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Abstract
The efficiency of quasi-zero stiffness vibration isolator will decrease when getting overloaded and underloaded. Given the 
variability of load in general engineering application, this paper aims at presenting a newly designed type of vibration isola-
tion system with positive stiffness in parallel with elements of negative stiffness, which has variable carrying capacity. The 
vibration isolation performance of system requires overall analysis. Firstly, static analysis is applied to obtain the optimal 
vibration isolation parameters of the system at the equilibrium position and to verify the high-static low-dynamic stiffness 
characteristic of the system. Then, the nonlinear dynamic equation of the system is established. Meanwhile, the influence 
of excitation amplitude on the transmissibility of the system is analyzed under three different conditions by harmonic bal-
ance method. Finally, the response curves of the system to sinusoidal excitation and multi-frequency excitation are analyzed 
by numerical simulation. The result of numerical simulation shows that the vibration isolation system still has good low-
frequency vibration isolation characteristics when dealing with different loads. The problem of poor vibration isolation 
performance of general quasi-zero stiffness isolators under load changes is well solved.
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List of symbols
A0	� Constant term of the steady-state solution
A1	� Amplitude of harmonic term of the steady-state 

solution
A
f

0
	� Peak amplitude of A0 for the force excitation

Az
0
	� Peak amplitude of A0 for the displacement 

excitation
Af
1
	� Peak amplitude of A1 for the force excitation

Az

1
	� Peak amplitude of A1 for the displacement 

excitation
a	� The horizontal distance between the tilted spring 

end and the equilibrium point
a0	� The original horizontal distance between the tilted 

spring end and the equilibrium point
c	� Damping coefficient
F	� The external load
FV	� The restoring force of vertical spring
Fs	� The restoring force of inclined spring

F1	� The restoring force of the system under harmonic 
force excitation

F2	� The restoring force of the system under harmonic 
displacement excitation

fm	� Dynamic force transmitted to the base
fmd	� Damping force
fme	� Elastic force
Fme0	� Constant term of fme

Fme1	� Amplitude of harmonic term of fme

Fmd	� Amplitude of harmonic term of fmd

h0	� The distance between the initial position and the 
initial equilibrium point

K	� The system stiffness
ks	� Stiffness of horizontal spring
kv	� Stiffness of vertical spring
L	� The length of the inclined spring
L0	� The original length of the inclined spring
m	� Mass
Tf	� The force transmissibility of ideal system
Tz	� The absolute displacement transmissibility of the 

system
Tl	� The force transmissibility of equivalent linear 

system
u0	� The deviation from the desired position
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v	� The displacement with the equilibrium position
x	� The displacement at the equilibrium point
y	� Relative displacement (y = u −z)
z	� Absolute displacement response of base
Z	� Amplitude of base absolute displacement
�	� Stiffness ratio
�	� The included angle between the guide track and the 

horizontal plane
�	� The included angle between the inclined spring and 

the horizontal plane
�	� Dimensionless viscous damping coefficient
�	� The amplitude of harmonic excitation
�	� Excitation frequency
�n	� Natural frequency of the system
�	� Phase difference
�	� Frequency ratio �∕�n

�f	� Frequency corresponding to the peak response for 
force excitation

�z	� Frequency corresponding to the peak response for 
displacement excitation

1  Introduction

Low-frequency vibration generally has the characteristics 
of slow attenuation and long propagation distance, which 
will bring pose potential hazards to engineering equipment. 
By introducing negative stiffness element in parallel with 
positive stiffness element can form an HSLD vibration iso-
lator (Dong et al. 2017, 2018a; Asai et al. 2017), so that the 
vibration isolation frequency band of the system can extend 
to low frequency and ultra-low frequency (Sun et al. 2018; 
Wu et al. 2017; Davis and McDowell 2017). During the past 
five years, a number of research have been done on the struc-
tural design of negative stiffness elements, such as Euler 
pressure bar (Ding and Chen 2019), torsional spring (Zhou 
et al. 2015), hydraulic component (Li et al. 2018), cam roller 
(Sun et al. 2019a) and nonlinear damper (Dong et al. 2018b), 
and the result reveals that the HSLD vibration isolator has an 
excellent performance of low-frequency vibration isolation, 
comparing with the traditional linear isolator. Moreover, the 
HSLD vibration isolation method has been extended from 
single degree of freedom (DOF) to multi-DOF vibration iso-
lation (Wang et al. 2017; Li and Xu 2018; Sun et al. 2019b), 
which show a better effectiveness of low-frequency vibration 
isolation in multiple directions. However, how to realize the 
vibration isolation in wider frequency domain on the basis of 
HSLD is still a problem that domestic and foreign scholars 
have been committed to solving.

