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Abstract
Nonlinear thermal stress analysis in a functionally graded hollow thick cylinders and spheres under the effect of high tempera-
tures and temperature differences is considered by taking into account the material properties of the body both temperature 
dependent and radially graded, except Poisson’s ratio which is taken to be constant for simplicity. These conditions result 
in nonlinear governing differential equation that is adopted to solve numerically. The effect of the temperature-dependent 
material properties on the temperature distribution, radial displacement, and thermal stresses is presented in a graphical 
form. The importance of the effect of temperature on the material is shown in functionally graded materials manufactured 
to be exposed to high temperature and temperature difference. Benchmark solutions available in the literature are used to 
validate the results and to emphasize the convergence of the numerical solutions.

Keywords Nonlinear thermal stress analysis · Functionally graded material · Chebyshev pseudospectral method · Fixed-
point iteration

List of Symbols
E(r, T)  Radial and temperature-dependent Young 

modulus
Ei  Young modulus of the material in the inner 

boundary
k(r, T)  Radial and temperature-dependent thermal 

conductivity
ki  Thermal conductivity of the material in the inner 

boundary
mi  Inhomogeneity parameters
ni  Nonlinearity parameters
Pi  Pressure in the inner surface
ri, ro  Inner and outer radius of the medium
r, �  Polar coordinates
T  Temperature of the body
Ti, To  Inner and outer temperature of the body
u   Radial displacement

Greek Letters
�(r, T)  Radial and temperature-dependent linear thermal 

expansion coefficient
�i  Linear thermal expansion coefficient of the mate-

rial in the inner boundary
�r, ��  Radial and tangential strains
�rr, ���  Radial and tangential stresses
�  Poisson’s ratio

1 Introduction

Thick cylinders and spheres are widely used in many engi-
neering design applications as common structural com-
ponents. These structures are generally subject to thermal 
stresses, temperature, and environmental factors. Therefore, 
their material design is an important issue, not only to with-
stand high pressures, radial loads, and radial temperature, 
but also high temperatures, corrosion, erosion, and high frac-
ture. In this context, functionally graded materials (FGMs) 
that are resistant to both internal and environmental condi-
tions have been started to be developed and used in many 
areas (Koizumi 1997; Miyamoto et al. 1999). So, the ther-
mal stress analysis of these intelligent materials has been an 
important issue addressed by many scientists in recent years.

Even though it is based on mainly the principle of 
producing material resistant to high temperatures and 
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temperature changes, in many theoretical studies on the 
thermal stress of cylinder and sphere in the literature, 
material properties are handled independently of temper-
ature. Some of them are given in chronological order as 
follows. Obata and Noda (1994) examined thermal stresses 
in hollow functionally graded cylinders and spheres using 
the perturbation technique. The analytical solution of the 
thick-walled hollow functionally graded sphere and cylin-
der is given by Lutz and Zimmerman (1996) and Zimmer-
man and Lutz (1999), respectively, using the Frobenius 
series method. They also obtained a precise statement for 
the effective thermal expansion coefficient. One-dimen-
sional transient temperature distribution and thermal stress 
analysis of the functionally graded hollow cylinder con-
sisting of ceramic-metal-based material is investigated 
numerically (Awaji and Sivakumar 2001) by exposing the 
ceramic inner surface to high temperature and the metallic 
outer surface to low temperature. The effect of temperature 
on the material is neglected. The exact analysis of the hol-
low cylinder, which is functionally graded according to 
the power-law function in the radial direction, under the 
radial symmetrical loads and non-axisymmetric steady-
state loads, is presented in Jabbari et al. (2002, 2003), 
respectively. Liew et al. (2003) proposed a technique that 
could be obtained by a novel limiting process using the 
solution of the homogeneous cylinder, without resort-
ing to non-homogeneous thermoelasticity equations to 
study the thermomechanical behavior in the functionally 
graded hollow cylinder. The stress analysis of a function-
ally graded simply supported circular hollow cylinder with 
finite length subjected to axisymmetric pressure loadings 
is solved analytically (Shao et al. 2004). A general solu-
tion is provided for thermal and mechanical stresses under 
general thermal and mechanical boundary conditions in 
a one-dimensional steady state in a hollow thick-walled 
sphere made of functionally graded material (Eslami et al. 
2005). By using a multi-layered approach based on lami-
nated composites theory, solutions of temperature, dis-
placements, and thermal/mechanical stresses in a cylinder 
with a functionally graded circular hollow finite length 
are given in Shao (2005). Thermal stress analysis of the 
hollow sphere and cylinder, whose material properties 
are graded according to the exponential function in the 
radial direction, is presented in Celebi et al. (2016) and 
Celebi et al. (2017), respectively. Besides, some studies 
focus only on certain material properties depending on 
both coordinate and temperature. However, temperature 
dependency in all material properties should be consid-
ered to describe the thermal and mechanical stresses in 
functionally graded materials accurately, especially in the 
case of large temperature differences. In other words, the 
temperature dependency in the material properties can 
be neglected at low-temperature differences, whereas in 

