic crack
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Fig. 23  Variation of normalized stress intensity factor with crack inclination

Table 9  Variation of normalized stress intensity factors with crack inclination for adiabatic crack

θ KI (Ref. 3) KII (Ref. 3) KI (EFGM) KII (EFGM) KI (REFGM) KII (REFGM) TEFGM (s) TREFG (s)

0 0.319 0.000 0.3261 0.000 0.314 0.000 214 52
15 0.314 0.026 0.3047 0.022 0.310 0.025 215 54
30 0.297 0.045 0.2892 0.0451 0.298 0.047 213 33
45 0.273 0.054 0.2750 0.0549 0.276 0.059 216 51
60 0.247 0.048 0.2380 0.0520 0.249 0.055 212 54
75 0.228 0.029 0.2205 0.0439 0.232 0.034 215 53
90 0.220 0.0 0.2156 0.0 0.217 0.0 213 53

Table10  Variation of normalized stress intensity factors with crack inclination for isothermal crack

� KI (Ref. 3) KII (Ref. 3) KI (EFGM) KII (EFGM) KI (REFGM) KII (REFGM) TEFGM (s) TREFG (s)

0 0.0 0.0546 0.0 0.0548 0.0 0.002 212 53
15 0.0038 0.0533 0.0031 0.0545 0.0036 0.054 216 51
30 0.0068 0.0489 0.0060 0.0502 0.0064 0.048 213 50
45 0.0076 0.0420 0.0062 0.0397 0.0071 0.041 211 54
60 0.0054 0.0322 0.0049 0.0334 0.0049 0.032 215 53
75 0.0017 0.0180 0.0014 0.019 0.0010 0.018 216 49
90 0.0 0.0 0.0 0.0 0.0 0.0 213 52
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life simulation. A uniform nodal density of (30 × 60) nodes 
is considered. An edge crack length a = 10 mm have been 
considered for this simulation. Orientation of this initial 
crack is kept at 40o with the horizontal axis. The bound-
ary conditions along with other geometrical parameters are 
shown in Fig. 24a. Constant amplitude mechanical load of 
�max = 100 N/mm and �min = 0 N/mm is applied at the top 
edge of the plate whereas the bottom edge is constrained in 
y-direction. The quasi static crack growth is modelled using 
the REFGM algorithm which is also capable of simulat-
ing kinked cracks. With each incremental crack growth the 
crack path is determined and updated automatically within 
the algorithm. Figure 24b shows the stress (�yy) contours 
in the vicinity of crack tip before failure. For a particular 
crack configuration before failure, Fig. 24c represents the 
near-tip arrangement of nodes along with application of opti-
mized quadrature criteria to determine cell for employing 
higher Gaussian quadrature compared to the rest of prob-
lem domain. All the boundary cells (highlighted with star) 
along with cells lying in the interior of circular regions are 
predetermined by algorithm as shown on Fig. 24c. The final 
fatigue life is estimated using Paris law. Fatigue life and 
critical crack length obtained by revamped EFG algorithm 
are found to be 910 cycles and 28.23 mm, whereas the same 
obtained by conventional EFGM approach are found as 
918 cycles  and 28.70 mm.

A comparison of average computational time for estimat-
ing fatigue life of cracked domain is presented in Table 13. 
It can be clearly observed that, for similar algorithm param-
eters, the proposed REFG algorithm is capable of estimating 

the fatigue life faster than the EFGM algorithm by about 
77%. Moreover, the proposed criteria for modelling kinked 
crack is capable of simulating the near-tip stress field in 
quiet accurate and efficient manner.

9.6  Crack Emanating from Annular Disc

In order to establish the efficiency and modeling capabilities 
of the proposed algorithm for different domain geometry, an 
annular disc with a crack emanating from the inner edge is 
considered. The problem is simulated with both revamped 
element-free Galerkin method (REFGM) and conventional 
EFG method. Figure 25 shows an annular metallic disc 
( ri = 100 mm and ro = 300 mm) having an edge crack of 
length a with modulus of elasticity ( E) = 200 GPa and Pois-
son’s ratio ( �) = 0.3. A far-field stress, � = 100 MPa is applied 
at the outer boundary. The domain has been discretized with 
a total of 666 nodes which are defined in form of concentric 
circles. This is achieved by defining nine equally spaced 
nodes along the radial direction and 77 equally spaced nodes 
along angular direction. The nodal distribution along with 
crack orientation is clearly shown in Fig. 25. The distribu-
tion of nodes is represented in Fig. 26. The initial Gaussian 
distribution over the annular disc is represented in Fig. 27. 
In order to visualize the implementation of optimized quad-
rature criteria, a region near the crack tip has been zoomed 
in and shown separately in Fig. 27. Again, the optimized 
quadrature criterion helps in determining the regions where 
a higher Gaussian quadrature will be utilized as compared 
to the rest of domain. These higher quadrature regions are 
predetermined by algorithm are highlighted with blue stars 
as shown in Fig. 27.