Given the theory that positive and negative stiffness par-
allel mechanism can cancel each other to form quasi-zero 
stiffness structure to some extent, Cheng et al. researched 
the QZS structure of one horizontal tension spring with two 

vertical positive stiffness springs (Cheng et al. 2017). Xu 
et al. proposed a QZS vibration isolation system with time-
delay control for line spectrum reconstruction of mechani-
cal vibration and noise of underwater vehicles (Li and Xu 
2016; Zhou et al. 2018). Wang et al. studied the influence of 
negative stiffness elements with different structures on low-
frequency vibration, such as inclined springs, the buckled 
beam (Wang et al. 2019a, b; Cai et al. 2020). Valeev stud-
ied the solution of QZS problem, from the perspective of 
manufacturing (Valeev 2018). Jurevicius et al. described the 
theoretical and experimental investigations of the dynam-
ics of the complex passive low-frequency vibration systems 
(Jurevicius et al. 2019). Tang et al. studied the impact of 
shock vibration on QZS isolators (Tang and Brennan 2014). 
Liu and Yu added an auxiliary system based on the general 
QZS vibration isolators. The studies show that the addition 
of the auxiliary system can make the vibration isolator to 
obtain a wider vibration isolation frequency domain (Liu 
and Yu 2018).

However, load variation in practical application has a 
great impact on vibration isolation performance of vibration 
isolation system (Abolfathi et al. 2015; Ledezma-Ramirez 
et al. 2015). In general, in parallel vibration isolation sys-
tem with positive and negative stiffness, elastic elements 
with positive and negative stiffness need to be adjusted at 
the same time to achieve variable load, and the structure is 
complex, which is difficult to realize (Le and Nguyen 2017; 
Abbasi et al. 2018; Wang et al. 2018). Therefore, since the 
damage caused by low-frequency vibration to instruments 
with different loads, and the existing quasi-zero stiffness 
vibration isolations cannot solve the problem well, a new 
type of HSLD low-frequency vibration isolation device with 
variable load has been designed. Low-frequency vibration 
isolation of different loads can be achieved by adjusting the 
displacement of inclined guide rod. This paper is organized 
as follows: In Sect. 2, the static analysis of the model is 
carried out to show its HSLD characteristics at the static 
equilibrium position. The HSLD characteristics of the sys-
tem at the static equilibrium position are studied in Sect. 3. 
The vibration isolator’s transmissibility is given in Sect. 4 to 
evaluate vibration isolation performance. In Sect. 5, numeri-
cal simulation is used to verify the correctness of vibra-
tion isolation system theory. Finally, some conclusions are 
drawn.

2 � Description of Low‑Frequency Vibration 
Isolation

The three-dimensional diagram and structural diagram of 
the low-frequency vibration isolator are shown in Fig. 1. The 
isolator is mainly supported by two vertical springs, and two 
inclined springs are used to reduce the overall stiffness of it 
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in the vertical direction. When bearing a load, the platform 
will be subjected to the force of vertical spring and inclined 
spring at the same time. Under this circumstance, this isola-
tor will reach the static equilibrium point when the inclined 
spring is parallel to the horizontal plane. The correcting ele-
ment consists of a motor, a screw, a slider, and two pull rods. 
The inclined spring is installed on the inclined guide bar. 
The motor rotates to drive the slider to slide up and down 
in order to pull the bar. The end of the inclined guide rod is 
connected with the pull rod. Thus, the change in the position 
of the tie rod makes the end of the guide rod slide inside the 
slide track, then changing the angle between the inclined 
spring and the horizontal plane. The change of the included 
angle causes a corresponding change of the balance posi-
tion of the structure, as well as the compression amount and 
bearing capacity of the positive and negative stiffness elastic 
components at the new-balance position. Given the above 
premises, by adjusting the inclination angle of the inclined 
spring, the compression amount of both positive and nega-
tive stiffness components can be adjusted. The mechanism 

of the correcting element is shown in Fig. 2. In Fig. 2a, the 
vibration isolator is in the overload state at the static equi-
librium position, and the negative stiffness components are 
on horizontal planes. By adjusting the motor, the slider can 
be moved down, and the pull rod will be pulled to make the 
angle between the inclined spring and the horizontal plane 
corresponding to the load. Thus, the load on the object will 
be in a new-balance position, as shown in Fig. 2b.