applications with high-temperature differences, depend-
ence on temperature has to be taken into account. These 
conditions result in a complicated nonlinear governing dif-
ferential equations, which cannot be solved analytically 
except for some special cases.

Although there are many works on the functionally 
graded materials, studies with temperature-dependent 
material properties are barren in the literature, especially 
in the spherical bodies. A transfinite element method for 
transient analysis of thermal stresses in a functionally 
graded hollow cylinder with temperature-dependent mate-
rial properties is presented by Azadi and Azadi (2009). 
Moosaie (2016) investigated the solution of the nonlinear 
thermal and thermoelastic problem for an FGM thick-
walled cylindrical shell with temperature-dependent mate-
rial properties by using the perturbation method. However, 
in this study, the power series of the temperature in the 
perturbation method does not have a defined threshold 
expansion degree for higher temperature values.

In this research, apart from the studies in the literature, 
a practical unified method that combines the Chebyshev 
pseudospectral collocation (CPS) and the fixed-point itera-
tion methods is applied to the thermal stress distributions 
in a functionally graded hollow thick cylinders and spheres 
under the effect of high temperatures and temperature 
difference. It is assumed that the material properties of 
the bodies are both temperature dependent and radially 
graded, except Poisson’s ratio which is taken to be con-
stant for simplicity. These conditions are produced a non-
linear ordinary differential equation that cannot be solved 
analytically with conventional methods except for some 
simple grading functions. Therefore, a numerical solution 
becomes essential to solve the problem. First, the ordinary 
differential equation is transformed into a nonlinear system 
by using the pseudospectral Chebyshev collocation method 
(Gottlieb and Orszag 1977; Trefethen 2000; Yarımpabuç 
2019); then, the nonlinear system is solved iteratively by 
fixed-point iteration method (Burden and Faires 1993). 
The effect of the temperature-dependent material proper-
ties on temperature distribution, radial displacement, and 
thermal stresses is presented in the graphical form. The 
CPS procedure is validated by comparing the solutions of 
thick hollow bodies for functionally graded temperature-
independent materials (Jabbari et al. 2002; Eslami et al. 
2005). Compared with other numerical methods, CPS 
method is easy to implement and has a high accuracy with 
low computational cost. This is due to the structure of the 
mesh size, which is dense mesh near the boundary and 
coarse towards the center points. For this reason, CPS col-
location method is preferred in this study. It is shown that 
temperature-dependent material properties at high tem-
peratures and temperature differences have a great effect 
on temperature, displacement, and stress distributions.
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2  Nonlinear Analysis

Nonlinear thermal stress distributions of a functionally graded 
hollow thick cylinder and sphere under axisymmetric condi-
tions are calculated numerically. The inner and outer radii of 
the thick hollow bodies are taken as ri and ro , respectively. A 
separable model (Moosaie 2016) is used for material proper-
ties that are both functions of temperature and graded along the 
radial direction and assumed to obey a simple power law as: 

 Here, T , k, E, �, (ki,Ei, �i) and mi − ni, i = 1, 2, 3 are the 
temperature distribution, thermal conductivity, modulus of 
elasticity, thermal expansion coefficient, material constants 
in the inner boundary and power-law indices of the mate-
rial, respectively. It is assumed that the body is exposed to 
high temperature on the outer surface with high temperature 
difference between the inner and the outer boundaries. The 
boundary conditions for temperatures are prescribed as 

 where Ti and To are the temperature in the inner and outer 
surface of the body, respectively. It is supposed that the 
thick hollow body has a pressure on its inner surface, so the 
boundary conditions for the radial stress are 

 Here, �rr is radial stress of the body and Pi is the pressure 
in the inner surface.

