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Abstract
This paper presents the analytical approach to investigate the nonlinear forced vibration and dynamic buckling of the vari-
able thickness functionally graded cylindrical shells subjected to mechanical load. The nonlinear motion equations of FGM 
cylindrical shell with variable thickness based on classical shell theory and von Kármán geometric nonlinearity are derived. 
The Galerkin method and the fourth-order Runge–Kutta method are applied to solve the governing equations of dynamic 
system. The effects of material (coefficient k) and geometric parameters on the nonlinear forced vibration and dynamic 
buckling behavior of the FG shell with variable thickness are examined in detail.

Keywords Nonlinear forced vibration · Dynamic buckling · Variable thickness · FGM cylindrical shell · Dynamic 
responses

1 Introduction

Structures made of the FG material are special structures and 
widely used in life such as construction industry, mechanical 
structures, air transport or a nuclear reactor. Variable thick-
ness FGM shell helps to reduce the weight of structure and 
saves materials while ensuring load capacity; therefore, it is 
more and more popularly used in important industries. Study 
on nonlinear vibration and stability of FGM shell with vari-
able thickness is necessary to make sure the structure works 
efficiently and reliably.

The nonlinear vibration and dynamic stability of FGM 
shell structure have been analyzed by several scientists. 
For instance, Loy et al. (1999, 2000) studied the natural 
frequencies of FG cylindrical shell subjected to mechani-
cal load. Some influences of factors on natural frequencies 
of the structure were also examined. Sofiyev et al. (2003, 
2013) presented nonlinear dynamic buckling analysis of 

FGM cylindrical and truncated conical shell subjected to 
impulsive and axial compressive load by using analytical 
method based on Love’s shell theory. Haddadpour et al. 
(2007), based on the Love shell theory and Galerkin method, 
investigated the free vibration of simply supported FGM 
circular cylinder shell with four different boundary condi-
tions, and the nonlinear geometries of von Karman were 
taken into account. Matsunaga (2009) presented the vibra-
tion and stability analysis of FGM circular cylinder shell 
subjected to mechanical load based on the two-dimensional 
higher-order shear deformation theory (HSDT). Hamil-
ton’s principle and power series expansion method were 
used to build the governing equation in this work. Bich and 
Nguyen (2012) based on improved Donnell shell theory 
and Volmir’s assumption to analyze the nonlinear vibra-
tion of FGM cylindrical shell subjected to mechanical load. 
The Galerkin method and the fourth-order Runge–Kutta 
method were employed to survey influences of FG mate-
rial features, pre-loaded axial compression and dimensional 
ratios on the dynamical response of shells. Also based on 
the same theory, Avramov (2011) used the Galerkin method 
and harmonic balance method to study nonlinear vibration 
and stability of simply supported FGM cylindrical shells. 
Duc et al. (2014, 2015, 2014, 2015, 2016) studied nonlin-
ear vibration, buckling and post-buckling of eccentrically 
stiffened S-FGM circular cylindrical shells surrounded by 
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elastic foundations subjected to mechanical load in thermal 
environments. The Lekhnitsky’s smeared stiffener technique, 
the stress function and Galerkin method are employed to 
solve these problems. Wann (2015,) based on the first-order 
shear deformation theory (FSDT), Rayleigh Ritz method 
and variational approach, investigated the free vibration of 
FGM cylinder shells resting on the Pasternak elastic medium 
by using the analytical method. Malekzadeh et al. (2013) 
investigated the free vibration of rotating FGM truncated 
conical shells subjected to mechanical load with various 
boundary conditions. Dynamic equilibrium equations and 
motion equations of the shell were derived according to the 
FSDT. Nonlinear dynamic problems of imperfect double-
curved shallow shells made of FGM and surrounded by elas-
tic foundations have been solved by Duc et al. (2013, 2016). 
In this study, natural frequencies of the structures are calcu-
lated by using shear deformation shell theories, the Galer-
kin method and the fourth-order Runge–Kutta method. Also 
by using analytical method, nonlinear dynamics problem 
of cylindrical panels made of FGM and S-FGM has been 
solved by Quan et al. (2014, 2015). Alibeigloo et al. (2017) 
replied on elastic theories and differential quadrature method 
(DQM) to study the free vibration of simply supported sand-
wich FGM cylindrical shells. Using an analytical approach, 
Thanh et al. (2019) solved the nonlinear dynamic problems 
of imperfect FGM reinforced by carbon nanotube by using 
the Reddy’s FSDT, the Galerkin method and the fourth-order 
Runge–Kutta method. Also using analytical method, Phu 
et al. (2017, 2019) studied the nonlinear vibration of sand-
wich FGM and stiffened sandwich FGM cylindrical shell 
filled with fluid subjected to mechanical loads in thermal 
environment. The classical shell theory with geometrical 
nonlinearity in von Karman–Donnell sense and smeared 
stiffener technique were used to define motion equations 
of structure. Natural frequencies and dynamic responses 
of the shell were determined by using Galerkin’s method 
and Runge–Kutta method. By using the same approach, Dat 
et al. (2019) studied the nonlinear vibration of FGM ellipti-
cal cylindrical shells reinforced by carbon nanotube rest-
ing on elastic foundation subjected to thermal–mechanical 
load. Han et al. (2018) predicted free vibration of FGM thin 
cylinder shells filled inside with pressurized fluid based on 
Flügge shell theory. In governing equations, internal static 
pressure was regarded as the pre-stress term. On dynamic 
stability analysis of FGM shell, Huang et al. (2008, 2010a; 
b) solved nonlinear dynamic buckling problems of FGM 
cylindrical shells subjected to mechanical load based on 
Donnell shell theory and large deflection theory. Nonlinear 
dynamic responses of structure were obtained by applying 
energy method and the four-order Runge–Kutta method. The 
critical loads were determined according to Budiansky–Roth 
criterion. By the same method, Dung et al. (2015, 2017) 
focused on solving nonlinear dynamic buckling problems of 