3 � Static Characteristics of the System

For common quasi-zero stiffness vibration isolation systems, it 
is necessary to achieve HSLD performance at the equilibrium 
point, so that the system can meet the low-frequency vibration 
isolation characteristics. However, for the new vibration isola-
tion system designed in this paper, not only the HSLD charac-
teristic, but also the quasi-zero stiffness characteristic near the 
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Fig. 1   Low-frequency isolator model: (1) loading support; (2) vertical springs; (3) tilt guide bar; (4) tilt springs; (5) telescopic rod; (6) sliding 
track; (7) slider; (8) leading screw; (9) motor; (10) base
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Fig. 2   Low-frequency isolator adjustment schematic: a preadjustment structure diagram, b adjusted structure diagram
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equilibrium position should be achieved in order to realize the 
low-frequency vibration isolation for different loads.

Figure 3 is a schematic diagram of the force exerted on the 
negative stiffness component of the correcting element. In this 
diagram, when this part is affected by force F after ignoring 
the vibration-isolated object, the restoring force in the vertical 
direction of the system is

In the above formulae, Fv and FS represent the restoring 
force of vertical spring and the restoring force of inclined 
spring, respectively; Kv and KS are the corresponding stiff-
ness of elastic elements with positive and negative stiffness; 
h0 represents the distance between the initial position and 
the initial equilibrium point; θ represents the included angle 
between the inclined spring and the horizontal plane; a is the 
horizontal distance between the tilted spring end and the equi-
librium point; β is the included angle between the guide track 
and the horizontal plane; y is the displacement of the end of 
the inclined guide bar on the guide rail track; L0 is the original 
length of the inclined spring; and x is the displacement at the 
equilibrium point. The above parameters are used to define the 
following dimensionless parameters:

Thus, the equation between the dimensionless restoring 
force and displacement of the system should be:

(1)F = Fv + Fs

(2)Fv = 2kv(h0 + x + y sin �)

(3)Fs = − 2ksx

(
L0

(a − y cos �)2 + x2
− 1

)

F̂s =
Fs

ksL0
, F̂ =

F

kvL0
−

h0

L0
, x̂ =

x

L0
, â =

a

L0
, ŷ =

y

L0
, 𝛼 =

ks

kv

(4)F̂ = 2(x̂ + ŷ sin 𝛽) − 2𝛼x̂

�
1√

(â − ŷ cos 𝛽)2 + x̂2
− 1

�

By taking the derivative of Eq. (4), the dimensionless 
stiffness and displacement of the system can be expressed as

If the guide bar is not adjusted at this time, the displace-
ment of the guide bar y is 0, and the relationship between 
stiffness ratio α and initial included angle θ would be 
expressed as:

According to Fig. 4, the range where the dimensionless 
force is 0 at the equilibrium position is affected by the initial 
angle, and the included angle is either too small or too large 
to increase the instability of the system. Meanwhile, it can 
be found from Fig. 5 that when the initial included angle 
ranges from 20° to 80°, the average variation of stiffness 
near the equilibrium position would decrease at first and 
then increase.

Therefore, in the range between 20° and 80°, there is a 
minimum value of the average variation of stiffness near the 
range of the equilibrium position. At this point, vibration 
isolation efficiency is the best.

The stiffness ratio changes with the initial included angle. 
On this premise, Eq. (6) should be substituted into Eq. (5). 
Meanwhile, the researcher set x as quantitative and a as inde-
pendent variable in order to obtain diagram describing the 
relationship between geometric parameters and dimension-
less stiffness. When the dimensionless stiffness K attains the 

(5)K̂ = 2 − 2𝛼

⎧
⎪⎨⎪⎩

(â − ŷ cos 𝛽)2

�
(â − ŷ cos 𝛽)2 + x̂2

� 3

2

− 1

⎫
⎪⎬⎪⎭

(6)� =
ks

kv
=

a

(L0 − a)
=

cos �

(1 − cos �)
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y x
��
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F

a
O

θ

Fig. 3   Negative stiffness stress diagram
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minimum value, the corresponding point a will attain the mini-
mum value of the average change. At this equilibrium position, 
the isolation frequency domain reaches the widest state, as 
shown in Fig. 6.

