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Abstract
Wind energy has become one of the most popular resources of clean energy. In spite of this popularity, there are some seri-
ous flaws in design of conventional wind turbines. Among these are the substantial limitations and drawbacks of the rotary 
wind turbines, which are the main industrial wind turbines. This has motivated alternative designs and strategies for wind 
harvesting. In this paper, an alternative oscillatory wind turbine is investigated. First, the governing equations of motion of the 
turbine are represented and linearized. Then, closed solutions of the linearized equations are cross-validated with numerical 
simulation resulted from a generated computer code. A close affinity has been observed between the numerical simulation 
and the analytical solution. Finally, some parametric relationships are extracted from the linearized equations of motion, to 
be used in design and analysis of the turbine, at least approximately. For validating the utilized method, the CP of the turbine 
is derived and compared with the results of numerical simulation. Comparison shows acceptable capability of the method to 
forecast the behavior of turbine and consequently, its suitability for use as a method for deriving approximate design criteria.

Keywords Oscillatory wind turbine · Equations of motion · Linearization · Design criteria

1 Introduction

The gradual development of the so-called “sustainable engi-
neering” necessitates the replacement of fossil resources 
of energy with clean and perpetual ones. One of the main 
resources of clean energy is the wind energy.

Wind energy is becoming more popular all around the 
world (EWEA 2017; AWEA 2017). There are several 
designs for wind turbine, among which some have become 
commercialized and have been utilized in wind farms, such 
as horizontal axis wind turbines, which are the most com-
mon industrial types.

In the past few decades, the concept of oscillating hydro 
turbines has become a reality, and their relatively high effi-
ciency (about 28% (McKinney and DeLaurier 1981), 34% 
(Kinsey and Dumas 2008) and even up to 87% for propulsive 
efficiency (Anderson et al. 1998)) has attracted the atten-
tion of many researchers. Platzer et al. (2008), Xiao and 
Zhu (2014), Young et al. (2014), and Bakhshandeh Rostami 

and Armandei (2017) provided extensive reviews of almost 
40 years of progress in the field of oscillating wing turbines.

The concept of oscillating wing was introduced by 
McKinney and DeLauriert (EWEA 2017). After McKinney 
and DeLauriert, work on the oscillating wing has contin-
ued till now by many authors, investigating different design 
aspects, the behavior of fluid field, in addition to searching 
for optimum performance conditions.

The motion of the oscillating wing is mainly plunging in 
combination with pitching. Since this combinational motion 
of oscillating wing is inspired by flapping of swimming and 
flying animals, the oscillating wing is essentially known as a 
biomimetic design [see for example Lan (1979), Triantafyl-
lou et al. (2000) and Liu et al. (2012)].

In this work, an innovative design for oscillating wind 
turbine is proposed and studied. This biomimetic wind tur-
bine sways against the wind, similar to the plants. It is hoped 
that the method of harvesting power from the wind utilized 
in this new design will overcome the limitations and draw-
backs of the rotary wind turbines and can be employed as an 
alternative for the conventional rotary ones.

For development in design and better analysis of this tur-
bine, the parametric relationships and criteria are extremely 
useful, even if they are approximate, to be used as a preferred 
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approach. The equations of motion of this turbine are nonlin-
ear and conditional. Therefore, it is very hard, if not impos-
sible, to study the behavior of the turbine analytically.

One of the popular ways to analytically study nonlinear 
dynamical systems is to linearize the equations of motion 
around their equilibrium states (Arrowsmith and Place 1995; 
Perko 1991). Here, to extract approximate parametric rela-
tionships and criteria, the governing equations of motion of 
the turbine are linearized. These linearized equations, if vali-
dated by numerical simulations and experimental data, can 
be utilized to extract approximate parametric relationships.

It is noteworthy that for simplicity of calculations and 
due to the goal of this work which is deriving approximate 
criteria for design and analysis of the proposed turbine, as 
a suitable approach, a reduced dynamics of the turbine is 
approximated neglecting the sail dynamics (see Sect. 2.3).

In this paper, the physical configuration and the equations 
of motion of the proposed turbine are represented. The equa-
tions of motion of the wind turbine are linearized around 
their equilibrium state.

For validating the linearized equations of motion, a com-
puter code is generated in MATLAB to solve the equations 
of motion numerically.

The linearized equations of motion and the computer 
code have both been fed with a similar set of benchmark 
parameters. The closed solution of linearized equations of 
motion and the results of numerical simulation show good 
likelihood.

Eventually, some relationships have been extracted from 
the linearized equations of motion to be used as approximate 
design and analysis criteria. Also, an approximate formula 
for CP is derived and validated.

