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Abstract
The applications of thick cylinders are increasing in many industries such as aero-space, marine, automotive and oil industry. 
The working conditions in some cases need design and manufacturing of cylinders with functionally graded properties. In 
this study, the transient axi-symmetric response of two-dimensional functionally graded (2D-FG) thick hollow cylinders 
in which material properties are graded in radial and axial directions is studied. The cylinder is subjected to axi-symmetric 
transient thermal and mechanical loading conditions. The governing equations of the cylinder are obtained from the equilib-
rium equations of elasticity in the weak form. The meshless local Petrov–Galerkin formulation is presented to discretize the 
governing equations of 2D-FG cylinder to a system of linear differential equations. The Crank–Nicolson and the Newmark 
method are employed for time integration of the equations. The accuracy of the results is examined by comparison of the 
predictions with analytical methods and available results in the open literature. In the numerical results, steady state and 
transient response of 2D-FG cylinder which is subjected to time-dependent mechanical load and transient thermal load are 
investigated and the propagation of displacement and stress waves in the FG cylinder are studied. It is seen that the presented 
formulation is accurate and efficient for steady state and transient response analysis of FG cylinders in thermo-mechanical 
loading conditions. The effect of FG parameters and loading parameter on the response of the cylinder is studied.

Keywords  2D functionally graded cylinder · Thermo-mechanical response · Transient analysis · Thermal stress · 
Mechanical stress · Meshless method

1  Introduction

The composition of several different materials as function-
ally graded material can be used in order to optimize the 
responses of structures subjected to thermal and mechanical 
loads. Functionally graded materials are non-homogeneous 
materials made from two or more constituent in which the 
volume fraction of constituents varies gradually with pre-
defined pattern to give a non-uniform microstructure with 
continuously graded macro properties. The FG materials are 
designed to possess desirable properties for specific applica-
tions in thermo-mechanical loading conditions, especially 
for high rate thermal loadings. The homogeneous and FG 
hollow cylinders have many industrial applications such 

as in aerospace and automobile industries. The analysis of 
transient thermal and mechanical stresses in FG cylinders 
which are subjected to thermo-mechanical loading is of great 
importance. Analytical and computational studies have been 
carried out for investigation of the behavior of FG cylin-
ders. A brief review of analytical and numerical methods 
for analysis of thermo-mechanical loading of FG cylinders is 
presented here. Reddy and Chin (1998) studied the dynamic 
thermo-elastic response of functionally graded cylinders and 
plates by finite element method. Horgan and Chan (1999) 
investigated the effects of material inhomogeneity on the 
response of linearly elastic isotropic radially graded hollow 
circular cylinders or disks under uniform internal or external 
pressure. Zimmerman and Lutz (1999) derive an exact solu-
tion for the problem of uniformly heating of a functionally 
graded cylinder whose elastic moduli and thermal expansion 
coefficient vary linearly with radius. El-Abbasi and Meguid 
(2000) developed finite element formulation to study the 
thermo-elastic behavior of FG plate and shells. Awaji and 
Sivakumar (2001) used the finite difference method to 
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analyze one-dimensional transient temperature distributions 
in a circular hollow cylinder that was composed of function-
ally graded ceramic–metal-based materials.

Kim and Noda (2002) have adopted a Green’s function 
approach based on the laminate theory for solving the two-
dimensional unsteady temperature field and the associated 
thermal stresses in an infinite hollow circular cylinder made 
of FG material with radially graded properties. The gen-
eral theoretical analysis of steady-state thermal stresses for 
a long hollow thick cylinder made of functionally graded 
material is developed by Jabbari et al. (2002). Nemat-Alla 
(2003) introduced a two-dimensional functionally graded 
materials (2D-FGM) to withstand super high temperatures 
and to give more reduction in thermal stresses. Liew et al. 
(2003) presented a solution for analysis of thermal stress 
behavior of hollow circular cylinders of functionally graded 
material. Sladek et al. (2005) analyzed the static stress dis-
tribution in anisotropic FG cylinder by the MLPG method. 
Kordkheili and Naghdabadi (2007) presented an analytical 
thermo-elasticity solution for hollow finite-length cylinders 
made of functionally graded materials exposed to ther-
mal loads, internal pressure and axial loadings. Thermo-
mechanical analysis of functionally graded hollow circular 
cylinders subjected to mechanical loads and linearly increas-
ing boundary temperature was carried out by Shao and Ma 
(2008). Asgari and Akhlaghi (2011) studied the steady state 
thermal stress of thick hollow circular cylinder with finite 
length made of two-dimensional functionally graded mate-
rial using the graded finite element method. Hosseini et al. 
(2011) studied the thermo-elasticity and thermal shock in 
radially FG long cylinder using coupled thermo-elasticity 
theory and meshless method.

Ponnusamy and Rajagopal (2011) studied the wave propa-
gation in transversely isotropic thermoelastic solid cylinder 
with arbitrary cross-section. Arshad et al. (2011) presented 
vibration frequency of a bi-layered cylindrical shell com-
posed of two independent FG layers which are function-
ally graded through the thickness of the layers. Foroutan 
et al. (2011) studied the static response of radially FG cyl-
inders with finite length subjected to mechanical loading 
by mesh-free method. Lee et al. (2012) studied an inverse 
algorithm and applied the discrepancy principle to simul-
taneously estimate the unknown time-dependent inner and 
outer boundary heat fluxes in a functionally graded hollow 
circular cylinder. Darabseh et al. (2012) studied the transient 
thermo-elastic response of a thick hollow radially FG cylin-
der under thermal loading and Green–Lindsay generalized 
theory of thermo-elasticity.

Mollarazi et al. (2012) studied the free vibration analy-
sis of radially functionally graded axi-symmetric cylinder 
by meshless method. Dai et al. (2013) utilized finite differ-
ence method to analyze the response of a long hollow cyl-
inder made of functionally graded materials under dynamic 

symmetric radially mechanical and thermal loadings. 
Xie et al. (2013) studied two-dimensional thermo-elastic 
dynamic responses of a long radially functionally graded 
hollow cylinder subjected to non-axi-symmetrical thermal 
and mechanical loads by the finite difference method. Wu 
and Kuo (2013) developed a unified formulation based on 
the principle of virtual displacements (PVDs) for simply 
supported functionally graded sandwich hollow cylinders 
for the quasi-three-dimensional bending and free vibration 
analyses. Ebrahimi and Najafizadeh (2014) studied the free 
vibration of two-dimensional functionally graded cylindri-
cal shell by Love’s first approximation classical shell theory 
and generalized differential quadrature (GDQ) and general-
ized integral quadrature (GIQ) methods. Shojaeefard and 
Najibi (2014) studied transient heat conduction in hollow 
thick temperature-dependent 2D-FGM cylinders subjected 
to transient axisymmetric thermal loads using the graded 
finite element method. Karakas and Daloglu (2015) devel-
oped graded harmonic finite element method based on 
three-dimensional elasticity theory to study the mechanical 
stress and natural frequency of 2D-axi-symmetric structures. 
Foroutan and Shirzadi (2016) developed an axi-symmetric 
Hermition collocation method based on the strong form of 
governing equation to study the free vibration of radially 
functionally graded cylinder. Dai and Dai (2016) presented 
a semi-analytical approach to study the displacement and 
stress fields in a functionally graded (FG) hollow circular 
disk, rotating with an angular acceleration under a changing 
temperature field.