2.1  Thick Hollow Cylindrical Body

Consider the nonlinear distribution of temperature and ther-
mal stresses for a thick hollow cylinder in a one-dimensional 
steady-state conditions. The nonlinear steady-state axisym-
metric heat conduction equation without heat generation for 
the one-dimensional problem (Hetnarski and Eslami 2009; 
Carslaw and Jaeger 1959) is given as

(1a)E(r, T) = Eir
m1Tn1 ,

(1b)�(r,T) = �ir
m2Tn2

(1c)k(r, T) = kir
m3Tn3 ,

(2a)T|r=ri = Ti,

(2b)T|r=ro = To

(3a)�rr|r=ri = −Pi,

(3b)�rr|r=ro = 0.

(4)
1

r

d

dr

(
rk(r, T)

dT

dr

)
= 0

Using Eq. (1c), the nonlinear heat conduction equation 
becomes

Let u be displacement component in the radial direction. 
Under the plain strain assumption and axisymmetry, the 
strain–displacement relations (Hetnarski and Eslami 2009) 

 and the stress–strain relations (Hetnarski and Eslami 2009) 
are 

 where

Here, ��� is the hoop stress and �rr, ��� are the strain ten-
sors. And, � is the Poisson’s ratio, which is taken constant 
for simplicity (Jabbari et al. 2015; Yıldırım et al. 2019). The 
equilibrium equation in the radial direction, disregarding the 
body force and inertia term (Hetnarski and Eslami 2009), is

Substituting Eqs. (6, 7a, and 7b) into stress equilibrium 
equation (8), and by using the temperature-dependent mate-
rial properties (1a, 1b), one can get the nonlinear ordinary 
differential equation in terms of radial displacement, u as

(5)T �� +

(
m3 + 1

r
+ n3T

−1T �

)
T � = 0.

(6a)�rr =
du

dr
,

(6b)��� =
u

r

(7a)

�rr =

(
C11�rr + C12��� −

1

1 − 2�∫
T

Ti

�(r, T)dT

)
E(r, T),

(7b)

��� =

(
C11��� + C12�rr −

1

1 − 2�∫
T

Ti

�(r, T)dT

)
E(r, T),

C11 =
(1 − �)

(1 + �)(1 − 2�)
, C12 =

�

(1 + �)(1 − 2�)

(8)
d�rr

dr
+

�rr − ���

r
= 0
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The boundary conditions in terms of displacement, derived 
from stress–strain relation (7a) and boundary conditions (3), 
can be written as

2.2  Thick Hollow Spherical Body

Consider the nonlinear distribution of temperature and ther-
mal stresses for a thick hollow sphere in a one-dimensional 
steady-state conditions. The nonlinear steady-state axisym-
metric heat conduction without heat generation for the one-
dimensional problem (Hetnarski and Eslami 2009; Carslaw 
and Jaeger 1959) is given as

Using Eq. (1c), the nonlinear heat conduction equation 
becomes

Let u be displacement component in the radial direction. 
Then, the strain–displacement relations (Hetnarski and 
Eslami 2009) 

(9)

u�� + P(r, T)u� + Q(r, T)u = R(r, T)

P(r, T) =

(
m1 + 1

r
+ n1

T �

T

)
,

Q(r, T) =

(
�n1

1 − �

T �

T

1

r
+

�m1

1 − �

1

r2
−

1

r2

)

R(r, T) =
1 + �

1 − �
�ir

m2

(
(n1 + n2 + 1)Tn2T � − n1

T �

T
T
n2+1

i

m1 + m2

r

(
Tn2+1 − T

n2+1

i

))
.