2  The Governing Equations of Motion 
of the Turbine and their Linearized Form

Figure 1 shows the configuration of the proposed wind tur-
bine, schematically. Although this turbine is supposed to 
generate electrical power, in this study, we simply consider 
a belt-type dynamometer to put constant resistive torque on 
the flywheel of the turbine.

2.1  Physical Configuration of the Turbine

According to Fig. 1, the proposed turbine is comprised of a 
sail which is hinged to the top of a mast. The mast is hinged 
on a base and can oscillate. A rotational spring is attached to 
the axis of the mast, and a flywheel is mounted on this axis.

The sail is equipped with a switching mechanism which 
rotates the sail between vertical and inclined orientations 
periodically, in a certain period of time. For measuring the 
harvested wind power, a belt dynamometer harnesses the 

flywheel by generating friction torque. A ratchet mechanism 
rectifies the rotation of flywheel.

When the sail is vertical, the wind exerts maximum drag on 
the sail, and the mast pushes the flywheel, and consequently, 
the wind power is extracted. This is the coupled phase of the 
motion of turbine. When the sail switches to an angle drifted 
from the vertical direction, the drag on the sail reduces and 
the spring returns the mast. The mast therefore detaches from 
the flywheel due to the ratchet mechanism. This is the decou-
pled phase of motion. The turbine will therefore continuously 
oscillate, and the wind energy will be harvested.

2.2  The Turbine Equations of Motion

Assuming the wind to be steady, uniform and horizontal, the 
equation of rotation of the sail is

where � is the angle of sail with respect to the vertical direc-
tion, M2 is the moment exerted by the switching mechanism 
on the sail, e is the position of center of pressure with respect 
to the axis of rotation, I2 is the sail inertia, and FD and FL are 
drag (horizontal) and lift (vertical) components of aerody-
namic force exerted on the sail.

(1)Ī2�̈� = e(FD sin 𝜃 + FL cos 𝜃) +M2,

Fig. 1  Configuration of the turbine
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The equations of motion for decoupled phase are

and

where Ī1 is the mast inertia around its center of mass, m1 is 
the mass of mast, m2 is the mass of sail, l is the length of 
the mast, r is the position of center of mass of the mast with 
respect to its center of rotation, K1 is the stiffness of the 
rotational spring, � is the angle of mast with respect to the 
vertical direction, and � is the angle of flywheel.

The dynamometer torque is represented by Tresistive , which is 
modeled by Coulomb dry friction (Armstrong-Helouvry et al. 
1994; Pennestri et al. 2016):

where Tkinetic frcition is the kinetic friction torque between 
dynamometer and flywheel.

The equation of motion of the coupled phase is

where J is the inertia of the flywheel. Using Karnopp model 
for sticking and sliding phenomena in dry friction (Pennestri 
et al. 2016):

where Tstatic is the torque exerted by the mast on the flywheel 
if the turbine is stationary:

and Tstatic friction is the static friction torque, which is used as 
a threshold for the onset of sliding.

The drag and lift components of aerodynamic force are

and

(2)

(

Ī1 + m1r
2 + m2l

2
)

�̈� + K1𝜑 −
(

m1r + m2l
)

g sin𝜑

= l(FD cos𝜑 + FL sin𝜑) −M2,

(3)J𝛽 = Tresistive,

(4)Tresistive =

{

−Tkinetic frcitionsgn
(

�̇�
)

if �̇� ≠ 0

0 if �̇� = 0
,

(5)

(

Ī1 + m1r
2 + m2l

2 + J
)

�̈� + K1𝜑 −
(

m1r + m2l
)

g sin𝜑

= l(FD cos𝜑 + FL sin𝜑) −M2 + Tresistive,

(6)

Tresistive =

{

−min
(

max
(

Tstatic − Tstatic friction
)

⋅ Tstatic friction
)

if �̇� = 0

−Tkinetic frictionsgn(�̇�) if �̇� ≠ 0
,

(7)
Tstatic = −K1� +

(

m1r + m2l
)

g sin� + l(FD cos� + FL sin�) +M2,

(8)FD =
1

2
CD�airAV

2
rel
,

(9)FL =
1

2
CL�airAV

2
rel
,

where CD = CD(� ⋅ AR) and CL = CL(� ⋅ AR) are drag and 
lift coefficients, respectively, in which AR is the aspect ratio 
of the sail, A is the area of the sail, and

where U is the wind speed.

2.3  Linearization of the Equations of Motion

Assume �̄� is the equilibrium angle where the mast oscillates 
around and �̃� is the small amplitude of oscillations of the 
mast around �̄� . Therefore 𝜑 = �̃� + �̄�.