Najibi and Shojaeefard (2016) utilized finite element 
method to investigate mechanical behavior of thick hollow 
finite length cylinder made of two dimensional functionally 
graded materials. Xu and Yu (2017) studied elastic wave 
propagation in functionally graded cylinder using time 
domain spectral finite element method. Niu et al. (2019) 
investigated the free vibrations of the rotating pretwisted 
functionally graded composite cylindrical panels reinforced 
with the graphene platelets by first-order shear deformation 
theory and Chebyshev-Ritz method. Talebitooti (2019) 
studied the free vibration and critical speed of pressurized 
rotating FG cylindrical shell based on the three-dimensional 
theory and layerwise theory.

As seen, the semi-analytical methods and numerical 
approaches are employed for analysis of functionally 
graded cylinders. The numerical approaches for analysis 
of FG cylinders mostly include the finite element method 
and finite difference method. The meshless methods are 
used for static stress analysis and free vibration analysis 
of FG cylinders. To the best knowledge of authors, the 
transient thermal stress in the 2D-functionally graded 
cylinders by the meshless method is not studied in the 
open literature. Although the finite element method is used 
for transient stress analysis in 1D-FG cylinders, the finite 
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element method has some difficulties and disadvantages, 
such as its needs to mesh of elements, discontinuities of 
derivations of shape functions in boundary of elements, 
and difficulties in construction of higher-order shape func-
tions. In order to overcome the difficulties, the meshless 
methods are developed in recent two decades, which does 
not need element mesh, either for purposes of interpola-
tion of the solution variables, or for the integration of the 
equations. Different meshless methods, such as Discrete 
Elements method (DEM) Nayroles et al. (1992), Element 
Free Galerkin (EFG) method (Belytschko et al. 1994), 
H-p Clouds method (Duarte and Oden 1996), Reproduc-
ing Kernel Particle method (RKPM) (Liu et  al. 1995) 
and meshless local Petrov–Galerkin method (MLPG) 
(Atluri and Zhu 2000), have been presented in the past 
years. For more information, the differences and similari-
ties of these methods are referred to researches of Atluri 
et al. (1999) and Belytschko (2002). Due to advantages of 
meshless methods, the meshless methods, especially the 
MLPG method, are used for analysis of various problems 
in engineering and science. For example, Lin and Atluri 
(2000) proposed MLPG to solve steady convection dif-
fusion problems, in one and two dimensions. Liu and Gu 
(2000) proposed coupled MLPG/finite element method and 
a coupled MLPG/boundary element method to improve 
the solution efficiency for continuum mechanics problems. 
This paper focuses on the coupling of MLPG method with 
FEM and BEM. Ching and Batra (2001) augmented the 
MLPG method with the enriched basis functions and suc-
cessfully predicted the singular stress fields near a crack 
tip. Gu and Liu (2001) developed MLPG formulation for 
free and forced vibration analyses of solid structures. Qian 
et al. (2003) used two meshless local Petrov–Galerkin 
formulations, namely MLPG1 and MLPG5, to analyze 
infinitesimal deformations of a homogeneous and isotropic 
thick elastic plate with a higher-order shear and normal 
deformable plate theory. Wang et al. (2005) presented a 
new meshless method for steady state heat conduction 
problem in anisotropic and inhomogeneous materials. 
Haitao and Yuanhan (2007) presented a meshless virtual 
boundary method and employed it for 2D elasticity prob-
lems. Mahmoodabadi et al. (2011) employed meshless 
local Petrov–Galerkin method for 3D steady-state heat 
conduction problems. Ahmadi and Aghdam (2010a, b) 
developed generalized plane-strain meshless method for 
micromechanical modeling of unidirectional composite to 
study micro-stresses in composite materials. Ahmadi et al. 
(2011) developed a meshless formulation to study the heat 
transfer in heterogeneous materials and studied the heat 
transfer and thermal conductivity of composite materials. 
Hematiyan et al. (2014) presented an efficient technique 
for evaluation of a domain integral in which the integrand 
is defined by its values at a discrete set of nodes with 

highly varying density. Ahmadi and Aghdam (2015) and 
Ahmadi (2017) presented a suitable meshless formulation 
for modeling the elastic–plastic and failure behavior of 
heterogeneous materials in micromechanics. Zheng et al. 
(2015) and Mavric and Sarler (2017) developed meshless 
formulation for analysis of transient coupled thermoe-
lasticity problems under thermal and mechanical shock 
loading.

Khosravifard et al. (2017) developed a new numeri-
cal strategies based on meshless methods for the analy-
sis of linear fracture mechanics problems of stationary 
as well as propagating cracks with minimum computa-
tional labor Abdollahifar et al. (2019) developed meshless 
local. Petrov–Galerkin (MLPG) method to study transient 
dynamic stress intensity factor in FGM plates. Memari and 
Azar (2020) described a combined way based on FE and 
MLPG1 methods to take the advantages of two numeri-
cal techniques in fracture mechanics to numerically solve 
stationary dynamic fracture and quasi-static linear elastic 
crack propagation problems. Jenabidehkordi et al. (2020) 
presented a novel approach for investigating the fracture 
and mechanical behavior of polymer-matrix composites 
at the mesoscale and takes advantage of the peridynam-
ics equation of motion and its nonlocality. Liaghat et al. 
(2021) proposed an efficient iterative inverse procedure 
for identification of distribution of loads that had led to a 
specific crack propagation path in a fractured component. 
Recently, Ahmadi (2021) studied dynamic behavior of 
2D-functionally graded nonlocal nanobeams using mesh-
less method and the first-order shear deformation (FSDT) 
beam theory.

In this study, a truly meshless formulation is developed 
to study the transient response of 2D-FG axi-symmetric 
cylinders and the transient response of 2D-functionally 
graded cylinder with finite length which is subjected to 
axi-symmetric time-dependent mechanical and thermal 
load is studied. The presented method is a truly meshless 
method and the thermo-mechanical properties of the cyl-
inder are considered to be graded in both radial and axial 
directions of the cylinder. The governing equations of the 
cylinder are obtained using the thermo-elasticity theory. 
A formulation based on meshless local Petrov–Galerkin 
(MLPG) method is developed to obtain the governing 
equations of the cylinder as a system of linear differential 
equations. The governing equations are integrated numeri-
cally in the time domain with Crank–Nikolson and New-
mark time integration techniques and transient response 
of the cylinder subjected to thermo-mechanical loading 
is obtained. The transient and steady state displacement 
and radial, axial and hoop stresses in 2D-FG cylinder are 
studied, and the effect of parameters on the response of the 
cylinder is investigated.
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2 � Formulation

A thick hollow cylinder made of 2D-FG material with the 
cylindrical coordinate system rθz is considered in which r indi-
cates radial coordinate, z indicates the axial coordinate, and θ 
is the circumferential coordinate of the cylinder. The cylinder 
length is L, the inner radius is Ri, and the outer radius is Ro. 
The cylinder is subjected to axi-symmetric internal and (or) 
external pressure Pi(z, t) and Po(z, t), and the axi-symmetric 
thermal loading conditions in inner and (or) outer surface. 
The edge conditions of the cylinder at z = 0 and z = L, and the 
volume fraction of the FG basic constituents of the cylinder 
are supposed to be axi-symmetric. Due to the axi-symmetric 
nature of the problem, the cross-section of the cylinder in r-z 
plane is shown in Fig. 1. The displacement field of the cylinder 
is considered as ur = ur(r,z,t), uz = uz(r,z,t), and uθ = 0, where 
ur and uz and uθ are displacements in the r and z and θ direc-
tions. Regarding to axi-symmetric conditions, the equilibrium 
equations in the radial and axial directions can be written as 
Sadd (2009)

where br and bz are body force. The equation of heat transfer 
for the cylinder can be considered as

 
where g is the heat source, ρ(r,z) is mass density, and 

cp(r,z) is specific heat capacity and are functions of r and z 
coordinates.