(10)

[
(1 − �)u� +

�

r
u
]

r=ri

=

[
(1 + �)

�ir
m2

n2 + 1

(
Tn2+1 − T

n2+1

i

)

−
Pi(1 + �)(1 − 2�)

EoT
n1rm1

]

r=ri
[
(1 − �)u� +

�

r
u
]

r=ro

=

[
(1 + �)�ir

m2

n2 + 1

(
Tn2+1 − T

n2+1

i

)]

r=ro

(11)
1

r2
d

dr

(
r2k(r, T)

dT

dr

)
= 0

(12)T �� +

(
2 + m3

r
+ n3T

−1T �

)
T � = 0.

(13a)�rr =
du

dr
,

(13b)��� = ��� =
u

r

 and the stress–strain relations (Hetnarski and Eslami 2009) 
are 

 The equilibrium equation in the radial direction, disregard-
ing the body force and inertia term (Hetnarski and Eslami 
2009), is

Substituting Eqs. (13, 14a, and 14b) into stress equilibrium 
equation (15), and by using the temperature-dependent mate-
rial properties (1b, 1c), one can get the nonlinear ordinary 
differential equation in terms of radial displacement, u as

The boundary conditions in terms of displacement, derived 
from stress–strain relation (14a) and boundary conditions 
(3), can be written as

3  Solution Procedure

The Chebyshev pseudospectral method is used to convert the 
nonlinear differential equation to a nonlinear system that can 
easily be solved by any iterative methods. In this study, due 

(14a)

�rr =

(
C11�rr + 2C12��� −

1

1 − 2�∫
T

Ti

�(r, T)dT

)
E(r, T),

(14b)

��� = ��� =

(
C12

�
��� + C12�rr −

1

1 − 2�∫
T

Ti

�(r, T)dT

)
E(r, T),

(15)
d�rr

dr
+

2(�rr − ���)

r
= 0

(16)

u�� + P(r, T)u� + Q(r, T)u = R(r, T)

P(r, T) =

(
m1 + 2

r
+ n1

T �

T

)
,

Q(r, T) =

(
�n1

1 − �

T �

T

2

r
+

�m1

1 − �

2

r2
−

2

r2

)

R(r, T) =
1 + �

1 − �
�ir

m2

(
(n1 + n2 + 1)Tn2T � − n1

T �

T
T
n2+1

i

m1 + m2

r

(
Tn2+1 − T

n2+1

i

))
.

(17)

[
(1 − �)u� +

2�

r
u
]

r=ri

=

[
(1 + �)

�ir
m2

n2 + 1

(
Tn2+1 − T

n2+1

i

)

−
Pi(1 + �)(1 − 2�)

EoT
n1rm1

]

r=ri
[
(1 − �)u� +

2�

r
u
]

r=ro

=

[
(1 + �)�ir

m2

n2 + 1

(
Tn2+1 − T

n2+1

i

)]

r=ro



659Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2021) 45:655–663 

1 3

to the ease of implementation, fixed-point iteration, see, e.g., 
Burden and Faires (1993), is used to solve the nonlinear system 
iteratively.

3.1  Chebyshev Pseudospectral Method

The Chebyshev pseudospectral method is based on Chebyshev 
polynomials of the first kind, see, e.g., Gottlieb and Orszag 
(1977), Trefethen (2000), and Yarımpabuç (2019). It is a com-
monly preferred method due to its high accuracy, low compu-
tational cost, and the ease in implementation. For this reason, 
CPS collocation method is used to convert the nonlinear heat 
conduction equations (5, 12) to nonlinear system of equations. 
The first-order (N + 1) × (N + 1) Chebyshev differentiation 
matrix associated with the collocation points

(j = 0, 1,… ,N) will be denoted by D. First-order Che-
byshev differentiation matrix D provides highly accu-
rate approximation to T �(rj), T

��(rj),… , simply by mul-
tiplication differential matrix with corresponding data 
vector T �(rj) = (DT)j, T

��(rj) = (D2T)j , such like that 
T = [T0,… , Tn]

T discrete vector data at positions rj.
The computation procedure of the Chebyshev differentia-

tion matrix and codes as m-file can be found in notable refer-
ences, see, e.g., Trefethen (2000), where the collocation points 
rj are numbered from right to left and defined in [−1, 1] . With 
a small adaptation, the m-file of the differentiation matrix D 
can be transcribed to any desired range [a, b].