As shown in Fig. 7, by comparing this point with neighbor-
ing points, it is verified that this point is the optimal equilib-
rium point before the position of the guide rod is adjusted. 
Moreover, this point should be regarded as the midpoint of the 
up-down displacement of the guide rod in order to reduce the 
variation range of the overall stiffness of the system.

Given the geometric operation relation shown in Fig. 3, it 
can be calculated that:

(7)a = y cos � + a0

According to the above formulae, corresponding relation 
of â , α, θ can be found out. As shown in Fig. 8, the change 
of the slide track inclination angle β has less effect on stiff-
ness ratio α, whereas the change of the guide bar displace-
ment y has more effect on stiffness ratio α. When the guide 
bar displacement y changes within the range of ± 0.1, the 
initial included angle between the inclined spring and the 
horizontal plane decreases gradually with the increase of 
y. Thus, at the same time, the stiffness ratio required a will 
also increase.

When ŷ cos 𝛽 ≠ 0 , as β has less effect on stiffness ratio 
a, β is set 45° considering the convenience of subsequent 

(8)L =

√(
h0 − y sin �

)2
+
(
y cos � + a0

)2

(9)cos � = a∕L
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Fig. 5   Dimensionless stiffness-displacement curve of the system at 
different initial angles
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calculation. The value of a and h0 is defined as unit length, 
and the corresponding initial angle θ ranges from 43° to 
52°; thus, the variation range of the slide rail displace-
ment y will be − 0.11 to 0.08. In the process of sliding 
track displacement change, it can be found out that the 
dimensionless force ranges from − 0.11 to 0.08, according 
to Fig. 9. Moreover, when x > 0.33, the displacement of the 
guide bar has merely no effect on the dimensionless force. 
Meanwhile, the dimensionless stiffness–displacement 
curve of the whole system can be obtained from Fig. 10. 
At this point, the variation range of the stiffness of the 
system at the equilibrium position is − 0.48 to 0.48. There-
fore, from the perspective of statics, this structure reduces 
the overall stiffness of the vibration isolation system and 

correspondingly changes the bearing capacity when the 
system reaches a new equilibrium position, so as to real-
ize low-frequency vibration isolation for different loads.

4 � Dynamic Analysis

4.1 � Dynamic Equations of the Isolator

In ideal condition, the parallel isolator with positive and nega-
tive stiffness will maintain static equilibrium state when x = 0 
and y = 0. At this point, the dynamic stiffness of vibration iso-
lation system is relatively low; thus, it is very sensitive to the 
change of load. In actual conditions, it is inevitable that the 
load will be too heavy or too light. When this happens, the iso-
lated object will not be at the equilibrium position in the static 
equilibrium state, which means the vibration isolation system 
cannot meet vibration isolation in the ideal state. Assuming 
that the vibration isolation system is in overload state, then 
there is supposed to be:

In the above formula, û0 represents the deviation from the 
desired position, and mg represents the difference between 
the overload mass and the ideal mass. If harmonic force exci-
tation f = F cos (�t) and harmonic displacement excitation 
e = Z cos (�t) are applied in the system, the nonlinear motion 
differential equation of the system can be formed as:

In the above two formulae, v is the displacement with the 
equilibrium position in overload condition as the origin of 
coordinates, and z = v − e stands for the relative displacement 
between the isolated object and the base under the harmonic 
excitation condition. Using Taylor’s expansion, Eqs. (4) and 
(5) can be approximated to:

At this time, the dynamic model of the system can be con-
structed by applying excitation force to the vibration isolator 
and the object:

(10)KL
[
(k1(±û0) + k3(±û0)

3)
]
= mg

(11)mv�� + cv� + F1 −mg = F cos(�t)

(12)mz�� + cz� + F2 −mg = m�2Z cos(�t)

(13)k1 = 1 − 𝛼

(
1

â − ŷ cos 𝛽
− 1

)