2.1 � Local Weak Formulation

An axi-symmetric formulation based on meshless local 
Petrov Galerkin (MLPG) method is derived for solution of 
the problem. The MLPG method is based on the local weak 
form of the governing equations over the local subdomains. 
The cross section of the cylinder with rz plane is shown in 
Fig. 1, and called Ω. The cylinder volume can be obtained 
by rotation of Ω about the z-axis. The number of N nodes 
and N local area Ωs

I (I = 1, 2, …, 3) with arbitrary shape are 
considered in the domain Ω. Revolution of the local area 
Ωs

I about z-axis makes a volume (ring) which is called local 
volume Vs

I. In this study, Ωs
I are called 2D subdomain and 

Vs
I are so-called 3D subdomain. Due to the axi-symmet-

ric nature of the problem, the local weak form is written 
over the three-dimensional subdomains Vs

I. For achieving 
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Fig. 1   An axisymmetric finite  cylinder, the coordinate system, and 
the 2D subdomains Ωs

I

the weak formulation, Eq. (1) and Eq. (2) are multiplied in 
weight function w(r,z) and integrated over the subdomain 
volume Vs

I as Atluri and Zhu (2000)

Generally ΩI
s may have arbitrary shape in the r-z sec-

tion of the cylinder and called local subdomain, Vs
I is the 

volume of rotation of Ωs
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same procedure as
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=

2𝜋

∫
0

∫
ΩI

s

w(−
1

r

𝜕

𝜕r
(rqr) −

𝜕qz

𝜕z
+ g − 𝜌cpṪ)dArd𝜃 = 0
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Notice that the weight function w(r,z) of the local subdo-
main Ωs

I is chosen as a bell-type function whose maximum 
value is on the Ith node, and w(r,z) vanishes on the boundary 
of Ωs

I that is located totally inside the global domain i.e. LI
s. 

Therefore, the integrations over LI
s are eliminated from (10), 

(11) and (12). The weight function of the Ith subdomain Ωs
I 

is shown by wI(r,z). In this study, for the circular subdomains 
the quadratic weight function is used as Ahmadi (2017); 
Memari et al. (2020)

where Rs
I is the radius of the support domain of Ωs

I and 
dI is the distance of X to the center of Ωs

I. Other types of 
weight function can be used. More details can be found in 
Liu (2009).

In order to obtain the governing equations in the matrix 
form, the matrices σ, WI and εv are defined as

and the matrix of displacement u, traction t, body force 
b and N is defined as

By employing (14) and (15), the equilibrium equation of 
elasticity in (10) and (11) is written in the matrix form as
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−∫
ΩI

s

(rw,r𝜎rz + rw,z𝜎z)drdz+∫
ΓI
s

rw(𝜎rznr + 𝜎znz)dΓ+

∫
ΓI
st

rwtzdΓ − 𝛼 ∫
ΓI
suz

w(uz − uz)dΓ − ∫
ΩI

s

wbzrdrdz =∫
ΩI

s
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It must be considered that due to axi-symmetric condi-
tions, the integrand in (4), (5) and (6) is not as a function of 
circumferential coordinate θ. Therefore, integration over θ 
can be done easily and Eqs. (4), (5) and (6) are simplified 
and rewritten as

In equations (7) to (9), the terms which include α is the 
penalty terms and added to the weak form in order to impose 
the essential boundary conditions to the equations, and α is a 
large number which is known as penalty parameter. ΓI

sur
 , ΓI
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 are the parts of the subdomain in which ur, uz and 
temperature T are prescribed, respectively. In general ΩI
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the part of �ΩI
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 that coincides with the Dirichlet boundary is 

shown by ΓI
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 , and the part that coincides with Neumann 
boundary is shown by ΓI

sq
 and the part that coincides with 

convection boundary is shown by ΓI
sh

 . By employing the 
divergence theorem, (7), (8) and (9) can be written as
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w𝜌ürrdrdz

(8)

∫
ΩI

s

(w
𝜕(r𝜎rz)

𝜕r
+ wr

𝜕𝜎z

𝜕z
+ wrbz)drdz

− 𝛼 ∫
ΓI
suz

w(uz − uz)dΓ = ∫
ΩI

s
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and the energy equation in (12) is written as

where in (17), h is thermal convection coefficient on Γsh, T∞ 
is the ambient temperature, and

The stress matrix σ and matrix of heat flux q can be 
obtained as

and the strain matrix ε is defined as

and � , �̂ and �̂ for the FG material are given as

where in the above equations E(r,z) is the module of elastic-
ity, ν is the Poisson ratio, α (r,z) is the coefficient of thermal 
expansion, and kr(r,z) and kz(r,z) are the thermal conductivi-
ties in the r and z directions.

2.2 � Discretization Approach

The displacement and temperature field are written in 
the discrete form. In this study, the moving least square 
(MLS) approximation method is employed to discretize 
the governing equations according to the discrete nodal 
values. By employing the MLS approximation method, 
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𝜌(r, z)cp(r, z)w
IṪrdrdz

(18)�
I

v
= [wI

,r
, wI

,z
], � = [nr, nz], � = { qr, qz }

T

(19)
� = �� − �̂(T − T0),

� = −�̂{T,r, T,z}
T

(20)
� = { �r, �z, �rz, �� }

T = {
�ur

�r
,

�uz

�z
,

1

2
(
�ur

�z
+

�uz

�r
),

ur

r
}T

(21)

� =
E(r, z)

(1 + 𝜈)(1 − 2𝜈)

⎡⎢⎢⎢⎣

1 − 𝜈 𝜈 0 𝜈

𝜈 1 − 𝜈 0 𝜈

0 0 0.5(1 − 2𝜈) 0

𝜈 𝜈 0 1 − 𝜈

⎤⎥⎥⎥⎦

�̂ =
E(r, z)𝛼(r, z)

(1 − 2𝜈)
[ 1 1 0 1 ]T , �̂ =

�
kr(r, z) 0

0 kz(r, z)

�

the displacement field and the temperature field are broken 
down based on the virtual nodal values of displacement and 
temperature as Atluri and Zhu (2000)

where ϕJ is the interpolation (shape) function and ûr J , ûz J 
and T̂J are fictitious nodal values. The displacement matrix 
u which is defined in (15) can be written as Atluri and Zhu 
(2000); Ahmadi (2017) 

where

and the strain matrix and temperature gradient matrix are 
obtained as follows:

where BJ and �J are defined as

The discrete form of Eq. (16) and (17) can be obtained by 
substituting from Eqs. (19), (23) and (25), into (16) and (17) as

and

Equations (27) and (28) can be written in the standard form 
as

(22)

ur = 𝜙Jûr J

uz = 𝜙Jûz J

T = 𝜙JT̂J

(23)� = �J�̂J

(24)�J =

[
𝜙J 0

0 𝜙J

]
, �̂J =

{
ûr
ûz

}

J

(25)
� = �J�̂J ,

{ T,r, T,z }
T = �JT̂J

(26)�J =

[
��J

�r
0

��J

�z

�J

r

0
��J

�z

��J

�r
0

]T

, �J =

[
��J

�r
��J

�z

]

(27)

