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Abstract
This paper evaluates the dynamics of a heavy road truck on different random road conditions, whereas the issue of beam 
flexibility is also being accompanied. Heavy vehicles like trucks and buses having a large structure to carry their load ride 
in all kinds of terrains, for thousands of miles without failing structure. Structure (chassis or frame) of the truck should be 
able to sustain all types of vibration (i.e., longitudinal, transverse and flexural). This study starts with developing an analyti-
cal model with consideration of the Rayleigh beam approach, where the rotary inertia of the beam has also been admitted. 
This work also considered internal damping of the chassis, which has been neglected in past studies specifically for flexural 
vibration. Further bond graph model of the flexible structure of a heavy road vehicle is developed, where this model is derived 
through modal expansion approach. The dynamic response of the structure is analyzed under various random road condi-
tions at different vehicle speeds. These random models of the road are developed according to ISO 8608 standard, whereas 
four (H1–H4) kinds of road categories are considered. Results show the dynamic response of the chassis under a real road 
response so that parameters of the various parts of the structure can be evaluated, which further raises the ride comfort and 
road holding capability of the structure. Further, this work also examines the effect of structural damping or internal damp-
ing on the dynamics of the system.

Keywords  Lagrangian approach · Bond graph · Frame flexibility of the chassis · Structural damping · Random road 
conditions

1  Introduction

Ride vibration is a principal concern for vehicle dynam-
ics, where frame flexibility plays a very significant role. 
Numerous studies have been conducted on problems of 
ride vibration. However, very few studies have been carried 
out to study the effect of vibration, which includes a flex-
ible frame. It has been generally noticed that the flexural 
vibration can be neglected for smaller vehicles, relatively 
for stiffer automobiles. However, trucks and the long heavy 

vehicle experience significant beaming mode vibration 
(Margolis and Edeal 1989). Ibrahim (1996) has created a 
model of truck frame through FEM where he calculated the 
modal properties of the frame. The results were presented 
in terms of PSD and RMS of the vehicle vertical response. 
Most of the analyses on the effects of chassis flexibility in 
vehicle dynamics were based on the use of particular model 
developed, whereas the FEM (finite element method) and 
the modal superposition theory have been extensively used 
to calculate the modal properties of the frame structure. 
Generally, the problem occurs due to the beam flexibility 
of the vehicle, which is termed as ‘beaming response of the 
vehicle’ (Rideout 2012). Rideout and Khan (2010) presented 
the model of the frame flexibility issue for truck model. 
They created a pitch plane model which involved longitu-
dinal dynamics and transverse frame vibrations. Huang and 
Zeng (2010) studied about flexural vibration problems for 
high-speed passenger rail vehicle, where car body was mod-
eled through Euler beam approach. This research underlined 
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the effect of internal damping in ride comfort of rail vehi-
cle. Kumar et al. (2017) analyzed the whole-body vibra-
tion for railway system. They have considered biodynamic 
model of human for the assessment of ride comfort, where 
whole-body model was integrated with flexible bogie model 
system. The flexible bogie system was modeled through 
Euler–Bernoulli beam approach. Similarly in other studies, 
Euler–Bernoulli approach was attempted to introduce beam 
flexibility in heavy truck chassis modeling (Zhou et al. 2009; 
Kim and Yim 1994). Heavy long vehicles have a ladder-
type chassis structure across the whole length of the vehicle. 
These structures are stiffer in bending, which can respond to 
bending frequencies more than 20 Hz. When the engine and 
other elements are mounted on the structure, these bending 
frequencies are reduced up to 8 Hz, for highly stiffer frames 
(Cai-hong and Zeng 2010; Tomioka et al. 2017). Tomioko 
and Takigami (2015) have conducted the experimental study 
on flexural beam to evaluate the effect of frame flexibility on 
passenger comfort. Some other studies apparently show that 
the beaming frequency is higher than the rigid frequency of 
the vehicle (Tomioka et al. 2006; Agostinacchio et al. 2014). 
However, in large vehicles, beaming frequency is influenced 
by road inputs.

A lot of research has been conducted considering the issue 
of frame flexibility in the analysis of railway vehicle. But, lim-
ited studies were reported on dynamic analysis of heavy road 
vehicles considering random road disturbances. A country like 
India, where multifarious road conditions are present, which 
creates an infirm condition before all leading automobile 
industries to maintain comfort level as per standard on every 
road conditions. Some studies have mentioned that structural 
damping can participate in ride quality improvement. So, in 
the present work frame flexibility has been incorporated by 
considering frame as Raleigh beam, which also includes the 
effect of the rotary inertia. Lagrangian approach has been 
applied to obtain the energy equations for the vehicle system, 
which resulted from the well-known rigid body modes and the 
modal parameters of the frame flexibility. The work involves 
the importance of structural or internal damping of beam-type 
chassis structure on flexural vibration and ride quality of the 
heavy vehicle with random road disturbance prescribed by ISO 
8608 (Meirovitch 1980) as input. The bond graph approach 
has been utilized to model the vehicle with flexible frame. 
Besides the beam response, the effect of different road condi-
tions as per ISO 8608 and vehicle speeds on the dynamics of 
vehicle has also been presented. The work begins with deriv-
ing Lagrange equation of frame considered as Rayleigh beam 
for truck flexural response. Then, this formulation is being 
extended for bond graph modeling with or without consid-
eration of structural damping effect. Simulations were carried 
out to visualize the beaming mode response with respect to 
random road conditions as prescribed by ISO 8608.