Efficiency, accuracy, and the ease of implementation of 
the method are explained in detail in the study of Trefethen 
(2000) and Yarımpabuç (2019). Therefore, the nonlinear heat 
conduction equation for the thick hollow cylinder (4) is simply 
converted into a nonlinear system by using the pseudospectral 
Chebyshev collocation method as follows:

where

and

Boundary conditions for temperature (2) are imposed to this 
linear system (19) by only replacing the first and last row 
of the system matrix MT with the first and last row of the 
identity matrix, respectively, and the corresponding RHS 
values with Ti and To . Then, the nonlinear system (19) can 
be iterative solved by selecting a random prediction vector 

(18)0 = r0 < r1 ⋯ < rN , with rj =
1

2
[1 − cos(j𝜋∕N)],

(19)MTTnew = RHS(r, Told)

(20)MT = D2

(21)RHS(r, Told) = −

(
m3 + 1

r
+ n3T

−1
old
(DTold)

)
(DTold)

for temperature using the fixed-point method in the follow-
ing way:

Here, Told and Tnew are the temperature value in previous 
and current iteration, respectively. After that, the radial dis-
placement of the thick hollow cylinder can be discretized by 
using calculated temperature (22) with the combination of 
the Chebyshev differentiation matrix in the following way:

where

Boundary conditions for the radial displacement (10) are 
imposed in a similar way. Therefore, radial displacement 
can simply be found by inverting Mu as:

The same solution procedure is followed for the solution of 
the thick hollow sphere.

4  Results

The effect of the temperature-dependent material proper-
ties on temperature, radial displacement, and stresses on 
the thick hollow bodies is presented for ri = 1 , ro = 1.2 , 
Ei = 200 GPa , �i = 1.2 × 10−6∕◦C , Ti = 40◦C, To = 400◦C , 
Pi = 50MPa , � = 0.3 . The material properties of the thick 
hollow bodies are assumed to be a function of temperature 
and graded along the radial direction with a power-law func-
tion, while the Poisson’s ratio is taken to be constant.

The CPS procedure is validated by comparing the solu-
tions of thick hollow bodies for functionally graded temper-
ature-independent materials (ni = 0, mi = −2) (Jabbari et al. 
2002; Eslami et al. 2005) in Tables  1 and 2. It can be noticed 
from Tables  1 and 2 that the results are in good agreement 
and have a substantial amount of accuracy.

Before going to the numerical calculations, the grid 
refinement tests are performed for the current approach 
for thick hollow cylinders and spheres with temperature-
dependent material properties and presented in Tables 3 
and 4. It can be observed from Tables 3 and 4 that eleven 
( N = 10 interval ) collocation points are enough for six-digit 
accuracy. Therefore, the present solutions are calculated at 
eleven (N = 10) collocation points.

A comparison between the results of the linear and non-
linear models for temperature distribution of cylinder and 
sphere is presented in Tables 5 and 6 to show the importance 
of the second one.

(22)Tnew = M−1
T
RHS(r, Told)

(23)Muu = R(r, Tnew)

(24)Mu = D2 + P(r,Tnew)D + Q(r,Tnew)

(25)u = M−1
u
R(r, Tnew)



660 Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2021) 45:655–663

1 3

The effect of the temperature-dependent material prop-
erties on temperature distribution, radial displacement, 
and thermal stresses for the thick-walled functionally 
graded cylinder and sphere at a high temperature and 

temperature differences is also presented in Figs. 1, 2, 
and 3. Solid line (ni = 0, mi = −2) and dashed-dot line 
(n1 = −0.1, n2,3 = 0.1, mi = −2) correspond to function-
ally graded (temperature-independent) and both radial and 

Table 1  Comparison of the present solutions of thick hollow cylinder for temperature-independent material properties with Jabbari et al. (2002) 
(n

i
= 0, m

i
= −2, i = 1, 2, 3)

r T∕To u∕ri �rr∕Pi ���∕Pi

CPS Jabbari et al. 
(2002)