− ∫
ΩI
s

𝛆𝐯𝐃𝐁J𝐔̂Jrdrdz + ∫
ΩI
s

𝛆𝐯𝐃̂(𝜙
J
T̂J − T

0
)rdrdz

+∫
J
s

𝐖I𝐍𝐃𝐁J𝐔̂Jrd + ∫
I
st

𝐖I𝐭rd − 𝛼 ∫
I
su

𝐖I𝚽J𝐔̂Jd

+ 𝛼 ∫
I
su

𝐖I𝐔d + ∫
ΩI
s

𝐖I𝐛rdrdz = ∫
ΩI
s

𝜌(r, z)𝐖I𝚽J

̈̂
𝐔J rdrdz

(28)

−∫
ΩI
s

𝐁I
v
𝐊̂𝐁T̂Jrdrdz + ∫

ΓIsq

rwI𝐍𝐪dΓ − ∫
ΓI
sh

wIh(𝜙J T̂J − T∞)dΓ

−𝛼 ∫
ΓI
sT

wI (𝜙J T̂J − T)dΓ + ∫
ΩI
s

wIg rdrdz = ∫
ΩI
s

𝜌(r, z)cp(r, z)w
I𝜙J ̇̂TJrdrdz



579Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2022) 46:573–598	

1 3

where MIJ, KIJ and FI are defined as follows:

and CIJ, KIJ and FI are defined as follows:

Numerical integration with Gauss–Legendre quadrature 
rule is used to calculate the integrations over Ωs

I. As seen in 
Fig. 1, depending on the position of the subdomain, the sub-
domains are chosen as circle, half of circle or quarter of circle. 
The subdomains of the nodes that are located on the edges are 
chosen as half circles, the subdomains of the nodes that are 
located on the corners are quarter of circles, and the other sub-
domains are circles. The radius of the subdomains is chosen 
so that the subdomains of nodes that are close to boundaries 
do not exceed the boundaries of global domain.

The two-dimensional integration over the circular subdo-
mains with radius Rs

I can be written as

(29)𝐌IJ
̈̂
𝐔J +𝐊IJ 𝐔̂J = 𝐅I

(30)���
̇̂
T�+��� T̂�= ��

(31)�IJ = ∫
ΩI

s

�(r, z)�I�J rdrdz

(32)

�IJ = ∫
ΩI

s

�v��Jrdrdz − ∫
I
s

�I���Jrd + � ∫
I
s

�I�Jd

(33)

�I = ∫
ΩI

s

���̂(𝜙
J
T̂J − T

0
)rdrdz + ∫

st

�I�rd

+ 𝛼 ∫
su

�I�d + ∫
Ωs

�rdrdz

(34)CIJ = ∫
ΩI

s

�(r, z)cp(r, z)w
I�Jrdrdz

(35)KIJ = ∫
ΩI

s

𝐁I
v
𝐊̂𝐁rdrdz + ∫

ΓI
sh

wh�JdΓ + � ∫
ΓI
sT

wI�JdΓ

(36)

FI = ∫
ΩI

s

wIg rdrdz + ∫
ΓI
sq

rwI��dΓ + ∫
ΓI
sh

wIhT∞dΓ + � ∫
ΓI
sT

wITdΓ

(37)

∫
ΩI

s

f (r, z)drdz =

2�

∫
0

RI
s

∫
0

f (�,�)�d�d� =

1

∫
−1

1

∫
−1

f (�, �)� det �ed�d�

where ρ and ϕ show the polar coordinates that are assigned 
to the center of circular subdomains Ωs

I, ξ = 2ρ/Rs
I-1 and η 

= ϕ/π−1 and det Je = (π) × (Rs
I/2) =    πRs

I/2. Now, accord-
ing to Gauss–Legendre quadrature rule, the integral can be 
obtained as Atkinson (1988) 

The Gauss–Legendre sample points for numerical integra-
tion over one of the circular subdomains with nρ = nϕ = 10 are 
presented in Fig. 2. As said before, the subdomains Ωs

I may 
have overlaps and the method doesn’t need background mesh 
to calculate the integrals. The integration on half circles and 
quarter of circles can be obtained with the same procedure, but 
in (37), integration for half circles and quarter of circles must 
be done on [0, π] and [0, π/2], respectively.

3 � MLS Procedure

A concise summary of moving least square (MLS) approxi-
mation is given here. Let u(x) be a function of a field vari-
able defined in the domain Ω. The approximation of u(x) 
at point x is denoted by uh(x). According to moving least 
square (MLS) approximation, the field function can be 
approximated as Atluri and Zhu (2000); Liu (2009):

(38)

1

∫
−1

1

∫
−1

g(�, �) det �ed�d� ≈

n�∑
i=1

n�∑
j=1

WiWjg(�i, �j) det �e

(39)u(�) = �T (�)�(�)∀� ∈ Ωx

0.9 1 1.1 1.2 1.3 1.4
0

0.1

0.2

0.3

0.4

0.5

r

z

Fig. 2   Gauss–Legendre sample points for numerical integration over 
circular subdomain
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where pT(x) is a complete monomial basis of order m and 
a(x) is a vector of coefficients that is function of space coor-
dinate. pT(x) can be expressed as

m is the number of terms of monomials (polynomial 
basis). In 2-D problems pT(x) express for m = 3 and m = 6 
as Liu (2009) 

in which x1 and x2 are the special coordinates. The coef-
ficient vector a(x) is determined by minimizing J(x), which 
is defined as Liu (2009) 

where wi(x) is the weight function of MLS approximation. 
a(x) is achieved by minimizing J(x), and a(x) is substituted 
to (39), and interpolation function is obtained as

The MLS shape function ϕi(x) is obtained as

where A is called the MLS moment matrix given by

and B is given by

Here it should be noted that ûi is the fictitious nodal val-
ues and ϕi(x) is usually called the shape function of the MLS 
approximation. The partial derivatives of ϕi(x) are obtained as

The spline weight function as defined in (49) is used in 
this study.

(40)�T (�) = [p1(�), p2(�), ..., pm(�)]

(41)�T (�) = [1, x1, x2] m = 3

(42)�T (�) = [1, x1, x2, (x1)2, x1x2, (x2)2] m = 6

(43)J(�) =

n∑
i

wi(�)[�
T (�i)a(�) − ûi]

2

(44)uh(�) =

n∑
i=1

𝜙i(�)ûi

(45)�i(�) =

m∑
j=1

pj(�)[�
−1(�)�(�)]ji

(46)� =

n∑
i

wi(�)�(��)�
T (��)

(47)� = [w1(�)�(��),w2(�)�(��),… ,wn(�)�(��)]

(48)�i,k =

m∑
j=1

[pj,k(�
−1�)ij + pj(�

−1�,k + �−1
k
�)ji]

(49)wi(�) =

{
−6(

di

ri
)2 + 8(

di

ri
)3 − 3(

di

ri
)4 0 ≤ di ≤ ri

0 di ≥ ri

where di=||x − xi
|| is the distance from node I which is located 

at point xi to point x, and ri is the size of the support for 
the weight function wi(x). More details can be found in 
Atluri and Zhu (2000); Liu (2009).

4 � Solution of Transient Problems

Two numerical integration methods are employed for transient 
solution of the governing equations of problem in (29) and 
(30). The Crank–Nicolson method and the Newmark method 
are used for time integration.