2 � Analytical Framework for Heavy Vehicle 
System Through Classical Mechanics

2.1 � Generalized Lagrange’s Equation 
for a Continuous System

It is a well-known fact that the Lagrange formulation pro-
vides one of the most convenient ways of writing down the 
equation of motion for a wide range of mechanical systems. 
The principal advantage of Lagrange’s equation is that it is 
easier to apply to dynamical systems other than the simplest. 
This formulation is created from scalar quantities of kinetic 
energy, potential energy and work expressed in terms of gen-
eralized coordinates and developed for universal handling 
of dynamical systems (Mukherjee and Karmakar 2000). 
The equation is formulated equations of motion from the 
principle of least action. This density function is a function 
comprised of time, transverse displacements and transverse 
velocities, and up to second derivatives of displacements to 
space coordinates x, which may be expressed as

where 
⌢

L(⋅) is the Lagrangian density function and T̂(⋅) is the 
kinetic energy density, which may be expressed as,

Moreover, V̂(t, x) is the potential energy density, which has 
the following functional dependence,

The next step is used for finding the equation of motion and 
the boundary conditions for the beam through the variational 
principle (see Appendix 2). This formulation yields

where δ(·) is infinitesimal variation operator and it is very 
similar to the total derivative operator; the only difference is 
that δ(·) does not vary with time. Another significant prop-
erty of infinitesimal operator is that it commutes with the 
differential operator. Using the extremization condition, one 
may obtain

(1)

⌢

L
(
w(t, x), ẇ(t, x),w�(t, x),w��(t, x), ẇ�(t, x)

)
= T̂(t, x) − V̂(t, x)

(2)
⌢

T(x, t) =
⌢

T(ẇ(x, t), ẇ�(x, t))

(3)
⌢

V(x, t) =
⌢

V(w�(x, t),w��(x, t))

(4)𝛿

t2

∫
t1

⌢

L
(
w(t, x), ẇ(t, x),w�(t, x),w��(t, x), ẇ�(t, x)

)
dt = 0

(5)
∫

L

0 ∫
t2

t1

𝛿
⌢

L
(
w(t, x), ẇ(t, x),w�(t, x),w��(t, x), ẇ�(t, x)

)
dxdt = 0
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or

The detailed derivation of the variational formulation is pre-
sented in “Appendix 1.”

2.2 � Analytical Formulation for Flexural Behavior 
of the Truck Chassis Structure

An analytical formulation for flexural behavior of the truck 
structure is being attempted in this section. The vehicle base 
is modeled as a rigid body with a local coordinate reference 
frame (w, x) attached to the center of mass (M) and aligned 
with the inertia principal axes as shown in Fig. 1. It has 
density (ρ) and pitch inertia (J) with respect to the body 
W1(t) −W2(t) displacement axis, EI flexural rigidity and θ(t) 
pitch velocity of the base. It is connected with the suspen-
sion system to different elements of the vehicles. The spring 
stiffness characterizes the spring and damper in the suspen-
sion system ks and damping coefficient Rs, respectively. The 
various displacements of the vehicle are described w(x, t) 
with respect to the equilibrium positions. As the vehicle is 
assumed to be rigid, its motion can be described by the verti-
cal displacement (bounce) as w(x, t) and the rotation about 
the transverse horizontal axis (pitch) as 𝜃̇(t).

The model of the vehicle is being created with the fol-
lowing assumptions:

•	 The components of the vehicle body act as a rigid body.
•	 The springs and dampers of the suspension system have 

linear characteristics.
•	 The spring damper system is assumed to be massless.
•	 The tire is assumed to provide stiffness and thus modeled 

as a spring element.

(6)

∫
L

0 ∫
t2

t1

⎡⎢⎢⎣
𝜕

⌢

L

𝜕w
𝛿w +

𝜕
⌢

L

𝜕ẇ
𝛿ẇ +

𝜕
⌢

L

𝜕w�
𝛿w� +

𝜕
⌢

L

𝜕ẇ�
𝛿ẇ� +

𝜕
⌢

L

𝜕w��
𝛿w��

⎤⎥⎥⎦
dx dt = 0

•	 The positions of the two ends of the spring connecting two 
rigid bodies or connecting one rigid body and one contact 
point are required as input data.

•	 The spring damper system connects each rigid body.
•	 The traveling road is assumed to be straight.
•	 The road inputs are assumed to be random.

The analytical framework of truck chassis can be assumed 
as a free–free beam structure, where Rayleigh beam approach 
is being adopted. Let us consider a transverse deflection of 
the beam w(x,t), where x varies from 0 to beam length L. The 
formalism of beam flexibility is easily obtained through the 
well-known Lagrangian equation. Lagrangian density varia-
tion may be obtained from the following expression as

where ρ is the mass density, A is the area of cross section, 
EI is the rigidity and I is the second moment of area of the 
cross section of the beam about the neutral axis. In Eq. (7), 
the first term represents kinetic energy of the beam, the sec-
ond term presents as inertial energy and the final term is 
strain energy. The variational formulation presents a refined 
and classical method of deriving the equation of motion of 
a dynamical system, where all the boundary conditions of 
a system can be revealed. However, fundamentals of vari-
ational formulation for the continuous system are detailed 
in “Appendix 2.”

The equation of motion is obtained after applying a vari-
ational formulation and boundary conditions in free vibration 
condition, which may be expressed as

This equation of motion is based on Rayleigh beam 
model. The term 

(
EIw��(x, t)

)�� is usually referred to as the 

(7)

L =

⎡
⎢⎢⎣
1

2

L

∫
0

�
𝜌Aẇ (x, t)2 + 𝜌Iẇ�(x, t)2

�
dx −

1

2

L

∫
0

�
EIw��(x, t)2

�
dx

⎤
⎥⎥⎦

(8)𝜌Aẅ(x, t) −
(
𝜌Iẇ��(x, t)

)�
+
(
EIw��(x, t)

)��
= 0

Fig. 1   Schematic diagram of a 
continuous frame of vehicle
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flexural term, where EI is called the flexural stiffness and (
𝜌Iẇ��(x, t)

)� is known as the rotary inertia term. If this term 
is zero, then Eq. (8) will become a Euler beam model. Thus, 
the term 

(
𝜌Iẇ��(x, t)

)� can also be named as a Rayleigh beam 
term.