First, we linearize the aerodynamic force components:

Substituting in Eqs. (8) and (9), we have

and

For simplicity, we assume e ≃ 0 and Ī2 ≃ 0 . Therefore, 
from (1) we deduce that M2 ≃ 0 . It must be pointed out that 
the value of sail inertia is small (almost ten times less than 
the inertia of the mast) because the sail must be as light as 
possible. However, it is not actually negligible comparing 
to the other parameters. Nevertheless, for our goal which is 
deriving approximate criteria for design, it is permissible 
to neglect the dynamics of the sail for ease of calculations. 
The reasonability of this simplification will be validated in 
Sect. 3.4.

It is also noteworthy that although the dynamics of the 
sail is neglected, its kinematics, i.e., �(t) , affects the aerody-
namic forces via the effect of angle of attack on CD and CL 
(see Eqs. (8) and (9) and Sect. 3.1).

Considering 𝜑 = �̃� + �̄� and substituting (12) and (13) and 
M2 = 0 in (2) and (5), and linearizing around �̄� , we have

and

(10)Vrel = U − l�̇� cos𝜑,

(11)
Vrel = U − l ̇̃𝜑 cos �̃� cos �̄� + l ̇̃𝜑 sin �̃� sin �̄� ≃ U − l ̇̃𝜑 cos �̄�.

(12)FD ≃
1

2
CD𝜌airA

(

U2 − 2Ul ̇̃𝜑 cos �̄�
)

,

(13)FL ≃
1

2
CL𝜌airA

(

U2 − 2Ul ̇̃𝜑cos�̄�
)

(14)

(

Ī1 + m1r
2 + m2l

2
)

̈̃𝜑 + 𝜌airAl
2U

(

CD cos �̄� + CL sin �̄�
)

cos �̄� ̇̃𝜑

+

[

K1 − g cos �̄�
(

m1r + m2l
)

+
1

2
𝜌airAlU

2
(

CD sin �̄� − CL cos �̄�
)

]

�̃�

=
1

2
𝜌airAlU

2
(

CD cos �̄� + CL sin �̄�
)

+ g sin �̄�
(

m1r + m2l
)

− K1�̄�,
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where CD = CD(� ⋅ AR) and CL = CL(� ⋅ AR) . Let AR = 1 and 
be constant, then CD = CD(�) and CL = CL(�) . Equation (14) 
is the linearized governing equation for the decoupled motion 
of the mast, and Eq. (15) is the linearized equation of motion 
for the motion of the mast coupled with flywheel.

Equations (3) and (15) are still nonlinear due to the dry 
friction torque, Tresistive . To remove this nonlinearity, we 
have to distinguish the sticking and sliding modes accord-
ing to their conditions and solve the equations of motion 
separately. Also, we have to consider the rectified rotation 
of flywheel due to the ratchet mechanism. This will help us 
with omitting the sign function in (4) and (6).

For the equations of motion to behave linearly, we have to 
assume the sail to switch between vertical orientation and a 
small deviation from vertical direction, say δ. This will cause 
the amplitude of oscillation of mast to remain in the lin-
ear margin, because of the small ripple in the aerodynamic 
force. But the equilibrium state is not necessarily small.

It must be noted that the beginning of the coupled phase 
(collision) and decoupled phase (separation) are conditional 
and depends on the values of mast and flywheel angular 
velocities (see Sect. 2.1), i.e., for �̇� < �̇� , the dynamics of the 
system is decoupled (Eqs. (2) and (3)), and for �̇� = �̇� , the 
system becomes coupled (Eq. (5)). However, in our reduced 
and simplified model of the system, because of the difficulty 
in finding the collision and separation moments of mast and 
flywheel, we tune the parameters of the turbine in a way that 
coupled phase lies completely in the forward stroke, when 
the sail is vertical, and the decoupled phase lies in the return-
ing stroke, when the sail is at the small angle δ.

Obviously, the above setup is a specific among many con-
figurations of this turbine and does not represent all aspects 
of its dynamics. However, this setup simplifies dynamics of 
the turbine to some extent and makes it possible to derive 
considered design criteria.

3  Results and Discussions

In order to study the dynamics of the proposed turbine and 
calculate its power and efficiency, a MATLAB code is gener-
ated. A Runge–Kutta algorithm is utilized to solve the equa-
tions of motion numerically.