stiffened FGM thin cylindrical shells surrounded by elastic 
foundations subjected to mechanical load in thermal envi-
ronments. Recently, Zhang et al. (2019) focused on solving 
on dynamic buckling of FGM cylindrical shells under ther-
mal shock based on the Hamiltonian principle. Nonlinear 
torsional buckling problems of sandwich FGM cylindrical 
shells with spiral stiffeners under torsion and thermal loads 
were solved by Nam et al. (2019).

Recently, there are some scientists interested in static and 
dynamic problems of variable thickness FGM cylindrical shell; 
for example, Sofiyev AH et al. (2002) analyzed dynamic buck-
ling of variable thickness elastic cylindrical shell subjected to 
external pressure. The critical static and dynamics loads of 
the structure were found by using Galerkin’s method and Ritz 
method. Ghannad et al. (2017, 2019) solved thermo-elastic 
problems of FGM cylindrical shells with variable thickness 
subjected to thermal–mechanical loads based on shear defor-
mation theories. The distribution of displacement and stress in 
axial and radial direction were determined by using matched 
asymptotic method and finite element method (FEM). Selah 
et al. (2014) studied the mechanical responses of the variable 
thickness FGM truncated conical shell under asymmetric pres-
sure using three dimensions elasticity theory and DQM. Using 
a semi-analytical approach based on the HSDT and multi-layer 
method, Jabbari and his co-workers examined thermo-elastic 
responses of FGM thick cylindrical Shell (2015) and truncated 
conical shell (2016) with the variable thickness subjected to 
thermal–mechanical load. Also, Kashkoli et al. (2018) studied 
the thermo-mechanical creep of thick variable thickness FGM-
cylindrical pressure vessel under thermal–mechanical load. 
Shariyat et al. (2017) presented an investigation of the stresses 
and displacements of the variable thickness FGM cylindrical 
and truncated conical shells with different boundary conditions 
by using the FSDT. By using the Generalized DQM, the free 
vibration problems of singly-curved and doubly curved lami-
nated composite shells with variable thickness were solved by 
Bacciocchi et al. (2016). Shariyat and Asgari (2013) used FEM 
replied on the third-order shear deformation theory and modi-
fied Budiansky’s criterion to present an analysis for thermal 
buckling and post-buckling of imperfect cylindrical shells with 
variable thickness made of bidirectional FGM.

According to the above reviews and the best author’s 
knowledge, the nonlinear forced vibration and dynamic 
buckling behavior of variable thickness FGM cylindrical 
shells subjected to mechanical load are investigated for 
the first time. In the present article, by using the analyti-
cal approach based on the classical shell theory and von 
Kármán geometric nonlinearity, the governing equation of 
the variable thickness FGM cylindrical shell is derived. The 
obtained results of the present study are compared with other 
published works to demonstrate the accuracy and reliability 
of the present proposed method. Furthermore, the effects 
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of the material, geometric parameters on responses of the 
structure are examined in detail.

2  Governing Equations

Consider a variable thickness FGM cylindrical shell with the 
length L and the radius R subjected to uniform external pres-
sure q(t) and axial compression load p(t) (Fig. 1). Assume 
that the radius of shell are much larger than the thickness 
(R >  > h), thickness of the shell h can be determined as: 
h(x) = ax + b.

in which  a = (h1-h0)/L; b = h0.
The effective properties of material can be expressed as 

follows:

in which Pm and Pc are material and ceramic properties, Vc 
and Vm are volume fractions of ceramic and metal constitu-
ent, respectively, and are related by Vc + Vm = 1.