Assume a modal solution for Eq. (8) in the form of

where ω is the eigenfrequency and W(x) is the eigenfunc-
tion. The actual solution of the equation may be obtained by 
taking the real part of the solution. Substituting the modal 
solution in the field Eq. (8) yields after rearrangement as

which along with the corresponding boundary condition rep-
resents the eigenvalue problem for a Rayleigh beam.

2.3 � Modal Analysis for Uniform Rayleigh Beam

Considering Eq. (10) as a uniform beam and substituting in 
Eq. (9) a solution of the form

where C and λ are constants, Eq. (10) can be rewritten as

yielding

Thus, the spatial equation (real form) of Eq. (12) has the 
general solution, which may be expressed as

Here, one may consider a uniform Rayleigh beam for which 
the free–free boundary conditions are given by

Using, Eq. (14) in Eq. (13) yields the frequency equation as

The solution of Eq. (15) yields

Moreover, the mode shape function may be expressed as

(9)w(x, t) = W(x)ei�t

(10)−�2
[
�AW −

(
�IW �

)�]
+
(
EIW ��

)��
= 0

(11)W(x) = Ce�x

(12)EI�4 − �2�I�2 − �2�A = 0

�2 =
1

2EI

�
�2�I ±

√
�4�2I2 + 4�2EI�A

�

(13)W(x) = A cosh �x + B sinh �x + C cos �x + D sin �x

(14)W(0) = 0, W �(0) = 0, W ��(l) = 0, W ���(l) = 0,

(15)cosh �nl cos �nl − 1 = 0

�n =
(
2n + 1

2
�

)
1

l

(16)

W
n
(x) = (cos �

n
l − cosh �

n
l)(sin �

n
x + sinh �

n
x)

− (sin �
n
l − sinh �

n
l)(cos �

n
x + cosh �

n
x)

Thus, one may obtain the natural frequency of Eq. (6), which 
may be written as

It is recognized that conditions are force-free at this point, 
which permits ωn = 0 to be a mode frequency. Thus, Eq. (10) 
will be written as

or

There are two possible solutions for Eq. (13), which satisfied 
all boundary conditions. They are W = const and W = ax + b. 
These are called rigid body modes, and it is convenient to 
assume them as rigid body rotation of the beam about the 
centrally located center of mass. Thus,

and

Let us consider an analysis for truck chassis, which is pre-
sented in Fig. 1. In this figure, the half model of the road 
truck is supported by front and rear suspension, which 
exerted an external force on the beam over the various road 
responses. From equation of motion, Eq. (8) will be rewrit-
ten as

where F1 and F2 are the force exerted by front and rear 
suspension systems, respectively, and F3 is dead weight on 
the beam, δ(·) is the Dirac delta function, x1 and x2 are the 
respective distance from left end to the front and rear sus-
pension of the vehicle, respectively, and x3 is the distance 
of dead weight from the left end. One may assume that the 
solution of Eq. (22) is separable in space and time, and the 
forced solution has the following form,

where Wn(x) depends on the spatial position and Un(t) 
depends on time. Introducing Eq. (23) into Eq. (22), and 
multiplying each term by Wm(x) and integrating with respect 

(17)�n = �2
n

1[
1 + �2

n

I

A

]1∕2
√

EI

�A

(18)d4W

dx4
= 0

(19)W = c1x
3 + c2x

2 + c1x + c4

(20)W00(x) = 1

(21)W0(x) = x −
L

2

(22)

𝜌Aẅ(x, t) −
(
𝜌Iẇ��(x, t)

)�
+
(
EIw

��(x, t)
)��

= F1𝛿(x − x1) + F2𝛿(x − x2) + F3𝛿(x − x3)

(23)w(x, t) =

∞∑
n=0

Wn(x)Un(t)
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to x = 0, x = l, one may then use the orthogonal property to 
the modes and obtain

Equation (25) can be represented in general form as

where

Now one may write the first frequency modes (Karnopp 
et al. 2012)

which states that the external force accelerates the center 
of mass of the beam. The other zero frequency mode yields

or

This equation states that the moment of the external forces 
about the center of mass produces angular acceleration Ü00 , 
where J is the centroid moment of inertia of beam. The next 
subsection will present the formulation, which includes 
structural damping.

2.4 � Incorporation of Structural Damping

Now one may consider internal damping (the detailed deri-
vation of internal damping is presented in “Appendix 2” 

(24)

l

∫
0

𝜌AW2
n
dxÜ(t) + 𝜔2

n
(𝜌I𝜆2

n
− 𝜌A)

l

∫
0

W2
n
dxU(t)

= F1Wn(x1) + F2Wn(x2) + F3Wn(x3)

(25)

𝜌A
(
1 −

I

A
𝜆2
n

) l

∫
0

W2
n
dxÜ(t) + 𝜌A

(
1 −

I

A
𝜆2
n

)
𝜔2
n

l

∫
0

W2
n
dxU(t)

= F1Wn(x1) + F2Wn(x2) + F3Wn(x3)

(26)mÜ(t) + kU(t) = F1Wn(x1) + F2Wn(x2) + F3Wn(x3)

m = �A
(
1 −

I

A
�2
n

) l

∫
0

W2
n
dx

k = m�2
n

l

∫
0

W2
n
dx

(27)