4.1 � The Crank–Nicolson Method

In this method, the second-order finite element equations in 
(29) must be written as the first-order equations in time as 
Eslami (2014)

To integrate Eq. (50) in the time domain, two states of � , 
separated by time increment Δt and denoted by �t and �t+Δt , 
are considered. According to the trapezoidal rule, �t and 
�t+Δt are related as

where 0 ≤ β ≤ 1 is a constant which may be selected by the 
analyst. Equation (50) is written at times t and t + Δt, and the 
first equation is multiplied by (1-β), and the second equation 
is multiplied by β to obtain the following equations

It is assumed that the matrices A and B are constant by 
time. These two equations are added, and Eq. (51) is used to 
eliminate the time derivatives of � . The resulting equation 
is solved for ��+�� , which yields Eslami (2014)

This equation is used to calculate the matrix X at the 
time t + Δt in terms of its value at time t. The stability of the 
solution algorithm depends on the numerical value of Δt, 
which is inversely proportional to the stability parameter β. 
Different values of β are associated with various numerical 
schemes. The value β = 0 provides the forward finite dif-
ference method, β=1 provides backward finite difference 
method, and the Crank–Nicolson, or trapezoidal rule, is 
associated with β = 1/2. More details about stability and 
accuracy of this method can be found in Eslami (2014).

(50)𝐀𝐱̇ + 𝐁𝐱 = 𝐅

(51)�t+Δt = �t + ((1 − 𝛽)�̇t + 𝛽�̇t+Δt)Δt

(52)(1 − �)(𝐀𝐱̇𝐭 + 𝐁𝐱𝐭) = (1 − �)𝐅𝐭

(53)𝛽(� �̇t+Δt + ��t+Δt) = 𝛽�t+Δt

(54)
(
1

Δt
� + ��)��+�� = (

1

Δt
� − (1 − �)�)�� + (1 − �)�� + ���+��
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4.2 � The Newmark Method

In the Newmark method, the matrix of velocity �̇ and dis-
placement � at time t +Δt are approximated as Eslami (2014) 

where the coefficients α and β are parameters which deter-
mine the accuracy and stability of the technique. The finite 
element equations for dynamic problems is written for time 
t + Δt as

Equation (56) is solved for 𝐱̈𝐭+Δt and the result are then 
substituted in Eq. (55) and an expression is obtained for 
�̇�+Δt . The two expressions which are obtained for �̇�+Δt and 
𝐱̈𝐭+Δt are substituted in Eq. (57) and the resulting expres-
sion is solved for ��+Δt and the following relation is obtained 
as Eslami (2014)

where

With the given initial values of �0 , �̇0 and 𝐱̈0 , the method 
can be used to march through the time. The method for 
α = 1/2 and β = 1/4 is called the average acceleration method.

5 � Functionally Graded Material

In the functionally graded materials (FGMs), the material 
properties change continuously between two or more mate-
rial properties. The 2D-FGMs are usually made by continu-
ous gradation of three or four distinct material phases such 
as ceramics or metals. The volume fractions of the constitu-
ents vary in a predetermined composition profile.

In this study, it is supposed that the material properties 
of the cylinder are axi-symmetric, and are 2D FG in radial 
and axial directions. The inner surface of the cylinder is 
made of two ceramic which is denoted by c1 and c2, and 
the outer surface is made of two metals denoted by m1 and 
m2. The bottom of inner surface of cylinder is pure c1, and 

(55)𝐱̇𝐭+Δt = 𝐱̇𝐭 + [(1 + 𝛼)𝐱̈t + 𝛼𝐱̈𝐭+Δt]Δt

(56)𝐱𝐭+Δt = 𝐱𝐭 + 𝐱̇𝐭Δt + [(
1

2
− 𝛽)𝐱̈𝐭 + 𝛽𝐱̈𝐭+Δt](Δt)

2

(57)𝐌𝐱̈t+Δt + 𝐂 𝐱̇t+Δt +𝐊𝐱t+Δt = 𝐅t+Δt

(58)�̂��+Δt = �̂

(59)�̂ = � +
𝛼

𝛽(Δt)
� + (

1

𝛽(Δt)2
)�

(60)

𝐅̂ =𝐅t+Δt +𝐌(
1

𝛽Δt2
𝐱t +

1

𝛽Δt
𝐱̇t + (

1

2𝛽
− 1)𝐱̈t)

+ 𝐂(
𝛼

𝛽Δt
𝐱t + (

𝛼

𝛽
− 1)𝐱̇t + Δt(

𝛼

2𝛽
− 1)𝐱̈t)

the top of the inner surface is pure c2. Also the bottom of 
outer surface is pure m1, and the top of outer surface is pure 
m2. Now consider the volume fractions of axi-symmetric 
2D-FGM cylinder of internal radius Ri, external radius Ro, 
and finite length L as shown in Fig. 3 changes continuously 
in two direction as.

where nr and nz are parameters that represent the power 
exponent of volume fraction distributions in r and z direc-
tions. For example, the volume fraction of the first ceramic 
material is Vc1(r = Ri, z = 0) = 1 and the volume fraction 
changes continuously to Vc1(r = Ro, z = 0) = Vc1(r = Ri, 
z = L) = Vc1(r = Ro, z = L) = 0. The volume fractions of the 
other materials change in two direction. In the special cases, 
nz = 0 and nr ≠ 0 represent 1D FG cylinder where inner sur-
face is c2 and outer surface is m2, nz ≠ 0 and nr = 0 represents 
1D axial FG cylinder where bottom surface is m1 and top 
surface is m2, and nr = nz = 0 represents homogeneous m2 
cylinder. According to the rule of mixture, a material prop-
erty, P, at any arbitrary point (r, z) in the 2D-FGM cylinder 
is determined linear combination of volume fractions and 
material properties of the basic materials as.

(61)Vc1(r, z) = (1 − (
r − Ri

Ro − Ri

)nr )(1 − (
z

L
)nz)

(62)Vc2(r, z) = (1 − (
r − Ri

Ro − Ri

)nr )(
z

L
)nz

(63)Vm1(r, z) = (
r − Ri

Ro − Ri

)nr (1 − (
z

L
)nz)

(64)Vm2(r, z) = (
r − Ri

Ro − Ri

)nr (
z

L
)nz

Fig. 3   Two-dimensional distribution of material properties in the 
2D-FG cylinder—module of elasticity
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The distribution of a material parameter (module of 
elasticity) in the r-z section of 2D-FG cylinder is shown 
in Fig. 3.

6 � Numerical Results and Discussion

The numerical results are presented for response of FG 
cylinder subjected to mechanical and thermal loading. The 
thermo-mechanical properties of basic constituents of the 
2D-FGM cylinder are presented in Table 1.

It should be noted that Poisson’s ratio is assumed to be 
constant through the body. This assumption is reasonable 
because of the small differences between the Poisson’s 
ratios of basic materials. The variation of a material prop-
erty such as heat conduction coefficient is considered as 
Eq. (65). In this study, the penalty parameter is chosen as 
Em1 × 108. At first, the convergence and accuracy of the 
numerical results are investigated.

6.1 � Convergence Study

The convergence of numerical results of present meshless 
method by increasing the number of nodes is studied in 
this section. To this aim, a homogeneous cylinder with 

(65)P = Pc1Vc1 + Pc2Vc2 + Pm1Vm1 + Pm2Vm2
Ri = 0.5, Ro = 1.5 and L = 1 is considered. The inner surface 
of the cylinder is subjected to constant pressure Pi and the 
outer surface is stress-free. Analytical solution is available 
for long and homogeneous cylinder subjected to uniform 
internal pressure in the plane strain condition Sadd (2009). 
In the meshless solution, the boundary conditions on the 
top and bottom edges of the cylinder are considered in 
such a way that its behavior is similar to a long cylinder 
i.e. uz(r, z = 0) = uz(r, z = L) = 0. The inner surface of the 
cylinder is subjected to pressure Pi = 1 MPa. The nodes 
are distributed uniformly in the solution domain in square 
array. The convergence of the radial stress σr at the mid-
point of the cylinder wall i.e. (r = (Ri + Ro)/2, z = L/2) by 
increasing the number of nodes is shown in Fig. 4. The 
analytical value of the stress at this point is shown in this 
figure. As seen in Fig. 4, the predicted values of σr con-
verge to the analytical value of stress by increasing the 
number of nodes. For the number of nodes greater than 
13 × 13 = 169 nodes, the stress converged to the analytical 
value. 