Ceramic volume fractions in the structure are distributed 
as following law:

Poisson’s ratio is assumed to be constant (ν = constant).
According to the classical shell theory (Brush et al. 1975, Duc 

ND 2014) the strain–displacement relationship of the shells:

in which

(1)P(z) = Pm ⋅ Vm(z) + Pc ⋅ Vc(z) = Pm +
(
Pc − Pm

)
Vc(z)

(2)Vc(z) =

(
1

2
+

z

h(x)

)k

(3)�ij = �0
ij
+ zkij with (i j = xx, yy, xy)

(4)
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Applying Hooke’s law for the FGM shell subjected to 
mechanical load:

Integrating Stress–Strain relationship through the thick-
ness of the shell, we obtain the governing equations of the 
variable thickness FGM cylindrical shell:

in which 

Equation (6) can be rewritten as follows:

in which 

(5)
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Fig. 1  Variable thickness FGM cylindrical shell
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with:

Internal force and moment resultants can be obtained 
from Eq. (7) as follows:

Nonlinear motion equations of FGM cylindrical shell 
with variable thickness based on classical shell theory 
(Brush et al. 1975) are:

A11 = A22 =
E1 ⋅ h(x)
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in which  �1 =
(
�m +

�c−�m

k+1

)
h(x) = �∗

1
h(x)

Substituting Eq. (3) and Eq. in Eq. (10), we obtain:

(10)

⎧
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in which 
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Equations (11) can be used to investigate nonlinear vibra-
tion and dynamic stability of variable thickness FGM circu-
lar cylinder shell under mechanical load.

3  Solution Method

The present article considers a variable thickness FGM 
cylindrical shell with simply supported at both ends, under 
uniform external pressure q(t) and axial compression force 
p(t).

The boundary conditions are:
w = 0, Nxy = 0, Mxx = 0, Nxx = -p.h at x = 0 and x = L
Displacement components of the cylindrical shell can be 

expanded as:

in which 

�∗∗
1

=
�∗
1
L(La + 2b)�R

8
; �n =

(−1)n − 1

2
; �m =

(−1)m − 1

2
;

I11 =
E1�

(
(� − 1)n2L2 − 2�2R2m2

)
(La + 2b)

16RL(1 − �2)
;

I12 = I21 =
E1m�

2n(La + 2b)

16(1 − �2)
;

I13 =
E1�m�

2(La + 2b)

8(1 − �2)
−

E2Δ(�
2R2m2 + L2n2�)

24L2Rm(1 − �2)
+

E2n
2Δ

24(1 + �)mR
;

in which  � =
m�

L
; � =

n

R
 . m, n—the half-waves number in x 

and y direction, respectively.
Substituting Eq. (12) in Eq. (11), then applying Galerkin 

procedure yields:

(12)

⎧⎪⎨⎪⎩

u = Umn(t) cos �x sin �y;

v = Vmn(t) sin �x cos �y;

w = Wmn(t) sin �x sin �y.

(13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I11U + I12V + I13W + R1W
2 = �∗∗

1

d2U

dt2

I21U + I22V + I23W + R2W
2 = �∗∗

1

d2V

dt2

I31U + I32V + I33W + R3W
2 + R4W

3 + R5U ⋅W + R6V ⋅W +
pm2�3(La + 2b)R

8L
⋅W

+
4�n�mRLq

mn�
= �∗∗

1

d2W

dt2
+ 2��∗∗

1

dW

dt

R1 =
2E1

(
2�2R2m2 − L2n2�

)
(La + 2b)

9L2Rn
(
�2 − 1

) −
E1n(La + 2b)

9(1 + �)R
; I22 =

E1�(La + 2b)
(
2L2n2 − R2m2(� − 1)�2

)
16(�2 − 1)LR

;

I23 = −
E1�Ln(La + 2b)

8R
(
1 − �2

) +
E2n

(
3L4a2n2 − n2

(
R2m2�2 + L2

)(
Δ − 3L2a2

)
+ 3(2� − 1)m2�2L2R2a2

)
24(�2 − 1)R2Lm2�

;

R2 =
2E1

(
2L2n2 − �2R2m2�

)
(La + 2b)

9R2Lm�(�2 − 1)
−

E1m�(La + 2b)

9(1 + �))L
;

I31 = −
�E1m�

2(La + 2b)

8
(
1 − �2

) −
E2

(
m2�2R2 + L2n2�

)(
Δ − 3L2a2

)
− 3L2a2

24L2Rm
(
�2 − 1

) +
E2n

2Δ

24m(1 + �)R
;

I32 =
E1Ln�(La + 2b)

8R
(
�2 − 1

) −
E2L

(
Δ − 6L2a2

)
n3

24m2�R2(�2 − 1)
+

E2nΔ�

24(1 + �)L
;
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I33 =
E1L(La + 2b)�

8R
(
�2 − 1

) +
E2

[
3L4a2n2 −

(
�R2m2�2 + 2n2L2

)(
Δ − 3L2a2

)
− 6m2�2(2R − 3)�R2L2a2

]
12R2L�m2(�2 − 1)

+
E3(La + 2b)

(
m4�4R2

[(
R2m2�2 + 2n2L2�

)
Δ∗ − 3L2R2a2

]
+ L4n4

[
m2�2

(
Δ∗ + 6�R2a2

)
− 3L2a2

])
16�m2(�2 − 1)R3L3

−
E3�(m

2Δ∗�2 + 3L2a2)(La + 2b)

8(1 + �)LR
;

R
3
= −

2E
1

(
5L2n2 − 3�2

R
2
m

2�
)
(La + 2b)

9LR2mn�(�2 − 1)
+

8a2E
2

(
L
2
n
2� − 11R2

m
2�2

)
27LRmn�(�2 − 1)

4E
2

[
9
(
R
4
m

4�4 + L
4
n
4
)
m

2�2Δ∗ − 4L2a2
(
7R4

m
4�4 − 10L4n4

)]
81L3R3m3�3n(�2 − 1)

+
4E

2
n�(

(
9m2�2Δ∗ − 44L2a2

)
27LRm�(�2 − 1)

+
8E

2
n�

(
9m2Δ∗�2 − 34L2a2

)
81LRm�(�2 − 1)

+
16E

2
a
2
Ln

27Rm�(1 + �)
+

2E
2
n(
(
4L2a2 − 9m2�2Δ∗

)
81LRm�(1 + �)

R4 =
3E1�

(
�4R4m4 + 2L2�2R2m2n2� + L4n4

)
(La + 2b)

256R3L3(�2 − 1)
+

E1m
2�3n2(La + 2b)

128L(1 + �)R

R5 = −
8E1

(
�2R2m2 + L2n2�

)
(La + 2b)

9L2Rn(�2 − 1)
+

2E1n(La + 2b)

9(1 + �)R
;

R6 =
8E1

(
�R2m2�2 + L2n2

)
(La + 2b)

9R2Lm�
(
1 − �2

) +
2E1m�(La + 2b)

9L(1 + �)
;

According to Volmir’s assumption (Volmir 1972), 
by ignoring the inertial components along x and y axes 
(u <  < w, v <  < w), Eqs. (13) can be rewritten as:

Δ = 2�2m2
(
L2a2 + 3Lab + 3b2

)
+ 3L2a2;Δ∗ =

(
L2a2 + 2Lab + 2b2

)

Table 1  Natural frequencies of FGM cylindrical shell (Hz)

n h/R = 0.002, L/R = 20; k = 2, m = 1

Present (17) Loy et al. (1999) Bich et al. 2012

1 13.1266 13.321 13.3211
2 4.5830 4.5114 4.5173
3 4.5110 4.1827 4.1911
4 7.4257 7.0905 7.0959
5 11.6061 11.329 11.3329
6 16.7835 16.587 16.5896
7 22.9174 22.454 22.8201
8 29.9995 30.014 30.0148
9 38.0276 38.171 38.1711
10 47.0008 47.288 47.2881

Table 2  The comparison vibration frequency of constant thickness 
FGM shell (1/s)

k R/h = 500, L/R = 2; m = 1

n = 1 n = 3

Present (18) Bich et al. (2012) Present (18) Bich et al. 2012

0 3702.65 3702.65 1120.02 1120.05
1 3605.32 3605.41 1090.01 1090.63
3 3566.52 3566.62 1078.25 1078.25
5 3523.72 3523.79 1065.47 1065.47
∞ 3476.27 3476.27 1051.57 1051.57

(14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

I11U + I12V + I13W + R1W
2 = 0

I21U + I22V + I23W + R2W
2 = 0

I31U + I32V + I33W + R3W
2 + R4W

3 + R5U ⋅W + R6V ⋅W +
pm2�3(La + 2b)R

8L
⋅W

+
4�n�mRL

mn�
q = �∗∗

1

d2W

dt2
+ 2��∗∗

1

dW

dt
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Table 3  Critical stress of FGM 
cylindrical shell (Mpa)

Source R/h = 500; L/R = 2;

k = 0.2 k = 0.5 k = 1.0 k = 5.0

Huang et al. (2010) 194.94 (2, 11) 182.49 (2, 11) 169.94 (2, 11) 150.25 (2, 11)
Present 199.30 (1, 13) 185.37 (1, 13) 175.63 (1, 13) 160.16 (1, 13)