⎡⎢⎢⎣
𝜌A

l

∫
0

(1)2
n
dx

⎤⎥⎥⎦
Ü00 = F1 + F2 + F3 or mÜ00 = F1 + F2 + F3

(28)
⎡
⎢⎢⎣
𝜌A

l

∫
0

�
x −

l

2

�2

dx

⎤⎥⎥⎦
Ü00 = F1 + F2 + F3

JÜ0 = F1 + F2 + F3

for ready reference) of the beam and Eq.  (22) may be 
rewritten as

where μI is the structural damping coefficient, δ is the Dirac 
delta function, x1 and x2 are the respective distance from left 
corner to the front and rear suspension of the vehicle and x3 
is the distance of dead weight from the extreme left corner of 
the vehicle. F1 and F2 are the suspension forces of the front 
and rear suspension system, respectively, and F3 is the dead 
weight. The front and rear suspension forces of the vehicle 
may be expressed as

where Cf
s
 and Cr

s
 are, respectively, damping coefficient of 

the front and rear damper; Vf and Vr are the road velocity 
input at front and rear wheel, respectively; Kf

s
 and Kr

s
 are the 

suspension stiffness of front and rear suspension system, 
respectively; ẇ1 and w1 are the velocity and displacement 
of front sprung mass; and ẇ2 and w2 are the velocity and 
displacement of rear sprung mass.

One may assume solution similar to Eq. (24); applying 
Eqs. (23)–(30), one may obtain a solution as

Rearranging Eq. (33), one may obtain

(29)
𝜌Aẅ(x, t) −

(
𝜌Iẇ��(x, t)

)�
+
(
EIw��(x, t)

)��
− 𝜇I I

(
ẇ���

)�
= F1𝛿(x − x1) + F2𝛿(x − x2) + F3𝛿(x − x3)

(30)

𝜌Aẅ(x, t) −
(
𝜌Iẇ��(x, t)

)�
+ 𝜔2(𝜌I𝜆2 − 𝜌A) − 𝜇I I

(
ẇ���

)�
= F1𝛿(x − x1) + F2𝛿(x − x2) + F3𝛿(x − x3)

(31)F1 = Cf
s
(Vf − ẇ1) + Kf

s

⎛⎜⎜⎝

t

∫
0

Vfdt − w1

⎞⎟⎟⎠

(32)F2 = Cr
s
(Vr − ẇ2) + Kr

s

⎛⎜⎜⎝

t

∫
0

Vrdt − w2

⎞⎟⎟⎠

(33)

l

∫
0

𝜌AW2
n
dxÜ(t) + 𝜔2

n
(𝜌I𝜆2

n
− 𝜌A)

l

∫
0

W2
n
dxU(t) − 𝜌I𝜆2

n

l

∫
0

W2
n
dxÜ(t)

− 𝜇I I𝜆
4
n

l

∫
0

W2
n
dxU̇(t) = F1Wn(x1) + F2Wn(x2) + F3Wn(x3)

(34)

𝜌A
(
1 −

I

A
𝜆2
n

) l

∫
0

W2
n
dxÜ(t) + 𝜌A

(
1 −

I

A
𝜆2
n

)
𝜔2
n

l

∫
0

W2
n
dxU(t)

−𝜇I I𝜆
4
n

l

∫
0

W2
n
dxU̇(t) = F1Wn(x1) + F2Wn(x2) + F3Wn(x3)
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Finally, Eq. (34) may be represented as

where

Equations (36–38) show that the rotary inertia affects the 
dynamics of the beam, which is not being taken in case of 
Euler beam. However, in this case, the value of I∕A ⋅ �2

n
 is 

always less than 1. Generally, distributed elements that one 
may obtain to involve in almost all the system models are 
lightly damped. The location of structure damping cannot 
be precisely identified from where it arises. The mechanism 
of energy dissipation is very typical and complicated; some 
dissipation takes place because of the plastic deformation 
and some of the energy radiation from material surfaces. It 
is not assured in the modeling that individual conventional 
damper will attach to model for representing the damping of 
distributed elements. It can happen if the damping includes 
functionally by incorporating it into individual modes. 
This is accompanied by merely appending R-elements to 
the mode oscillators of the modal bond graph. R-element is 
represented in Eq. (30), where μI is varied from 0.01 to 0.1. 
The next subsection will present the bond graph modeling to 
visualize the simulation for different parameters.

3 � Bond Graph Modeling of the Truck Chassis 
Structure

The physical system of a truck chassis (pitch plane model) 
with front and rear suspension system driven over the ran-
dom road is presented in Fig. 1. The boundary condition of 
the structure is taken as free–free. The dynamic disturbance 
in vertical direction of the vehicle due to random road con-
ditions is the main attraction of this modeling. The longitu-
dinal and lateral dynamics are not considered in the mod-
eling. The bond graph technique is being used as a modeling 

(35)
mnÜ(t) + RnU̇(t) + knU(t) = F1Wn(x1) + F2Wn(x2) + F3Wn(x3)

(36)mn = �A
(
1 −

I

A
�2
n

) l

∫
0

W2
n
dx,

(37)kn = m�2
n

l

∫
0

W2
n
dx,

(38)Rn = �I I�
4
n

l

∫
0

W2
n
dx

tool, and the bond graph of the system is created through 
formulation, which was developed in the previous section. 
Figure 2 presents the bond graph model of a flexible infini-
tesimal beam, whereas Fig. 3 shows the bond graph model 
of a flexible beam with internal damping along with suspen-
sion system. The rigid body modes appear simply as inertia 
elements with associated modal stiffness and damping. The 
first inertia parameter is the beam mass (M), and second is 
the beam moment of inertia (Jg). The transformer (-TF-) 
elements are connected to the rigid body modes, which cor-
rectly apply the forces and moments to these elements. The 
modal masses are taken from Eq. (36), whereas modal stiff-
ness and modal damping can be taken from Eqs. (37) and 
(38), respectively.