CPS Jabbari et al. 
(2002)

CPS Jabbari et al. 
(2002)

CPS Jabbari et al. 
(2002)

1.000000 0.10000000 0.10000000 0.00186970 0.00186970 − 1.00000000 − 1.00000000 7.51558333 7.51558331
1.007612 0.13125871 0.13125871 0.00186303 0.00186303 − 0.93666290 − 0.93666288 7.25424767 7.25424765
1.029289 0.22157468 0.22157468 0.00184584 0.00184584 − 0.77152718 − 0.77152718 6.56832670 6.56832668
1.061732 0.36033341 0.36033341 0.00182474 0.00182474 − 0.56116987 − 0.56116986 5.68329705 5.68329704
1.100000 0.52954545 0.52954545 0.00180637 0.00180637 − 0.35946267 − 0.35946267 4.81939799 4.81939797
1.138268 0.70474850 0.70474850 0.00179432 0.00179432 − 0.19763548 − 0.19763547 4.11172657 4.11172656
1.170711 0.85797078 0.85797078 0.00178856 0.00178856 − 0.08534990 − 0.08534990 3.61038431 3.61038430
1.192388 0.96275029 0.96275029 0.00178681 0.00178681 − 0.02087141 − 0.02087140 3.31754720 3.31754719
1.200000 1.00000000 1.00000000 0.00178657 0.00178657 − 0.00000000 − 0.00000000 3.22183659 3.22183658

Table 2  Comparison of the present solutions of thick hollow sphere for temperature-independent material properties with Eslami et al. (2005) 
(n

i
= 0, m

i
= −2, i = 1, 2, 3)

r T∕To u∕ri �rr∕Pi ���∕Pi

CPS Eslami et al. 
(2005)

CPS Eslami et al. 
(2005)

CPS Eslami et al. 
(2005)

CPS Eslami et al. 
(2005)

1.000000 0.10000000 0.10000000 0.00082711 0.00082711 − 1.00000000 − 1.00000000 4.02349574 4.02349571
1.007612 0.13425421 0.13425421 0.00082117 0.00082117 − 0.92583577 − 0.92583572 3.83284442 3.83284441
1.029289 0.23180195 0.23180195 0.00080627 0.00080627 − 0.73802215 − 0.73802215 3.34229889 3.34229886
1.061732 0.37779246 0.37779246 0.00078904 0.00078904 − 0.51159758 − 0.51159754 2.73247388 2.73247388
1.100000 0.55000000 0.55000000 0.00077547 0.00077547 − 0.31011196 − 0.31011196 2.16600870 2.16600868
1.138268 0.72220754 0.72220754 0.00076811 0.00076811 − 0.16162567 − 0.16162564 1.72684570 1.72684570
1.170711 0.86819805 0.86819805 0.00076599 0.00076599 − 0.06679974 − 0.06679974 1.43158435 1.43158434
1.192388 0.96574579 0.96574579 0.00076640 0.00076640 − 0.01587456 − 0.01587453 1.26606210 1.26606210
1.200000 1.00000000 1.00000000 0.00076686 0.00076686 − 0.00000000 0.00000000 1.21317410 1.21317409

Table 3  Mesh refinement test of the present solutions for thick hol-
low cylinder at r = 1.1, n1 = −0.1, n2,3 = 0.1 , m

i
= −2, i = 1, 2, 3

CPS mesh 
points (N)

Fix-point iteration 
number

T∕To u × 102

6 8 0.55069292 0.28995929
8 9 0.55069067 0.29070369
10 9 0.55068721 0.29085058
12 9 0.55068710 0.29088216
14 9 0.55068700 0.29088940
16 9 0.55068700 0.29089114
18 9 0.55068700 0.29089157
20 9 0.55068700 0.29089168

Table 4  Mesh refinement test of the present solutions for thick hol-
low sphere at r = 1.1, n1 = −0.1, n2,3 = 0.1 ,      m

i
= −2, i = 1, 2, 3

CPS mesh 
points (N)

Fix-point iteration 
number

      T∕To u × 102

6 10 0.57084707 0.12128175
8 10 0.57084473 0.12163006
10 10 0.57084009 0.12170318
12 10 0.57083990 0.12171985
14 10 0.57083976 0.12172390
16 10 0.57083975 0.12172493
18 10 0.57083975 0.12172520
20 10 0.57083975 0.12172528
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temperature-dependent material properties, respectively. 
The nonlinearity parameter of the modulus of elasticity 
(n1 = −0.1) is taken negative due to the decrease in elastic 
modulus with temperature increase.