Table 4  Natural frequencies 
of variable thickness FGM 
cylindrical shell (1/s)

k h1 = 0.004 m, h0 = 0.006 m, R/h = 200, L/R = 2

(m, n) = (1, 1) (m, n) = (1, 3) (m, n) = (1, 5) (m, n) = (1, 7) (m, n) = (1, 9)

0 5930.10 1796.32 797.43 662.16 900.89
0.5 5322.10 1607.68 700.68 559.95 756.35
1 4932.38 1487.72 641.99 502.50 676.96
3 4173.35 1257.02 540.56 429.56 589.71
5 3849.00 1160.12 502.99 413.90 577.28
∞ 3019.55 914.66 405.88 337.03 458.54

R/h0=200, h0=0.006m, h1=0.004m, k=1, 
L/R=2 ; (m, n) = (1, 7), q0=200sin150t

Fig. 2  Nonlinear dynamic response of variable thickness FGM cylin-
drical shell

R/h0=200, h0=0.006m, h1=0.004m, k=1, 
L/R=2 ; q0=200sin150t

Fig. 3  Effect of vibration mode on response amplitude of the shell

R/h0=200, h0=0.006m, h1=0.004m, 
L/R=2 ; (m, n) = (1, 7), q0=200sin150t

Fig. 4  Effect of volume fraction (k) on the dynamic response of vari-
able thickness cylindrical shell

R/h0=200, h0=0.006m, h1=0.004m, k=1, 
L/R=2 ; (m, n) = (1, 7), q=Qsin150t

Fig. 5  Effect of excitation force on nonlinear dynamic response of 
variable thickness cylindrical shell
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From the first two equations of Eq. (14), we obtain Umn 
and Vmn in terms of Wmn then substituting in the third equa-
tion, we have

in which 

(15)�∗∗
1

d2W

dt2
+ 2��∗∗

1

dW

dt
+ a1W + a2W

2 + a3W
3 −

pm2�3(La + 2b)R

8L
⋅W −

4�n�mRL

mn�
q = 0

a1 = −I33 −
I31

(
I12I23 − I13I22

)
+ I32

(
I13I21 − I11I23

)
I11I22 − I12I21

a2 = −R3 −
R1

(
I32I21 − I31I22

)
+ R2

(
I31I12 − I32I11

)
+ R5

(
I12I23 − I13I22

)
+ R6

(
I13I21 − I11I23

)
I11I22 − I12I21

Assume that uniformly distributed pressure in the form 
q(t) = QsinΩt, Eq. (15) can be rewritten as:

3.1  Nonlinear Dynamic Response Analysis

3.1.1  NATURAL Frequencies

Natural frequencies of variable thickness FGM shell can be 
determined from Eq. (13) by solving the equation:

a3 = −R4 −
R5

(
R2I12 − R1I22

)
+ R6

(
R1I21 − R2I11

)
I11I22 − I12I21

(16)

|||||||

I11 + �∗∗
1
�2 I12 I13

I12 I22 + �∗∗
1
�2 I23

I31 I32 I33 + �∗∗
1
�2

|||||||
= 0

R/h0=200, h0=0.006m, L/R=2 ; m = 1 ; 
n=7 ; q0=200sin150t

Fig. 6  Influence of  h1/h0 ratio on nonlinear dynamic responses of var-
iable thickness cylindrical shell

R/h0=200, h0=0.006m, h1=0.004m, 
k=1, (m, n) = (1, 7), q0=200sin150t

Fig. 7  Influence of L/R ratio on nonlinear dynamic response of vari-
able thickness cylindrical shell

h0=0.006m, h1=0.004m, k=1, L/R=2 ; 
(m, n) = (1, 7), q0=200sin150t

Fig. 8  Influence of R/h0 ratio on the nonlinear dynamic responses of 
variable thickness cylindrical shell

(17)

|||||||

I11 + �∗∗
1
�2 I12 I13

I12 I22 + �∗∗
1
�2 I23

I31 I32 I33 + �∗∗
1
�2

|||||||
= 0
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In other hand, natural frequencies of the structure can be 
obtained from Eq. (16) and expressed as:

(18)�
0
=

√√√√a1 −
pm2�3(La+2b)R

8L

�∗∗
1

=

√√√√−
I33

�∗∗
1

−
I31

(
I12I23−I13I22

)
+ I32

(
I13I21−I11I23

)

�∗∗
1

(
I11I22−I12I21

) −
pm2�3(La + 2b)R

8L�∗∗
1

3.1.2  Nonlinear Dynamic Responses of the Variable 
Thickness Cylindrical Shell

Nonlinear dynamic responses of variable thickness cylin-
drical shells can be obtained from Eq.  (16) by using 
Runge–Kutta method and shown in the numerical results.