The number of nodes, the size of subdomains Ωs
I and 

the size of support domain in the MLS approximation (ri 
in Eq. (49)) influence the numerical results of the mesh-
less formulation.

In the construction of shape function with MLS approxi-
mation, ri (see Eq. (49)) is a parameter that must be cho-
sen in the solution procedure. In this study, ri is chosen as 
ri = αs × di, where di is the distance of node I to the nearest 
neighborhood node. Also, the subdomains Ωs

I are chosen as 

Table 1   Mechanical properties 
of basic constituents of the 
2D-FGM cylinder

Constituents Material E (GPa) α(106/K) ρ(kg/m3) K (W/m K) cp (J/kg K)

m1 (metal) Ti6Al4V 115 23 4506 6 610
m2 (metal) Al1100 69 8 2710 220 917
c1 (Ceramic) SiC 440 4.3 3210 100 710
c2 (Ceramic) SiO2 150 3 2650 1.3 745

Fig.4   Convergence of radial 
stress at point r = (Ri + Ro)/2, 
z = L/2 by increasing the num-
ber of nodes
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circles around node I with radius Rs
I = βs × di, where αs and 

βs are parameters that control the size of supports domain 
and subdomains. The effect of αs and βs on the predictions of 
the present method is studied in Table 2. The radial stress σr 
and SR=σr Meshless/σr Analytic at point (r = (Ri + Ro)/2, z = L/2) 
are presented in Table 2, and the effect of αs and βs on the 
predictions of the meshless method is investigated. The 
results are presented for grid of 13 × 13 nodes. The predic-
tion of analytical method at this point is σr = -0.2593Pi. It is 
seen in Table 2 that for 4.5 ≤ αs ≤ 5.5 and 1 ≤ βs ≤ 2 the agree-
ment between predictions of present method and analytical 
method increases.

6.2 � Comparison of Results

At first, the predictions of present study are compared with 
the predictions of analytical solution for homogeneous cyl-
inder. Analytical solution is available for stress distribu-
tion in long cylinder in the plane strain conditions which 
is subjected to uniform internal and external pressure and 
steady state radial temperature distribution (Sadd 2009). 
In the meshless solution, the boundary conditions of the 

cylinder are considered in such a way that it is similar to a 
long cylinder i.e. uz(r, z = 0) = uz(r, z = L) = 0, and uniform 
internal pressure Pi is applied to inner side of the cylinder. 
The dimensions of the cylinder are considered as Ri = 1 m, 
Ro = 1.5 m and L = 0.5 m.

The distribution of radial stress σr and hoop stress σθ 
through the thickness of the homogeneous aluminum cyl-
inder at z = 0.5L which is subjected to internal pressure are 
presented in Fig. 5, and compared with the results of analyti-
cal solution. Also the distribution of thermal stress σθ and 
σr in the cylinder which is subjected to thermal loading is 
presented in Fig. 6. The inner surface of the cylinder is kept 
at Ti = 100 °C, and the outer surface is kept at To = 25 °C, 
and the stress-free initial temperature of the cylinder is con-
sidered as T0 = 25 °C. As seen, there are good agreements 
between the predictions of present meshless solution and the 
predictions of analytical solution for mechanical and thermal 
loading.

Also, the predictions of present method are compared 
with the predictions of analytical solution for long and 
radially FG cylinder reported by Jabbari et al. (2002). 
They presented an analytical solution for long radially 

Table 2   Effect of αs and βs on the prediction of the meshless formulation

αs = 1.5 αs = 2 αs = 3 αs = 4 αs = 4.5 αs = 4.88 αs = 5 αs = 5.25 αs = 6 αs = 7

βs = 0.5 σr/Pi −0.3361 −0.2613 −0.2588 −0.2584 −0.2623 −0.2636 −0.2604 −0.2606 −0.2656 −0.2581
SR 1.2965 1.0078 0.9983 0.9966 1.0116 1.0169 1.0043 1.0051 1.0246 0.9956

βs = 1 σr/Pi −0.2699 −0.2638 −0.2605 −0.2586 −0.2609 −0.2605 −0.2600 −0.2594 −0.2619 −0.2592
SR 1.0411 1.0175 1.0047 0.9973 1.0063 1.0047 1.0029 1.0007 1.0103 0.9998

βs = 1.5 σr/Pi −0.2691 −0.2627 −0.2609 −0.2589 −0.2606 −0.2603 −0.2600 −0.2597 −0.2616 −0.2592
SR 1.0381 1.0134 1.0064 0.9985 1.0053 1.0039 1.0027 1.0015 1.0092 0.9997

βs = 2 σr/Pi −0.2696 −0.2606 −0.2603 −0.2582 −0.2602 −0.2601 −0.2599 −0.2596 −0.2615 −0.2591
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SR 1.0205 1.0303 0.9708 1.0165 0.9884 1.0245 1.0076 1.0022 1.0069 0.9988

Fig. 5   Distribution of σθ and 
σr in the cylinder subjected to 
internal pressure—comparison 
of results
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Fig. 6   Distribution of σθ and σr 
in aluminum cylinder subjected 
to thermal loading—compari-
son of results
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Fig. 7   Comparison of predic-
tions of present method and 
analytical method for distribu-
tion of σr at z = L/2

Fig. 8   Comparison of predic-
tions of present method and 
analytical method for distribu-
tion of σθ at z = L/2
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FG cylinder which is subjected to internal pressure, and 
1D steady state temperature distribution in radial direc-
tion. The geometrical and mechanical properties of the 
inner surface of cylinder are chosen the same as  Jab-
bari et  al. (2002), Ri = 1  m, Ro = 1.2  m, Ei = 200GPa, 
αi = 1.2 × 10–6/°C, and ν = 0.3. The distribution of radial 
stress σr and hoop stress σθ through the cylinder thickness 
is shown in Figs. 7,  8, and compared with the prediction 
of analytical solution (Jabbari et al. 2002). In these figures, 
m is the power law index of FG material. The cylinder is 
subjected to the loading conditions as T(Ri) = Ti = 10 °C 
and T(Ro) = 0 °C and P(Ri) = Pi = 50 MPa, P(Ro) = 0. 

The steady state temperature distribution in the cylinder 
thickness, whose inner surface is kept at Ti = 10˚C and 
outer surface is kept at To = 0 °C, is provided in Fig. 9 for 
m = 2 and m = −2. As it is observed, there is very good 
agreement between the predictions of MLPG method and 
analytical solution (Jabbari et al. 2002). Figures 5, 6, 7, 
8, 9 show there are good agreements between the predic-
tions of present method and predictions of analytical solu-
tions. It is concluded that the present method is accurate 

for prediction of the thermo-mechanical response of FG 
cylinders.

6.3 � Transient Mechanical Loading of FGM Cylinder

In the transient loading, the cylinder is subjected to time-
dependent internal pressure as (66). The internal pressure is 
assumed to be zero at t = 0, and increases exponentially as a 
function of time to its final value Pi as

where tf is a time parameter which controls the rate 
of increasing the pressure. The increasing rate of the 
applied pressure decreases by increasing tf. At t = 4tf, 
the applied pressure is 98.17% of the final value, i.e., 
P(t = 4tf) = 0.9817Pi. The pressure–time diagram for tf = 20T1 
and tf = 40T1 is given in Fig. 10, where T1 = 2π/ω1 is the time 
period of first nonzero natural frequency of the cylinder.