The system is entirely flexible in transverse and bend-
ing, but torsionally rigid. Each 0-junction is attached to each 
1-junction with modal components through transformer (TF) 
elements with moduli equal to appropriate mode function. 
The transformer function is moduli with shape function 
(Wn), and the values of this function can be determined 
from Eq.  (16). The attached systems are then appropri-
ately appended to the external 0-junction bonds to form a 
complete, low-order, very accurate model. Figure 3 shows 
a general finite mode representation with two input (front 
and rear) location, where Eq. (26) represents a governing 
contribution of ith mode.

In the real world, distributed elements have some damp-
ing properties, which resist vibration level up to a certain 
level. No mechanism can quickly identify the value of damp-
ing on specific. However, only the quantity of dissipative 
energy can be determined. It is customary not to attempt to 
perform detailed modeling of the damping mechanism, but 
instead to include damping functionally by incorporating its 
individual modes. This is accomplished by simply append-
ing R-elements to the mode oscillator of the bond graph. The 
bond graph model of the distributed system including damp-
ing modes is presented in Fig. 3. The governing equation of 
this configuration is mentioned in Eq. (23).

4 � Numerical Simulation

Computer simulation can compress the performance of 
a system over the years into a few minutes of the com-
puter running time. The parameters used for simulation 
for truck chassis system are presented in Table 1. Simula-
tion models are relatively flexible and can be modified to 
accommodate the changing environment to the real situa-
tion. At present, most of the simulation models are made 
using differential equations. In this research, a half car 
flexible model with suspension systems is investigated at 
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different operating speeds on different road profile inputs 
using bond graph technique and simulators of SYMBOLS 
Sonata® and MATLAB/Simulink® software are used 
(Gupta and Rastogi 2016; Hassani 2013; Mukherjee and 
Samantaray 2006). The bond graph model of the vehicle 
is simulated for 10 s to obtain different output responses. 
In total, 1024 records are used in the simulation and error 
is kept in the order of 5.0 × 10−4. Fifth-order Runge–Kutta 
Gill method is used in this present work to solve the vari-
ous differential equations generated through bond graph 
model.

4.1 � Road Inputs

Two types of road profile inputs of the simulation of this 
system are used, viz. steady-state input and random road 
input.

4.1.1 � Sine Wave Input

The steady-state input has been taken in a sinusoidal form, 
and the following expression is used for simulation (Hage-
dorn and DasGupta 2007):

Fig. 2   Bond graph model of truck chassis considering internal damping
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(39)Vinput = Ajump ∗ � ∗ sin(� ∗ t), for front wheel

where Ajump is the amplitude of vibration and ω is the excita-
tion frequency.

4.1.2 � Random Road Condition

A random road profile is generated according to the Interna-
tional Organization for Standardization (ISO 8608). It gives 
a depiction of the road profile through estimation of the PSD 
of the vertical displacements Gd, as a function of spatial fre-
quency n(n = �∕2�(cycles)∕m) and also of angular spatial 
frequency Ω. ISO 8608 introduces a classification, which is 
evaluated in accordance with conventional values of spatial 
frequency n0 = 0.1 cycles/m and angular spatial frequency 
Ω0 = 1 cycles/m. There are eight classes of roads mainly 

(40)
Vinput = Ajump ∗ � ∗ sin (� ∗ (t + d∕v)), for rear wheel

Fig. 3   Bond graph model of truck chassis considering internal damping

Table 1   Simulation parameters for flexible chassis system (Rideout 
and Khan 2010)

Parameter Value Unit

Vehicle length 10 m
Frame mass (Mg) 4350 kg/m
Frame inertia (J) 24,000 kg/m2

Suspension stiffness (Ksf, Ksr) 375, 870 kN/m
Suspension damping (Rsf, Rsr) 31,895, 33,384 Ns/m
Flexural rigidity (EI) 1.05e+08 N m2

Unsprung mass (Mus) 50 kg
x1, x2, x3, x4 2.95, 5.75, 7, 3 m
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identified from classes H1 to H8 according to the values of 
Gd(n) and Gd(Ω) established in ISO 8608, which are shown 
in Table 2 (Meirovitch 1980).

In the simulation, ISO 8608 provides the roughness of 
the road surface profile, which may be stated using the fol-
lowing equations:

where w denotes the waviness and its value is taken to be 2 
in this case. In this research, random road inputs have been 
developed by taking into consideration the PSD of vertical 
displacement Gd as a function of spatial frequency n.

Beginning with a distributed road profile to specify the 
value of spatial frequency n, looped within a frequency band 
Δn, the PSD function value is represented through the fol-
lowing expression as

where the mean square value is denoted by �2
x
 which sig-

nifies the component of the signal for spatial frequency n 
contained by the frequency band Δn. Accordingly, the signal 
of road profile is discretized, and thus, it is characterized 
by a series of elevation points along with evenly spaced 
ones. Here, road profile length is denoted by L, whereas the 
sampling interval is denoted by B. Further, the maximum 
value of sampling spatial frequency c is 1/B, the maximum 
effective sampling spatial frequency (neff) is nmax/2 and the 
discretized spatial frequency values ni are equally spaced 
under the frequency domain, with an interval of (Δn) as 1/L. 