R/h0=200, h0=0.006m, h1=0.004m, 
k=1, L/R=2; (m, n) = (1, 7)

Ω=ω0= 502 rad/s

Fig. 9  Resonance phenomenon

R/h0=200, L/R=2; h0=0.006m,
h1=0.004m, k=1, (m, n) = (1, 7)

Fig. 10  The harmonic beat phenomenon

Fig. 11  The dw/dt-w relationships

R/h0=200, h0=0.006m, h1=0.004m, 
k=1, L/R=2; (m, n) = (1, 7)

Ω=10500 rad/s

Fig. 12  The dw/dt -w relationship curves in cases of Ω >  > ω0



659Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2022) 46:649–665 

1 3

3.2  Dynamic Stability Analysis

Analyze nonlinear dynamic stability of variable thickness 
FGM shell in two cases as follows:

Case 1 Variable thickness FGM cylindrical shell sub-
jected to axial compression load in terms of time p = −c1t 
 (c1-loading speed); q = 0.
Case 2 Variable thickness FGM shell under axial com-
pression load p = constant and uniformly distributed pres-
sure in terms of time q = c2t  (c2- loading speed).

Solving Eq.  (16) for each case, we obtain dynamic 
responses of the shell. Dynamic critical time tcr is obtained 
according to Budiansky–Roth criterion (Volmir, 1962), 

and dynamic critical loads can be determined as follows: 
pcr = c1tcr (case 1), qcr = c2tcr (case 2).

q=1e6sin(150t)

Fig. 13  The dw/dt -w relationship curves in case of very great excita-
tion force intensity

R/h0=200; L/R=2; k=1;
(m, n) = (1, 7); c1=1e11; 
h0=0.006m; h1=0.004m,

Fig. 14  Nonlinear dynamic responses of variable thickness FGM 
shell

R/h0=200; L/R=2 ;(m, n) = (1, 7);
c1=1e11; h0=0.006m; h1=0.004m,

12
3

4

1-k=0.0;
2-k=0.5;
3-k=1.0; 
4-k=5.0.

Fig. 15  Nonlinear dynamic responses of the shell with various values 
of k

Table 5  The critical load of FGM shell with various values of k 
(GPa)

R/h0 L/R = 2; (m, n) = (1, 7); c1 = 1e11; h0 = 0.006 m; 
h1 = 0.004 m

k = 0 k = 0.5 k = 1 k = 5

200 2.846 2.423 2.256 2.062
300 3.057 2.825 2.723 2.563
400 3.493 3.309 3.198 3.061

R/h0=200;k=1;
(m, n) = (1, 7); 
c1=1e11; 
h0=0.006m; 
h1=0.004m,

Fig. 16  Effect of L/R ratio on dynamic responses of variable thick-
ness FGM shell
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4  Validation

To verify the reliability of the proposed method, the obtained 
results of the present article are compared with results in the 
published work of Bich et al. (2012) and Loy et al. (1999). 
They studied on the vibration of FGM cylindrical shell 
made of stainless steel and nickel with material properties 
νc = νm = 0.31; Em = 207,788.109 N/m2, ρm = 8166 kg/m3 and 
Ec = 205,098.109 N/m2, ρc = 8900 kg/m3. Comparison results 
are shown in Table 1.

Besides that, natural frequencies (1/s) obtained in pre-
sent paper are also compared with those in publication of 
Bich et al. (2012) for FGM cylinder shell made of  ZrO2/
Ti–6Al–4  V, material properties are: νc = νm = 0.2981; 
Em = 105,696.109 N/m2, ρm = 4429 kg/m3, Ec = 154.109 N/

m2, ρc = 5700 kg/m3. The comparison results are shown in 
Table 2.

Moreover, the critical stress of the structures in present 
study was compared with results in publication of Huang 
et al. (2010) for FGM cylindrical shell made of  ZrO2/Ti-
6Al-4 V with material properties are: Em = 122.56 GPa; 
ρm = 4429 kg/m3; νm = 0.288; Ec = 244.27 GPa; ρc = 5700 kg/
m3; νc = 0.288. Comparison results are shown in Table 3

The comparisons show that results in the present paper 
are good agreement with those in the above literature. 
Therefore, the proposed method is completely accurate 
and reliable for solving the forced vibration and dynamic 

Fig. 17  Effect of R/h0 ratio on dynamic responses of variable thick-
ness FGM shell

R/h0=200;k=1;
(m, n) = (1, 7); 
c1=1e11; 
h0=0.006m; 
L/R=2.

Fig. 18  Effects of  h1/h0 ratio on dynamic response of the FGM shell

R/h0=200; 
L/R=2 ;k=1;
(m, n) = (1, 7);  
h0=0.006m; 
h1=0.004m,

Fig. 19  Influence of loading speed on the dynamic response of the 
FGM shell

R/h0=200; L/R=2 ;k=1; (m, n) = (1, 
7); h0=0.006m; h1=0.004m; c2=1e8

Fig. 20  Dynamic response of variable thickness FGM shell
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buckling problems of the FGM cylindrical shell with vari-
able thickness.