(14)k3 =
𝛼

2(â − ŷ cos 𝛽)3

(15)ŷ =
û0

sin 𝛽
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Fig. 9   Dimensionless force–displacement when the slider is displaced
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placed



603Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2021) 45:597–609	

1 3

In the above formula, ρ is the amplitude of harmonic 
excitation. If the input is harmonic force excitation, then 
� = 1 , 𝜌 = F̂ . If the input is harmonic displacement exci-
tation, then � = �2 , 𝜌 = Ẑ  . The following dimensionless 
parameters are applied:

�n =
√
k∕m , �=�∕�n , �=�nt , � = c∕(2m�n) , 𝛿=𝛿∕L0 , 

ŷ = y∕L0 , F̂=F∕kvL0 , Ẑ = Z∕L0
By substituting Eqs. (14) and (15) into Eq. (16), the 

dimensionless differential equation of the system can be 
formed as:

The above two formulae can be transformed as:

The nonlinear dynamic equation expressed in Eq. (19) 
is Duffing equation, which is transformed into Duffing 
equation under asymmetric excitation through parameter 
transformation. Then the equation q̂ = ẑ ± m2∕(3k3) is 
formed and substituted into Eq. (19). Thus, the differential 
equation of the system can be converted into:

In the above formula, b0 = k3û
3
0
 . Thus, the steady-state 

response solution is solved by applying harmonic balance 
method. Meanwhile, the higher-grade harmonic term is 
omit, the constant term and the coefficient of the harmonic 
terms of each grade are turned to zero, and then the sys-
tem’s steady-state response solution is obtained. The solu-
tion only consists of constant term A0 , harmonic amplitude 
term A1 and phase difference φ:

After obtaining quadratic sum, the researcher gets a 
polynomial with only the constant term A0:

(16)

mL0
d2x̂

dt2
+ cL0

dx̂

dt
+ k

s
L0

[
(k1(x̂ ± û0) + k3(x̂ ± û0)

3)
]

= 𝜐𝜌 cos(𝜔t) +mg

(17)v̂�� + 2𝜉v̂� + 3k3û
2
0
v̂ ± 3k3û0v̂

2 + k3v̂
3 = F̂ cos(𝛺𝜏)

(18)ẑ�� + 2𝜉ẑ� + 3k3û
2
0
ẑ ± 3k3û0ẑ

2 + k3ẑ
3 = 𝛺2Ẑ cos(𝛺𝜏)

(19)n̂�� + 2𝜉n̂� + 3k3û
2
0
n̂ ± 3k3û0n̂

2 + k3n̂
3 = 𝜐𝜌 cos(𝛺𝜏)

(20)q̂�� + 2𝜉q̂� + k3q̂
3 = ± b0 + 𝜐𝜌 cos(𝛺𝜏)

(21)k3A
3
0
+

3

2
k3A0A

2
1
= ± k3

(22)−�2A1 + 3k3A0A1 +
3

4
k3A

3
1
= �� cos(�)

(23)−2��A1 = �� sin(�)

At this point, Ω has two solutions with positive value. 
By calculating, the researcher obtains the extremum of 
the constant term Af

0
 and its corresponding resonant fre-

quency �f

0
 of the system at the harmonic force excitement 

condition:

In a similar way, the extremum of the constant term Az
1
 and 

its corresponding resonant frequency �z
1
 in the system at the 

harmonic displacement excitement condition:

The above process is mainly the calculation under the over-
load state. When an underload state occurs, û0 should be trans-
formed into −û0 in order to obtain steady-state response solu-
tion of the system under two harmonic excitation conditions.

4.2 � Definition of the Transmissibility

Force transmissibility and displacement transmissibility are 
the main parameters to measure the performance of vibra-
tion isolators. When the harmonic force excitation is applied, 
dimensionless force f̂m on low-frequency vibration isolation 
system consists of dimensionless damping force f̂md and 
dimensionless elastic force f̂me . Thus, it is obvious that:

Speaking of dimensionless force applied to the system 
under overload state can be attained:

(24)
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In the above two equations:

By substituting Eq. (31) into Eq. (30), the expressions of 
dimensionless damping force f̂md and dimensionless elastic 
force f̂me can be attained:

In the above two expressions, the amplitude of the dimen-
sionless damping force can be expressed as F̂md = 2𝜉𝛺A1 . 
Meanwhile, constant term F̂me0 and the amplitude of the har-
monic term F̂me1 should be expressed as:

According to the concept of force transmissibility, the 
parts in the system dynamics can be ignored in both the 
overload state and new equilibrium state, so:

The force transmissibility of ideal system and equivalent 
linear system is, respectively:

In a similar way, when the harmonic displacement excita-
tion is applied to a vibration-isolated item in overload state, 
the dimensionless absolute displacement of the system is:

Thus, the absolute displacement transmissibility of the 
system should be:

(30)q̂ = ẑ ± m2∕(3k
�
3
) = A�
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(31)A
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0
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q̂ = ê ∓ û0 + ẑ = A0 ∓ û0 + A1 cos(𝛺𝜏 + 𝜑) + 𝜌 cos(𝛺𝜏)
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𝜌

In the above two equations, cos(φ) can be solved through 
Eq. (22).

The force and displacement transmissibility of the low-
frequency vibration isolation system in the ideal state, the 
overload state, and the new equilibrium state, and the force 
and displacement transmissibility of the equivalent linear 
system in such conditions are shown in Figs. 11 and 12. It 
can be seen from the two sets of figures that the low-fre-
quency vibration isolation system in the three states is better 
than the equivalent linear system in terms of the amplitude 
and frequency excitation. And with the excitation amplitude 
increases, the system stiffness of the overload state and the 
new equilibrium state will constantly change, showing suc-
cessively as linear, gradually soft, gradually soft then gradu-
ally hard, gradually hard.

Under the condition of harmonic force excitation, the 
magnitude relationship of the force transmissibility of the 
low-frequency vibration isolation system in three states will 
change in different frequency ranges. When the excitation 
frequency is in low-frequency band, force transmissibility 
in ideal state is lower than that in new equilibrium state, 
whereas the latter is lower than the force transmissibility in 
overload state. In other words, the vibration efficiency of the 
system in the ideal and the new equilibrium state is better 
than that in the overload state. In addition, when the exci-
tation amplitude increases and reaches the high-frequency 
band, the force transfer rate of the low-frequency vibration 
isolation system under the three states will tend to be con-
sistent with each other.

In the condition of harmonic displacement excitation, the 
characteristic changes caused by the excitation amplitude on 
the system are basically the same as the force transfer rate 
curve, so only the differences are analyzed. As shown in 
Fig. 12, the maximum absolute displacement transfer rate of 
the low-frequency vibration isolation system in the overload 
state is always greater than that in the new equilibrium state 
and ideal state. Meanwhile, with the continuous increase of 
excitation amplitude, the absolute displacement transfer rate 
of the low-frequency vibration isolation system in the above 
three states will tend toward infinity.

5 � Numerical Simulation

5.1 � Simulation of General Equivalent Systems 
Under Basic Excitation

In this section, there are mainly two kinds of simulation: 
the first one is the simulation of the general equivalent sys-
tems; the second one is the simulation of the low-frequency 
vibration isolation system in the ideal state, overload state, 
and new equilibrium state. Given the fact that the newly 
designed vibration isolator is mainly used in low-frequency 
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vibration isolation, this section focuses on the simulation of 
the system under sinusoidal excitation vibration condition 
and random multi-frequency excitation vibration condition.

The parameters used in this simulation are shown in 
Table 1. A sinusoidal excitation is applied in the gen-
eral equivalent system. The amplitude of the excitation 

is 4 mm, while the corresponding frequency is 5 Hz. In 
Fig. 13, once the system is just sinusoidal excited, its 
response amplitude increases rapidly and arrives at a sta-
ble point when t = 2 s. At this point, the response ampli-
tude is more than twice that of the excitation amplitude. 
When random multi-frequency excitation is applied, the 
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Fig. 11   Force transmissibility curve under harmonic excitation conditions
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amplitude of the response curve of the general equivalent 
linear system is always larger than the excitation ampli-
tude. Thus, it can be seen that the nonnegative stiffness 
system cannot isolate low-frequency vibration efficiently. 
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Fig. 12   Displacement transmissibility curve under harmonic displacement excitation conditions

Table 1   Parameters and 
simulation values of vibration 
isolation system

Parameter Simulation

â 0.66
α 0.97
c 3.8
M 1.5
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Meanwhile, the system can magnify the input excitation 
amplitude and then aggravate the damage to the item.