(66)P(t) = Pi(1 − exp(−
t

tf
))

Fig. 9   Comparison of predic-
tions of present method and 
analytical method for distribu-
tion of temperature at z = L/2
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Fig. 10   Time history of applied 
internal pressure of cylinder for 
two different values of tf
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The mechanical properties of basic constituents of the 
2D-FGM cylinder are considered according to Table 1, and 
the Poisson’s ratio is taken to be 0.3. The dimensions of the 
cylinder are considered as; Ri = 1 m, Ro = 1.5 m and L = 1 m, 
and the edge of the cylinder at z = 0 and z = L are free. The 
first four axi-symmetric natural frequency of the cylin-
der for nr = 1 and nz = 0 are ω1 = 746.1 Hz, ω2 = 832.5 Hz, 
ω3 = 2185.5 Hz, and ω4 = 3260.1 Hz. The corresponding 
mode shapes are presented in Fig. 11.

The response of the cylinder due to the applied tran-
sient pressure is studied in this section. In order to verify 
the accuracy of time integration, the time integration of 
equations is done by the Crank–Nicolson and Newmark 
method, and the results are compared. The cylinder is 

subjected to internal pressure with tf = 0.5T1 and tf = 5T1 
(T1 = 2π/ω1 = 1/746.1 = 1.3403 ms is the time period of first 
natural frequency), and the transient response of the cylin-
der which is obtained by Newmark and Crank–Nicholson 
method is compared. In the Nicolson method, β is taken 
as β = 0.50005 and in the Newmark method α and β are 
chosen as α = 0.5 and β = 0.25, and the time step is chosen 
Δt = T1/14.

The time history of the radial displacement at the inner 
surface of the cylinder at z = 0.5L is presented in Fig. 12 for 
tf = 0.5T1 and tf = 5T1. It is observed that the predictions of 
Crank–Nicolson method and Newmark method are in very 
close agreement. The accuracy of time integration is verified 

nr=1, nz=0, ω1=746.1Hz nr=1, nz=0, ω2=832.5Hz nr=1, nz=0, ω3=2185.5Hz 

nr=nz=1, ω1=852.9Hz nr=nz=1, ω2=1037.8Hz nr=nz=1, ω3=2502.2Hz 
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Fig. 11   Mode shapes of the FG cylinder for nr = 1, nz = 0 and nr = nz = 1
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Fig. 12   Comparison of the 
results of Crank–Nicolson and 
Newmark method at (r = Ri, 
z = 0.5L) of FG cylinder, nr = 1, 
nz = 0, Δt = T1/14
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Fig. 13   Effect of loading rate on 
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by comparison of results of two methods in Fig. 12. The 
dimensionless displacement is defined as u* = uEm2/RiPi.

To study the effect of loading rate on the response of 
the cylinder, the cylinder is subjected to internal pressure 

with tf = T1, tf = 2T1, tf = 10T1 and tf = 50T1 and the effect 
of loading rate on the response of the cylinder is stud-
ied. The radial displacement at (r = Ri, z = L/2) for (nr = 1, 
nz = 0) and (nr = 1, nz = 1) is presented in Fig. 13. It is seen 

Fig. 14   Effect of power law 
index nr and nz on the response 
of 2D-FG cylinder, tf = T1
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Fig. 15   Transient radial stress 
in the thickness of cylinder at 
z = L/2, (nr = 1, nz = 0, tf = 2T1)
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Fig. 16   Transient radial stress in 
the thickness of FG cylinder at 
z = L/2, (nr = 1, nz = 0, tf = 2T1)
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in Fig. 12 and Fig. 13 that for very rapid loading rate in 
which tf is comparable with T1, i.e. tf = 0.5T1, tf = T1 and 
tf = 2T1, tf = 5T1, the response of the cylinder is oscillatory, 
and the amplitude of oscillation is considerable. As seen in 
Fig. 13, the amplitude of oscillation for tf = 10T1 is small, 
and the amplitude of oscillation for tf = 50T1 is very small 
and can be ignored. It is seen that the load increasing rate 
significantly affects the transient response of the cylinder. 
When the loading rate of the cylinder is very fast, so that 
tf is comparable with T1, it makes the natural frequencies 
of the cylinder to be excited and oscillatory response is 
observed. For tf >  > T1, such as tf = 50T1, the loading can 
be considered as quasi static and the natural frequencies of 
the cylinder are not exited. As seen in Fig. 12 and Fig. 13a, 
the oscillation frequency of displacements is constant in 
these figures, but in Fig. 13b, at least two frequencies are 
seen in the time response of the cylinder. In the 2D-FG 
cylinder with nr = nz = 1, due to non-symmetric material 
properties, more than one frequency is seen in the time 
response of the cylinder.

The time response of 2D-FG cylinder for various val-
ues of nr and nz is presented in Fig. 14. For all values 
of nr and nz which are presented in Fig. 14, the distribu-
tion of mechanical properties is 2D in the rz plane, and at 
least two frequencies are seen in the time response of the 
cylinder.

The hoop stress and radial stress at various thickness 
of the FG cylinder (nr = 1, nz = 0) for tf = 2T1 are shown in 
Fig. 15 and Fig. 16. Rm = (Ri + Ro)/2 is the mean radius of 
the cylinder, and R1 = (Ri + Rm)/2 and R2 = (Rm + Ro)/2. As 
seen the mean value of hoop stress increases monotonically, 
but σθ have an oscillatory part with frequency ω1. Although 
the time history of displacement at the inner surface of the 
cylinder in Fig. 13 is oscillatory, it is seen in Fig. 16 that 
as expected, the predicted radial stress at the inner surface 
is not oscillatory and is equal to the applied internal pres-
sure, and the radial stress at the traction free outer surface 
of the cylinder at r = Ro vanishes. The radial stress in the 
cylinder wall has an oscillatory part. The bullet circles in 
the next figures show the steady state values of stress which 

Fig. 17   Transient radial stress 
σr(t) in the thickness of the FG 
cylinder (nr = 1, nz = 0, tf = 50T1)
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Fig. 18   Transient hoop stress 
σθ (t) in the thickness of the FG 
cylinder (nr = 1, nz = 0, tf = 50T1)
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Fig. 19   Transient axial stress 
σz(t) in the thickness of the FG 
cylinder (nr = 1, nz = 0, tf = 50T1)
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Fig. 20   Transient hoop stress 
σθ (t) in the 2D-FG cylinder 
(nz = nr = 1, tf = 2T1)
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Fig. 21   Transient radial stress 
σr(t) in the 2D-FG cylinder 
(nz = nr = 1, tf = 2T1)
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are obtained by static solution of the problem at the final 
pressure P(t) = Pi. As seen at t >  > tf, the mean value of hoop 
stress and radial stress is equal to the value of static solution 
which is shown by bullet circles in the figures.

The radial stress σr, hoop stress σθ and axial stress σz in 
the FG cylinder (nr = 1, nz = 0) for tf = 50T1 are shown in 
Figs. 17, 18 and  19. As seen for tf >  > T1, i.e. tf = 50T1, 
there is no oscillation in the transient response of the cyl-
inder. As seen, the stresses start from zero and increase 
monotonically. The final value of transient solution is 
equal to the value of static steady state solution at final 
pressure P = Pi.