(41)Gd(n) = Gd(n0)

(
n

n0

)−w

(42)Gd(�) = Gd(�0)

(
n

n0

)−w

(43)Gd(n) = lim
Δn→0

(
�2
x

Δn

)

So herein, generic spatial frequency value ni can be regarded 
as i·Δn and Eq. (43) may be written in the discrete form as

where i varying from 0 to N as nmax
Δn

 , one may obtain the 
road profile by a simple harmonic function

where the amplitude is denoted by Ai, spatial frequency is 
denoted by ni and phase angle is φ. One may generate a 
harmonic signal through mean square value

Therefore,

It has been shown in several works that the development of 
an artificial road profile using Eq. (45) is only possible if 
the PSD function of vertical displacements is well known, 
presuming a random phase angle φi following a uniform 
probabilistic distribution within range 0 to 2π. The artificial 
profile can be given as

Using Eq. (47) in Eq. (45), a random road profile can be 
generated according to ISO classification by the following 
equation,

(44)Gd(n) =
�2
x
(ni,Δn)

Δn
=

�2
x
(i ⋅ Δn,Δn)

Δn

(45)
h(x) = Ai cos(2� ⋅ ni ⋅ x + �) = Ai cos(2� ⋅ i ⋅ x ⋅ Δn + �)

(46)�2
x
=

A2
i

2

(47)Gd(ni) =
�2
x
(ni)

Δn
=

A2
i

2 ⋅ Δn

(48)

h(x) =

N�
i=0

A
i
cos(2� ⋅ n

i
⋅ x + �

i
)

=

N�
i=0

√
2 ⋅ Δn ⋅ G

d
(i ⋅ Δn)⋅A

i
cos(2� ⋅ i ⋅ x ⋅ Δn + �)

Table 2   ISO 8608 values of Gd(n0) and Gd(Ω0)

Road class Gd(n0) (10−6 m3) Gd(Ω0) (10−6 m3) Category

Lower limit Upper limit Lower limit Upper limit

H1 – 32 – 2 New roadways with asphalt layers
H2 32 128 2 8 New roadways with concrete layers
H3 128 512 8 32 Old roadways layers which are not maintained
H4 512 2048 32 128 Roadways layer consisting if cobble stone 

layers or similar materials
H5 2048 8192 128 512 Very poor road condition
H6 8192 32,768 512 2048 Off-road condition
H7 32,768 131,072 2048 8192 –
H8 131,072 – 8192 – –

n0 = 0.1 cycles/m Ω0 = 1 cycles/m
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where x is the abscissa variable from 0 to L; Δn is 1/L; nmax 
is taken as 1/B; N is nmax

Δn
 or L/B; where L = 250, N = 100; 

and constant is denoted as k, depending on ISO road pro-
file classification. It has also assumed integers augmenting 
from 3 to 9, which corresponds to the profiles from classes 
H1 to H8 (as shown in Table 3); here, k is assumed to take 
the value 3 corresponding to the class H1 road profile and 
Gd(n0) is taken to be 32, where n0 is 0.1 cycles/m and φi is 
the random phase angle following an uniform probabilistic 
distribution within range 0 to 2π. In this work, four road con-
ditions (H1-H4) are considered, which is shown in Figs. 4, 
5, 6 and 7.

The simulation of different road categories is obtained by 
MATLAB/Simulink of the previously discussed ISO 8608 
random input. This road profiles are simulated for five dif-
ferent speeds, viz. 40 kmph, 60 kmph, 80 kmph, 90 kmph 
and 100 kmph. Figure 4 shows H1 road condition, where 

(49)

h(x) =

N�
i=0

√
Δn. ⋅ 2k ⋅ 10−3 ⋅

� n0

i ⋅ Δn

�
cos(2� ⋅ i ⋅ x ⋅ Δn + �)

unevenness of the random-type road with maximum mag-
nitude is 0.03 m in an upward direction at 40 km/h and 
− .035 m in a downward direction at 100 km/h. Similarly, 
H2, H3 and H4 road categories have a maximum magnitude 
0.06 m, 0.12 m and 0.24 m, respectively, in an upward direc-
tion at 40 km/h and − 0.65 m, − 0.12 m and − 0.24 m, in a 
downward direction at 100 km/h.

5 � Results and Discussion

The model is exhibited first on sine wave input from start to 
end and runs for 20 s with zero initial conditions. The ampli-
tude of sine wave is 0.01 m, and the input frequency is taken 
50 Hz. In Fig. 8, the magnitude of the vertical acceleration 
is 0.8 m/s2 in un-damped condition, whereas acceleration 
amplitude has been reduced to 0.7 m/s2 in damped condition. 
Thus, the magnitude of vibration has been reduced from 12 
to 15% due to the impact of structural damping of the vehi-
cle chassis. Similarly, in Fig. 9, the amplitude of pitching 
acceleration has been reduced up to 20% due to the influ-
ence of structural damping. However, frequencies in both 
conditions have almost similar values. The dead load on the 
center of chassis has been taken around 500 N, which lies in 
the downward direction.

The RMS acceleration responses of truck chassis at 
the first three modes at sine wave condition are shown in 
Fig. 10a–c. In these figures, the un-damped condition of 
the beam is superimposed over damped condition. The fre-
quencies of the first three modes are 34.4 Hz, 86.89 Hz and 
174.8 Hz, respectively. Figure 10a–c shows that the accel-
eration magnitude is continuously reduced, whereas maxi-
mum acceleration is found at the first mode, and minimum 

Table 3   k values for ISO road 
roughness classification

Road class k

Lower limit Upper limit

H1 H2 3
H2 H3 4
H3 H4 5
H4 H5 6
H5 H6 7
H6 H7 8
H7 H8 9

Fig. 4   Random road profile of H1 road category at 40 kmph, 60 kmph, 80 kmph, 90 kmph and 100 kmph
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acceleration is in the third mode. The influence of inter-
nal damping is presented in terms of RMS acceleration 
response, whereas the amplitude has reduced due to the 
effect of internal damping at the same frequency.