For a better understanding of the results obtained by 
Revamped EFG algorithm and conventional EFG method, 
the contours of stress components are plotted as shown in 
Figs. 28 and 29.

Figure 28 shows the contour of stress component �xx over 
the problem domain using the proposed REFGM algorithm. 
This contour plot shows that the crack surfaces are almost 
traction-free in x-direction as expected. In contrast, the stress 
contour of �xx generated using conventional EFGM shows a 
nearly zero stress level over the domain accompanied by a 
compressive stress zone to the opposite side of the crack as 
shown in Fig. 28b, which is misleading and incorrect.

Next, the stress contours of �yy are plotted and analyzed. 
Figure 29a presents the contour of �yy using REFGM algo-
rithm. The crack surfaces are almost traction-free in y-direc-
tion as per theoretical expectation. A high stress level is 
generated at the crack tip (compared to the rest of domain), 
which is a unique feature of stress singularity at the crack 
tip. In comparison to that, EFGM is incapable of simulating 
the crack tip singularity as shown in Fig. 29b.

Table 11  Comparison of average computational time for thermoelas-
tic problems

Process parameters Method

conventional 
EFGM

Revamped EFGM

Total number of nodes (nd) 2048 2048
Gauss quadrature 6 × 6 Variable

Scaling factor (dmax) 2 2
Area ratio – 2
Computational time 212 s 50 s

Table 12  Material properties for fatigue life calculation

S. no Parameter Numerical value

1 Elastic modulus of plate (E) 200 GPa
2 Poisson ratio (ν) 0.3
3 Fracture toughness (KIC) 40 MPa 

√
m

4 Paris constant (C) 2.087136 × 10−11/cycle
5 Paris exponent (m) 3
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The values of stress intensity factor KI are evaluated for 
different crack lengths. Figure 30 shows a relative com-
parison of stress intensity factor (SIFs)  KI, for different 
crack lengths, varying from 5 to 15 mm, obtained using 
both revamped EFG algorithm and conventional EFGM. 
Both the results are compared with Finite Element Method 
(FEM) solution obtained using ANSYS-14 software. It can 
be clearly seen that for all values of crack length, the results 
obtained by REFGM are in good agreement with those 

obtained by FEM, whereas the results obtained by conven-
tional EFGM are absurd and deviating with the reference 
FEM solution.

Moreover, a comparison of average computational time 
for simulating crack tip field in annular disc is presented in 
Table 14. This computational time simulation is performed 
for a crack length of 12 mm. Table 14 shows that for similar 
algorithm parameters the proposed REFGM algorithm is 
capable of estimating the results faster than the EFG method 

(a) (b)

(c)

Fig. 24  Plate with inclined crack a problem geometry, b stress contours (�yy) , c Near-tip nodes and optimized quadrature cells
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by around 75% in this case. Moreover, the proposed REFGM 
algorithm is capable of modelling the near-tip stress field 
quiet accurately and efficiently along with obtaining accurate 
values of stress Intensity factors at the crack tip.

10  Conclusion

Element-free Galerkin method has been successfully 
revamped within its framework by incorporating improved 
moving least-square method together with blended enrich-
ment criteria and optimized quadrature criteria. Moreover, 

Table 13  Comparison of average simulation time for fatigue life esti-
mation

Process parameters Method

conventional 
EFGM

Revamped EFGM

Total number of nodes (nd) 1800 1800
Gauss quadrature 6 × 6 Variable

Scaling factor (dmax) 2 2
Area ratio – 2
Computational time 812 s 182 s

Fig. 25  Annular disc with an interior edge crack

Fig. 26  Nodal distribution over domain

Fig. 27  Gaussian points over the domain, Optimized quadrature criteria
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suitable parametric optimization has been performed for the 
selection of EFGM algorithm parameters thereby improv-
ing its robustness and accelerating the overall computational 
time of the algorithm. The revamped EFGM algorithm so 
developed is tested for a variety of fracture problems involv-
ing mechanical/thermal loads and compared with conven-
tional EFGM algorithm. An average of 70–80% reduction in 

Fig. 28  Contours of stress component �xx

Fig. 29  Contours of stress component �yy
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Fig. 30  Stress intensity factor  (KI) values for different crack lengths

Table 14  Comparison of average simulation time for cracked annular 
disc

Process parameters Method

conventional 
EFGM

Revamped EFGM

Total number of nodes (nd) 666 666
Gauss quadrature 6 × 6 Variable

Scaling factor (dmax) 2 2
Area ratio – 2
Computational time 87 s 22 s
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computational time is achieved with the proposed algorithm. 
The revamped EFGM algorithm outscores not only in terms 
of computational efficiency but also in terms of its robust-
ness and flexibility to simulate variety of problems. The 
proficiency of revamped EFGM algorithm can be further 
extended for modelling of 3D fracture problems in complex 
geometries which requires the use of voluminous nodal data 
thereby increasing the computational time in an exponential 
way.
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