5  Numerical Results

Consider a variable thickness FGM cylindrical shell made 
of aluminum and alumina with geometric dimensions: 
h1 = 0.006  m, h0 = 0.004  m, R/h0 = 200, L/R = 2. Mate-
rial properties: Em = 70.109  N/m2, ρm = 2702  kg/m3 and 
Ec = 380.109 N/m2, ρc = 3800 kg/m3, νm = νc = 0.3. Assume 
that the shell is simply supported at both ends.

R/h0=200; L/R=2 ;
(m, n) = (1, 7); 
h0=0.006m; h1=0.004m; 
c2=1e7

Fig. 21  Dynamic response of variable thickness FGM shell with vari-
ous k

R/h0=200; k=1; 
(m, n) = (1, 7); 
h0=0.006m; 
h1=0.004m; 
c2=1e7

Fig. 22  Effect of L/R ratio on the dynamic response of the shell

Fig. 23  Effect of R/h0 ratio on dynamic response of the shell

R/h0=200; L/R=2;
k=1; (m, n) = (1, 7); 
h0=0.006m; c2=1e7

Fig. 24  Effects of  h1/h0 ratio on the dynamic response of variable 
thickness FGM shell

R/h0=200; L/R=2;
k=1; (m, n) = (1, 7); 
h0=0.006m; 
h1=0.004m; 

Fig. 25  Dynamic response of the FGM shell with the various loading 
speed
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5.1  Nonlinear Vibration Analysis

5.1.1  Natural Vibration Frequencies

Natural frequencies of the shell are determined according 
to Eq. (18) and shown in Table 4. We can see that natural 
frequencies of structure depend on volume fraction (k) and 
vibration mode (m, n). In the present paper, the lowest natu-
ral frequency corresponding to vibration mode (m, n) = (1, 
7).

5.1.2  Nonlinear Dynamic Responses of Variable Thickness 
FGM Cylindrical Shell

Nonlinear dynamic responses of variable thickness FGM 
cylindrical shell can be obtained from Eq. (16) by using the 
fourth-order Runge–Kutta method. Figure 2 demonstrates 
the nonlinear dynamic responses of variable thickness FGM 
cylinder shell, simply supported at both ends and subjected 
to mechanical load. The effects of vibration mode on natural 
frequencies and nonlinear dynamic responses of variable 
thickness shell are shown in Table 4 and Fig. 3. We can 
see that, corresponding to the nonlinear vibration mode (m, 
n) = (1, 7), the nonlinear vibration amplitude of the shell is 
the greatest.

Nonlinear dynamic responses of variable thickness FGM 
shell with the various values of k are demonstrated in Fig. 4. 
The graph shows that vibration amplitude of the structure 
increases when value of k index increases. The cause of this 
phenomenon is that the value of k increases, the metal ratio 
in the structure increases, and therefore, the stiffness of the 
structure decreases and the amplitude of nonlinear dynamic 
response of the shell increases. The influences of excitation 
force intensity on the nonlinear dynamic response of the 
shell are shown in Fig. 5.

Influences of geometric dimensions on nonlinear dynamic 
responses of variable thickness FGM cylindrical shell are 
shown in Figs. 6, 7 and 8. The graphs show that the larger 
the L / R ratio (or R /  h0 ratio) is, the greater the vibration 
amplitude of the shell get. In other words, the greater the 
length (or radius) of the structure is, the lower the stiffness 
of the structure is.

Nonlinear vibration characteristics of FGM cylindrical 
shell with variable thickness are investigated and presented 
in Figs. 9, 10, 11, 12 and 13.

Resonance phenomenon will occur when the frequency 
of the excitation force is equal to the natural frequency of 
the shell Ω = ω0(1,7) = 502 (rad/s). Then nonlinear vibra-
tion amplitude of the shell will infinitely increase over time 
(Fig. 9).

When excitation frequency is close to the natural frequen-
cies of the shell, the harmonic beat phenomenon will occur 
and shown in Fig. 10. The closer the excitation frequency is, 

the greater the dynamic responses amplitude and the vibra-
tion period are. The velocity–deflection relationships are 
closed curves shown in Fig. 11.

When frequencies of excitation force are far from natural 
frequencies of the shell (Ω >  > ω0), the deflection–velocity 
relationship becomes very complex curves (Fig. 12).

When increasing the intensity of excitation force to very 
great value, the velocity-deflection relationship becomes 
disturbed curves (Fig. 13).