The ride comfort analysis may be evaluated through 
RMS acceleration of the vehicle chassis. Figures 11, 12, 
13 and 14 present the RMS acceleration response of the 
truck CG for four different classes of roads (H1–H4) as 
prescribed by ISO 8608. The H1 is the best class, and H4 
represents the worst road class in these four classes. The 
model is simulated for each road class at different speeds 
ranging from 40 to 100 kmph with and without considera-
tion of the internal damping of the chassis. Figures 11, 

12, 13 and 14 show that the magnitude of vertical accel-
eration increases with vehicle speed and with road class. 
Figure 11a demonstrates the truck response neglecting 
the chassis damping, where maximum RMS accelera-
tion magnitude is observed as 0.65 m/s2 at 100 km/h 
and 0.25 m/s2 at 40 km/h on H1 class road. This peak 
acceleration magnitude gets reduced up to 0.58 m/s2 at 
100 km/h and 0.22 m/s2 at 40 km/h with due considera-
tion to chassis structural damping, as shown in Fig. 11b. 
A similar kind of result has been noticed in other plots 
shown in Figs. 12, 13 and 14. Thus, it is evident from 
the above results that internal structural damping of the 
base structure of heavy vehicle plays an important role 

Fig. 5   Random road profile of H2 road category at 40 kmph, 60 kmph, 80 kmph, 90 kmph and 100 kmph

Fig. 6   Random road profile of H3 road category at 40 kmph, 60 kmph, 80 kmph, 90 kmph and 100 kmph
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and it needs to be included in the dynamical model of the 
vehicle to get the true dynamic behavior of the vehicle.

It has been observed that from the RMS curves that 
the H1 road condition is perfect for driving the vehicle 
for long duration, whereas it is not advisable to drive 
vehicles for long duration on H4 road condition. Indian 
roads lie between H2 and H3 conditions. So, a driver can 
comfortably drive the given vehicle at 60–80 km/h in sin-
gle stretch without a break.

6 � Conclusions

Numerous models have been constructed for the heavy vehi-
cle system, but most of the models are developed with the 
lumping process. In this work, an analytical framework for 
truck chassis has been developed through classical mechan-
ics and through extended Lagrangian approach. The follow-
ing conclusion has been drawn from present research work:

Fig. 7   Random road profile of H4 road category at 40 kmph, 60 kmph, 80 kmph, 90 kmph and 100 kmph

Fig. 8   Vertical response of vertical acceleration of chassis at steady-state input
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•	 In the classical mechanics approach, the idea of 
lumped–distributed modeling has been explored 
within the framework of bond graphs.

•	 The Lagrange variation of truck chassis, including 
flexural behavior has been constructed, where it was 
integrated with lumped suspension system. However, 
the structural damping effects were also involved in 
terms of fifth-order partial differential term in gener-
alized equation of motion. The detailed derivation for 
fifth-order differential term is presented in “Appen-
dix 1.”

•	 The integrated bond graph model of flexural beam 
was the extended form of the analytical model. Results 
have been presented under the two types of road con-
ditions, i.e., sine wave input and random road input. 
In sine wave road conditions, the vertical response 
of flexural beam is reduced up to 12–15% and pitch 
response of beam is reduced up to 20% due to the 
structural damping effect. In random road conditions, 
four types of road category (H1, H2, H3, H4) have 
been used at four different speeds (40 kmph, 60 kmph, 
80 kmph and 100 kmph).

•	 It is depicted from the result that maximum accelera-
tion at maximum speed (100 kmph) of chassis has 
been increased up to 0.5 m/s2 in H1–H2 conditions, 
1 m/s2 in H2–H3 conditions and 2.25 m/s2 in H3–H4 
conditions. Similarly, the solution has been extended 
for structural or internal damping, whereas maximum 
acceleration at maximum speed has been reduced up 
to 10%, 5%, 7% and 5% (approx.) in H1, H2, H3 and 
H4 road conditions, respectively.

Appendix 1

This appendix gives a brief introduction to the variational 
formulation of dynamics of continuous systems. Consider 
for simplicity a one-dimensional continuous system with 
the field variable w(x, t) which uniquely represents the 
configuration of the system at any time t. In the course of 
temporal evolution of the system, let the configurations at 
two time instants t = t1 and t = t2 be recorded as, respec-
tively, w(x, t1) and w(x, t2). The actual path is that any 
infinitesimal variation over that path should leave the value 
of I unchanged (Hagedorn and DasGupta 2007). Now the 
action integral may be expressed as

Using the extremization condition of Eq. (50), one may 
obtain

One may write Lagrangian density variation,

Introducing Eqs. (51) and (52), one may have

(50)I =

t1

∫
t0

x1

∫
x0

�L(…) dtdx

(51)

t1

∫
t0

x1

∫
x0

𝛿L̂
(
w,w�, ẇ,w��, t

)
dtdx = 0

(52)𝛿L̂ =
𝜕L̂

𝜕w
𝛿w +

𝜕L̂

𝜕ẇ
𝛿ẇ +

𝜕L̂

𝜕w�
𝛿w� +

𝜕L̂

𝜕w��
𝛿w��

Fig. 9   Response of pitch acceleration of chassis at steady-state input
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The next step is to transform the integrand in Eq.  (52) 
into one containing only δw, i.e., one that is free of 
𝛿ẇ, 𝛿w′, 𝛿w′′, 𝛿ẇ′ . This can be accomplished by integration 
by parts, with respect to both space and time.

But the vertical displacement δw is arbitrary by definition, 
which implies that it can be assigned values at will provide 
these values are compatible with the system constraint, such 
as geometric conditions at the end points. Let �w = �w� = 0 
at x = 0 and x = l. One may conclude that Eq. (54) can be 
satisfied for all values of δw in the open domain 0 < x < l.