The response of 2D-FG cylinder with nr = nz = 1 is 
studied in the next figures. The mode shapes and natural 
frequency of the cylinder are shown in Fig. 11. In this 
cylinder, the material properties are not uniform through 
the length of the cylinder. The radial stress and hoop stress 
in the cylinder which is subjected to internal pressure 

with tf = 2T1 are presented in Figs. 20 and 21. As seen 
in Fig. 20, due to non-uniform material properties in the 
axial direction, more than one oscillation frequency is 
seen in the response of the cylinder. The time history of 
radial stress at the bottom, center and top of the cylinder 
at r = Rm are shown in Fig. 22.

6.3.1 � Thermal Loading of FGM Cylinder

Transient temperature and thermal stress in the FG cyl-
inder are studied in this section. A thick hollow cylinder 
of inner radius Ri = 0.1 m, outer radius Ro = 0.15 m, and 
length L = 0.1 m, which is subjected to thermal loading is 
considered.

At first, the accuracy of present method for prediction 
of temperature distribution in the cylinder is studied. For 
this aim, the inner surface of the cylinder is subjected to 
Ti = 100 °C, the outer surface is subjected to To = 25 °C, 

Fig. 22   Transient radial stress 
σr(t) in the 2D-FG cylinder at 
z = L/4, z = L/2 and z = 3L/4, 
(nz = nr = 1, tf = 2T1)
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6.3.2 � Transient Temperature

To study the transient temperature, 2D-FG cylinder with 
nr = nz = 1 with initial steady state and stress-free tempera-
ture T0 = 25 °C is considered. The temperature in the inside 
of the cylinder suddenly increases to TI∞ = 100 °C, and the 
following convection conditions are considered. The ambi-
ent temperature is TB∞ = TT∞ = To∞ = 25 °C, and the con-
vection coefficients are considered as hB = hT = hO = 10 W/
m2K and hI = 100 W/m2K, where subscripts B, T, I and O 
represent the bottom, top, inner and outer sides of the cylin-
der. The transient temperature and transient thermal stress in 
the cylinder are studied. The transient temperature in some 
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Fig. 24   Contour plots of steady-state temperature distribution for various nr and nz

and the top and bottom surface of the cylinder are isolated. 
The steady state temperature distribution through the thick-
ness of the cylinder at z = L/2 is shown in Fig. 23 for (nr = 0, 
nz = 0) and (nr = 1 nz = 0). As seen, there is good agreement 
between the predictions of present method and analytical 
steady state solution for temperature distribution.

The contour plots for distribution of temperature in the 
thickness of FG cylinder for various values of nr and nz are 
presented in Fig. 24. As seen in Fig. 24, for nz = 0 the tem-
perature is uniform in the length of the cylinder, and for 
nz ≠ 0, the temperature gradient is seen through the length 
of the cylinder.
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points of the cylinder at inner surface Ri, outer surface Ro 
and mid-radius Rm of the cylinder at z = L/2 and z = 0 are 
shown in Fig. 25. The time step of numerical integration 
is chosen as Δt = 5 s. The circle bullets show the steady 
state temperature which is obtained from the steady state 
solution of the problem. As seen, the temperature of the 
cylinder increases and gets the final steady state value after 
about 1016 s. In order to show the temperature distribution 
pattern, the contours of temperature distribution at t = 100 s 
and t = 1016 s are shown in Fig. 26.

7 � Transient Thermal Stress

The transient thermal stress in the cylinder due to the tran-
sient temperature distribution is studied in the following. 
The axial displacement on the top and bottom surface of 
the cylinder is restricted as uz(r,0) = uz(r, L) = 0. The radial 
displacement of inner surface of the cylinder at different 

Fig. 25   Transient temperature 
at some points of the 2D-FG 
cylinder nr = nz = 1
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Fig. 26   Contour plots of transient temperature distribution in the 
2D-FG cylinder at t = 100 s and t = 1016 s, nr = nz = 1

Fig. 27   Distribution of radial 
displacement of inner surface 
of the cylinder at various times, 
nr = nz = 1
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times is shown in Fig. 27. Although the boundary condi-
tions of cylinder and the loading are symmetric with respect 
to z = L/2, the displacement is not symmetric. As seen in 
Fig. 27, the transient displacement of inside surface of 

2D-FG cylinder gets its final value equal to the steady state 
solution.

The transient thermal stresses at some nodes of the cyl-
inder are shown in Figs. 28, 29 and 30. The time history of 
radial thermal stress σr at z = L/4 and z = L/2 is presented 

Fig. 28   Transient radial thermal 
stress σr in the 2D-FG cylinder, 
nr = nz = 1
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Fig. 29   Transient hoop thermal 
stress σθ in the 2D-FG cylinder, 
nr = nz = 1
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Fig. 30   Transient axial thermal 
stress σz in the 2D-FG cylinder, 
nr = nz = 1
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in Fig. 28. As seen, the radial thermal stress at traction 
free outer surface of the cylinder vanishes at all times. The 
hoop thermal stress σθ and axial thermal stress σz are pre-
sented in Fig. 29 and Fig. 30. The hoop stress is tensile at 
Ri and is compressive at Rm and Ro, and σz is compressive 

in the mentioned points. The thermal stresses increase to 
the final steady state values. It should be noticed that the 
results of the steady state solution are shown by circle in 
these figures.

The contour plots of radial and hoop thermal stress dis-
tribution at t = 100 s and t = 1016 s are shown in Fig. 31. 
The stress distribution in the cylinder with nr = 1, nz = 0 in 
which the bottom surface is restricted in the axial direc-
tion, i.e. uz(r, z = 0) = 0, and the top surface is free is stud-
ied in Figs. 32, 33 and 34. The contours of thermal stresses 
in the steady state conditions are presented in Fig. 35.

8 � Conclusion

The commercial finite element software cannot systemati-
cally model the functional graded material, especially the 
2D-FGMs. For this purpose, a meshless formulation is 
presented for 2D-functionally graded cylinders which are 
subjected to time-dependent mechanical and thermal load-
ing conditions. The equilibrium equation of elasticity and 
equation of heat conduction are written in the weak form, 
and a meshless formulation is developed to discretize the 
transient governing equations to a system of linear differ-
ential equations in time domain. The Crank–Nikolson and 
Newmark time integration methods are employed for time 
integration of the equations. The transient response of the 
cylinder subjected to mechanical and thermal loading is 
studied, and the effects of parameters on the response of 
cylinder are investigated. The disadvantages of finite ele-
ment method in solution of the same problems, including 
the discontinuity of derivatives of shape function at the 
boundary of elements, its need to mesh of elements and the 
difficulties to create shape functions with high degree of 
continuity in finite element method are eliminated in this 
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Fig. 31   Contour plots of stress distribution in 2D-FG cylinder 
(nr = nz = 1) at t = 100 s and t = 1016 s

Fig. 32   Transient radial thermal 
stress σr in the FG cylinder, 
nr = 1, nz = 0
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formulation. It is observed that the proposed formulation is 
an effective and efficient method for analyzing thick cylin-
ders with desired functionally graded material properties. 

In the numerical results, the effect of mechanical param-
eters such as loading rate, boundary conditions and FG 
power index on the transient stress and displacement is 

Fig. 33   Transient hoop thermal 
stress σθ in the FG cylinder, 
nr = 1, nz = 0
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Fig. 34   Transient axial thermal 
stress σz in the FG cylinder, 
nr = 1, nz = 0
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Fig. 35   Contour plots of steady state stress distribution in FG cylinder, nr = 1, nz = 0
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investigated. It is seen that transient loading with high rate 
excited the natural frequencies of the cylinder.
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