5.2  Nonlinear Dynamics Stability of Variable 
Thickness FGM Shell

Case 1 Variable thickness FGM cylindrical shell subjected to 
axial compression load in terms of time p = -c1t  (c1-loading 
speed); q = 0 (Fig. 14).

The effects of volume fraction (index k) on nonlinear 
dynamic responses of variable thickness FGM shell are 
demonstrated in Fig. 15 and Table 5. We can see that when 
values of k increase, the critical load of structure decreases. 
This is reasonable because the higher the value of k is, the 
greater the metal volume fraction is, which lead to the stiff-
ness of structure decrease and the stability capable of the 
shell decrease.

The effects of geometric parameters on the nonlinear 
dynamic response of the variable thickness FGM cylindri-
cal shell are shown in Figs. 16, 17, and 18. It can be seen 
that the critical load of the structure increases when L/R 
(or R/h0) ratio increases (Fig. 16 and 17), which means the 
stability capacity of the shell will increase when the length 
(or radius) of structure increases.

The effect of  h1/h0 ratio on the nonlinear dynamic 
response of the cylindrical shell is shown in Fig. 18. We can 
see that, with the increasing  h1/h0 ratio, the dynamic critical 
load of structure also increases. The dynamic critical load of 
the shell reaches its maximum value when h1/h0 = 1.

Influences of loading speed on nonlinear dynamic 
response of the shell are shown in Fig. 19. The graph shows 
that the greater the loading speed is, the lower the critical 
time is and the greater the dynamic critical load is. That 
means, with the higher loading speed, the stability loss of 
the shell will occur faster and at the greater critical load.

Case 2 Variable thickness FGM cylindrical shell under 
axial compression load p = constant and uniformly distrib-
uted pressure in terms of time q = c2t  (c2- loading speed).

The nonlinear dynamic responses of variable thickness 
FGM cylindrical shell, in this case, are demonstrated in 
Fig. 20, 21, 22, 23, 24 and 25.

Effects of volume fraction index (k) on the dynamic 
response of variable thickness cylinder shell are shown in 
Fig. 21. We can see that the critical load will decrease with 
the increase in volume fraction index (k). In other words, the 
stability capacity of structure will decrease.
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When L/R ratio increases, the dynamic critical loads of 
the shell decrease (Fig. 22). It means the greater the length 
of the structure is, the less the pressure-bearing capacity of 
the shell is.

Figure 23 shows the effect of R/h0 ratio on nonlinear 
dynamic responses of the shell. It can be seen that if the 
value of R/h0 ratio increases, dynamic critical pressure will 
increase. That means the bearing capacity of bigger shell 
will better than small one.

The effects of  h1/h0 ratio on the nonlinear dynamic 
response of the shell are similar to those in case 1, and the 
critical load of cylindrical shell reaches a maximum value 
when  h1/h0 = 1 (constant thickness FGM shell) (Fig. 24).

The effects of loading speed on the nonlinear dynamic 
response of the shell are shown in Fig. 25. The graph shows 
that the greater the loading speed is, the lower the critical 
time and the greater the critical pressure are. In other words, 
with the higher loading speed, the stability loss will occur 
faster and at the greater critical pressure.

6  Conclusions

By using an analytical approach, based on the thin shell the-
ory, taking into account the nonlinear geometry of von Kar-
man–Donnell, nonlinear vibration and stability problems of 
variable thickness FGM cylindrical shell are solved by using 
Galerkin method and the fourth-order Runge–Kutta method.

Some following conclusions can be drawn from the exam-
ined results:

• Natural frequencies of variable thickness FGM shell 
depending on volume fraction index (k) and the vibra-
tion mode (m, n).

• Geometric parameters of the shell (L, R, h1, h0) are 
factors effect on the nonlinear vibration amplitude of 
the structure. When geometric dimensions of the shell 
increase (L, R), dynamic responses amplitude of the 
shell will increase, which means the stiffness of structure 
decreases.

• When the excitation frequency is greater than the natural 
frequency of the shell, the deflection–velocity relation-
ships are closed curves. If the frequency and intensity 
of excitation force is very great, the deflection–velocity 
curves become very complex and disturbed curves

• Volume fraction index (k) remarkably affects the dynamic 
critical load of the structure. The greater the volume frac-
tion index is, the lower the critical load of the shell is. In 
other words, the metal-richer FGM shell will work less 
stability than ceramic-richer ones.

• When the length (L) of cylindrical shell increases, the 
dynamic critical load in case of axial compression-
bearing shell increases, but the critical load in case of 

external pressure-bearing shell decreases. That means, if 
the length of structure increase, the axial compression-
bearing capacity of the shell increases but the external 
pressure-bearing capacity of the shell decreases.

• If the value of loading speed increases, the stability loss 
of the shell will occur faster and at greater dynamic criti-
cal load.

Funding This research is funded by Vietnam National Foundation 
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