Thus,

Equation (55) represents the Lagrange differential equation 
of motion for this continuous system and must be satisfied 
at every point of open domain 0 < x < l.

Equations (56–57) are known as the boundary conditions 
and only two boundary conditions must be satisfied at either 

(53)

t1

∫
t0

x1

∫
x0

[
𝜕L̂

𝜕w
𝛿w +

𝜕L̂

𝜕ẇ
𝛿ẇ +

𝜕L̂

𝜕w�
𝛿w� +

𝜕L̂

𝜕w��
𝛿w��

]
dtdx = 0

(54)

l

∫
0

𝜕L̂

𝜕w
𝛿w

|||||

t2

t1

dx +

t1

∫
t0

[
𝜕L̂

𝜕w��
𝛿w�� +

{
𝜕L̂

𝜕w�
−

𝜕

𝜕x

(
𝜕L̂

𝜕w��

)}
𝛿w

]|||||

l

0

dt

+

t1

∫
t0

x1

∫
x0

[
𝜕L̂

𝜕w
−

𝜕

𝜕t

(
𝜕L̂

𝜕ẇ

)
−

𝜕

𝜕x

(
𝜕L̂

𝜕w�

)
+

𝜕2

𝜕x2

(
𝜕L̂

𝜕w��

)
+

𝜕2

𝜕x𝜕t

(
𝜕L̂

𝜕ẇ�

)]
𝛿w dtdx = 0

(55)

𝜕L̂

𝜕w
−

𝜕

𝜕t

(
𝜕L̂

𝜕ẇ

)
−

d

dx

(
𝜕L̂

𝜕w�

)
+

𝜕2

𝜕x2

(
𝜕L̂

𝜕w��

)
+

𝜕2

𝜕x𝜕t

(
𝜕L̂

𝜕ẇ�

)
= 0

(56a)𝜕L̂

𝜕w��
≡ 0 or 𝛿w|x=0 ≡ 0

(56b)
𝜕L̂

𝜕w��

|||||x=l
≡ 0 or 𝛿w|x=l ≡ 0

(57a)
𝜕L̂

𝜕w�
−

d

dx

(
𝜕L̂

𝜕w��

)|||||x=0
= 0 or 𝛿w|x=0 ≡ 0

(57b)
𝜕L̂

𝜕w�
−

d

dx

(
𝜕L̂

𝜕w��

)|||||x=l
= 0 or 𝛿w|x=l ≡ 0

end, one from condition Eq. (56) and other from Eq. (57), 
which shows that clearly the selection is not arbitrary, but it 
must reflect physical conditions at two ends.

Appendix 2

In this formulation, the vertical translation of a uniform 
free–free beam is considered. If the internal damping of the 
material is involved in the system, then the strain displace-
ment relationship or Hook’s law equation can be written as 
Karnopp et al. (2012) and Hagedorn and DasGupta (2007).

The strain displacement relation at any height from the plane 
of the neutral fibers can be written as

The bending moment at any section (from Fig. 15) can be 
written as

where I is the moment of inertia cross section of beam about 
the neutral axis. The equation of the vertical force of an 
infinitesimal beam is

or

The rotational dynamics of infinitesimal beam may be writ-
ten as

(58)�(x, t) = E�(x, t) + �I�(x, t)

(59)

𝜀(x, t) =
zw��(x, t)

[
1 + w�2(x, t)

] 3

2

≈ −zw��(x, t) (Assumingw� << 1)

(60)

M(x, t) = −

−h∕2

∫
h∕2

z�(x, t)dA = −
(
E�(x, t) + �I�(x, t)

) −h∕2

∫
h∕2

z2dA

(61)⇒ −
(
EIw��(x, t) + 𝜇I Iẇ

��(x, t)
)

(𝜌Adx)ẅ(x, t) = p(x, t)dx + (V + dV) cos(𝜓 + d𝜓) − V cos𝜓

(62)pAẅ(x, t) = p(x, t) + V �

(𝜌Idx)𝜓̈ = (M + dM) −M(V + dV)
dx

2
+ V

dx

2

Fig. 10   RMS acceleration response of different modes of chas-
sis under sine wave condition: a first mode = 34.4  Hz; b second 
mode = 86.89 Hz; c third mode frequency = 174.8 Hz

◂
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or

One may write 𝜓̇ =
w�(x,t)

1+w�2(x,t)
≈ w�(x, t)Thus, from Eqs. (62) 

and (63), one may have

(63)𝜌I𝜓̈ = M� + V
The third term of Eq. (64) represents the structural damping 
or internal damping of the beam.

(64)
𝜌Aẅ(x, t) − 𝜌Iẅ��(x, t) + 𝜇I Iẇ

����(x, t) + EIw����(x, t) − p(x, t) = 0

Fig. 11   a Response of chassis acceleration at various random road inputs in H1 road as per ISO 8608. b Response of chassis acceleration consid-
eration of internal damping at different random inputs in H1 road condition as per ISO 8608
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Fig. 12   a Response of chassis acceleration at various random road inputs in H2 road as per ISO 8608. b Response of chassis acceleration consid-
eration of internal damping at different random inputs in H2 road condition as per ISO 8608
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Fig. 13   a Response of chassis acceleration at various random road inputs in H3 road as per ISO 8608. b Response of chassis acceleration consid-
eration of internal damping at different random inputs in H3 road condition as per ISO 8608
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Fig. 14   a Response of chassis acceleration at various random road inputs in H4 road as per ISO 8608. b Response of chassis acceleration consid-
eration of internal damping at different random inputs in H4 road condition as per ISO 8608
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