5.2 � Simulation of Low‑Frequency Vibration 
Isolation System Under Basic Excitation

Given the fact that a general equivalent system cannot iso-
late low-frequency vibrations, a negative stiffness element is 
added into the system in order to study its response curve in 
the single-frequency sinusoidal excitation state and random 
multi-frequency excitation state.

5.3 � Simulation of System in Ideal Condition

In Fig. 14, once a sinusoidal excitation is applied in the 
vibration system, the response amplitude of the system will 
suddenly increase and be unstable in a short period. How-
ever, after 1 s, the response amplitude of the system enters 
the stable output stage. Meanwhile, the response amplitude 
is much smaller than the sinusoidal excitation amplitude. 

When facing with a random multi-frequency excitation, 
the parallel vibration isolation system with positive and 
negative stiffness can reduce the input amplitude. At the 
same time, the range of the response amplitude is approxi-
mately ± 5 mm, which shows relatively high vibration iso-
lation ability. Based on the above figures, it is proved that 
parallel isolator with positive and negative stiffness can 
effectively isolate vibration when low-frequency excitation 
is applied in ideal condition.

5.4 � Simulation of System in Overload Condition

It is necessary to study the response curve after excitation is 
applied in the overload condition. Keeping the parameters 
of the system unchanged, the researcher let û0 = 0.05 and 
then attain the following response amplitude of the system:

According to Fig. 15, the overload system has higher 
response amplitude comparing to the ideal system and 
shows instability. When random multi-frequency excitation 
is applied, the amplitude of the curve of the system changes 
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Fig. 13   Input and output curves of equivalent linear system under sinusoidal excitation and multi-frequency excitation
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sharply, especially near the peaks. At this point, the response 
amplitude changes rapidly. To sum up, although the overload 
system cannot realize the same vibration isolation efficiency 
and performance when these two kinds of excitation are 
applied, it still has low-frequency vibration isolation ability 
comparing to the general equivalent linear system.

5.5 � Simulation of System in New Equilibrium 
Condition

The inclined guide bar of the newly designed parallel vibra-
tion isolator is adjusted with positive and negative stiffness 
in order to suit the load in overload condition and then attain 
the response curve of the system, which is shown in Fig. 16.

At this point, the response curve of the newly designed 
system is basically the same with that of the overload sys-
tem. However, the response amplitude of the new system is 
better than that of the overload system. Therefore, the newly 

designed parallel vibration isolator is feasible to conduct 
effective vibration isolation in case of variable loads.

6 � Conclusion

This paper concentrates on the design and analysis of a 
new type of vibration isolation system with positive stiff-
ness in parallel with elements of negative stiffness, which 
is structurally simple. Unlike previous studies, this paper 
focuses on the analysis of the effect of different loads and 
the implementation of an adjustment mechanism to handle a 
wide range of loads. To ensure zero stiffness under imperfect 
stiffness matching, a lateral adjustment mechanism is also 
proposed. Meanwhile, as the bearing capacity of the system 
can be adjusted according to the load, the system can be 
widely applied in engineering practices. Here is the conclu-
sion of this paper:
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Fig. 15   Input and output curves of overload system under sinusoidal excitation and multi-frequency excitation
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(1)	 According to the static analysis, before the guide bar 
is adjusted, the system’s range of vibration isolation 
becomes the widest when the structural parameter ratio 
â = 0.66 is in the static equilibrium position. However, 
after the guide bar is adjusted according to the variation 
of the load, the system still has relatively low natural 
frequency in the new equilibrium position.

(2)	 According to the dynamic analysis, the increase of exci-
tation amplitude can change the stiffness characteristic 
of the transmissibility of the low-frequency vibration 
isolation system. When the transmissibility of the sys-
tem has no unstable solution, which means the excita-
tion amplitude is relatively low, the isolation efficiency 
of the low-frequency vibration isolator in the ideal state 
is always higher than that in the new equilibrium state 
as well as in the overload state.

(3)	 Whenever exposed to sinusoidal or multi-frequency 
excitations, the newly designed system in this paper 
can always isolate low-frequency vibration effectively 
in the ideal state. Although the isolation efficiency of 
the system in the new equilibrium state is lower com-
paring to that in the ideal state, it is still higher than that 
in the overload state.
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