It is found that the temperature (Fig. 1) and the dis-
placement (Figs. 2a, 3a) along the radial direction are 
higher when the material properties have a temperature 
effect for both cylindrical and spherical geometry. Accord-
ingly, it is shown in Figs. 2b and 3b that the radial stresses 
are lower compared to temperature-independent function-
ally graded model. The hoop stresses (Figs.  2c, 3c) along 
the radius take higher values on the inner wall and lower 
values on the outer wall compared to only radially depend-
ent material. It can be observed from Figs.  1, 2, and 3 that 
temperature-dependent material properties at high tem-
peratures have great effect on temperature, displacement, 
and stress distributions.

5  Conclusions

In this study, nonlinear thermal stress analysis of the func-
tionally graded hollow thick cylinder and sphere in the inter-
val from 40 to 400◦C is solved numerically with combina-
tion of the Chebyshev pseudospectral collocation method 
(CPS) and the fixed-point iteration method. The material 
properties of the hollow thick cylinder and sphere are both 
temperature dependent and radially graded except the Pois-
son’s ratio, which is taken to be constant. The CPS procedure 
is validated by comparing the solutions of thick hollow bod-
ies for functionally graded temperature-independent materi-
als (Jabbari et al. 2002; Eslami et al. 2005). It is shown that 
all results are in good agreement. Finally, it can be deduced 
that:

Table 5  Comparison between the results of the linear (n
i
= 0) and 

nonlinear models (n1 = −0.1, n2,3 = 0.1) for temperature distribution 
of cylinder (m

i
= −2, i = 1, 2, 3)

r Linear model Nonlinear model

1.000000 40.00000000 40.00000000
1.004894 48.02853295 49.29758324
1.019098 71.55019235 75.64996429
1.041221 108.84358506 115.68743850
1.069098 156.97641694 165.40310854
1.100000 211.81818182 220.27488482
1.130902 268.22253492 275.30641824
1.158779 320.44627589 325.28492670
1.180902 362.79631033 365.25055599
1.195106 390.40887882 391.07146831
1.200000 400.00000000 400.00000000

Table 6  Comparison between the results of the linear (n
i
= 0) and 

nonlinear models (n1 = −0.1, n2,3 = 0.1) for temperature distribution 
of sphere (m

i
= −2, i = 1, 2, 3)

r Linear model Nonlinear model

1.000000 40.00000000 40.00000000
1.004894 48.80982707 50.19265889
1.019098 74.37694101 78.74875477
1.041221 114.19865459 121.31124829
1.069098 164.37694101 172.90331573
1.100000 220.00000000 228.33603527
1.130902 275.62305899 282.44075251
1.158779 325.80134541 330.36451111
1.180902 365.62305899 367.90210740
1.195106 391.19017293 391.79952057
1.200000 400.00000000 400.00000000
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Fig. 1  The effect of the temperature-dependent material properties on 
temperature distribution
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(c) Hoop Stress

Fig. 2  The effect of the temperature-dependent material properties on 
cylindrical geometry
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Fig. 3  The effect of the temperature-dependent material properties on 
spherical geometry
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– Temperature-dependent material properties at high tem-
peratures and temperature differences have a great effect 
on temperature, displacement, and stresses. Therefore, 
the effect of temperature on material properties should 
be considered in studies requiring high accuracy.

– The combination of the Chebyshev pseudospectral collo-
cation method (CPS) and the fixed-point iteration method 
can efficiently be used for both nonlinear heat conduction 
problems and thermal stress analysis.

– The solution procedure has high accuracy, low calcula-
tion cost, and ease in implementation.
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