(15)

(

Ī1 + m1r
2 + m2l

2 + J
)

̈̃𝜑

+ 𝜌airAl
2U

(

CD cos �̄� + CL sin �̄�
)

cos �̄� ̇̃𝜑

+
[

K1 − g cos �̄�
(

m1r + m2l
)

+
1

2
𝜌airAlU

2
(

CD sin �̄� − CL cos �̄�
)

]

�̃�

=
1

2
𝜌airAlU

2
(

CD cos �̄� + CL sin �̄�
)

+ g sin �̄�
(

m1r + m2l
)

− K1�̄� + Tresistive,

3.1  The Benchmark Parameters of the Turbine

Table 1 contains a set of benchmark parameters selected for 
the turbine.

The values of drag and lift coefficients are extracted from 
(Ortiz et al. 2015), for AR = 1.

The parameters are fed to the generated code according 
to Table 1. The results of the simulation are illustrated in 
Figs. 2 and 3. The transient part of the response is not shown 
in both graphs.

The benchmark parameters are set in a way that the 
amplitude of oscillations of the mast becomes small, so the 
linearization could be plausible. Furthermore, these param-
eters are selected in a way that the decoupled and coupled 
phases of motion can be readily solved in closed form.

As it is obvious in Figs. 2 and 3, each phase of motion 
(coupled and decoupled) begins when � = 0 and �̇� = 0 . 
This has been maintained by tuning the turbine parameters. 
This condition is very helpful for the ease of solving the lin-
earized equations of motion and finding the closed answers.

Sticking of the flywheel to the dynamometer belt due to 
dry friction happens when the flywheel velocity becomes 
and remains zero (See Fig. 3); otherwise, the flywheel slips 
on the belt.

3.2  Closed Solution for the Linearized Equations 
of Motion

Here the turbine response is calculated for only one period 
of the sail oscillations, considering the transient part of the 
response have been vanished and the limit cycle of response 
has been formed.

First of all, the equilibrium angle of decoupled phase of 
motion is determined. The parameters are set in a way that 
during the whole decoupled phase � = �.

Letting ̈̃𝜑 = 0 , ̇̃𝜑 = 0 , and �̃� = 0 in (14), We have:

where T  is the sail switching period. Substituting the param-
eters in (16), we get:

The numerical solution of (17) gives �̄� = 0.2021rad . Sub-
stituting �̄� in (14), we have:

Solving (18) for the initial conditions �̃�(0) = a and 
̇̃𝜑(0) = 0 , we have:

(16)

1

2
𝜌airAl

[

CD(𝛿) cos �̄� + CL(𝛿) sin �̄�
]

U2

+ g sin �̄�
(

m1r + m2l
)

− K1�̄� = 0 for 0 ≤ t ≤
T

2
,

(17)4.4719 cos �̄� + 18.4441 sin �̄� − 40�̄� = 0.

(18)1.3333 ̈̃𝜑 + 9.6664 ̇̃𝜑 + 10.5143�̃� = 0.
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and also:

where a is the unknown initial angle of the mast for the 
decoupled phase. This unknown will be calculated using the 
periodic behavior of the response. (See below.)

At t = T

2
= 5 s , we have �̃�(5) = 0.001648a . Because 

a is a small number, we may consider �̃�(5) ≅ 0 , or 

(19)�̃�(t) = 1.2907ae−1.3327t − 0.2907ae−5.9172t,

(20)̇̃𝜑(t) = −1.7201ae−1.3327t + 1.7201ae−5.9172t,

𝜑(5) ≅ �̄� = 0.2021 rad . This will be the initial condition for 
the next coupled phase.

As it is illustrated in Figs. 2 and 3, the benchmarked 
parameters are selected in a way that during whole coupled 
phase, it is admissible to consider � = 0 (see Sect. 3.1). Let-
ting ̈̃𝜑 = 0 , ̇̃𝜑 = 0 , and �̃� = 0 in (15), we have:

(21)

1

2
𝜌airAl

[

CD(0) cos �̄� + CL(0) sin �̄�
]

U2

+ g sin �̄�
(

m1r + m2l
)

− K1�̄� = 0 for
T

2
≤ t ≤ T .

Table 1  Benchmark parameters 
of turbine

Parameter Name Value Unit

Mast inertia Ī1 0.1333 kg m2

Sail inertia Ī2 0.0167 kg m2

Mast mass m1 0.4 kg
Sail mass m2 0.2 kg
Length of mast l 2 m
Sail height b 1 m
Sail width a 2 m
Position of COG of mast from its axis of rotation r 1 m
Sail area A 2 m2

Angular deviation of sail � �∕6 rad
Air density �air 1.2250 kg/m3

Gravitational acceleration g 9.80655 m/s2

Wind speed U 1 m/s
Rotational spring constant K1 20 N m/rad
Sail switching period T 10 s
Inertia of flywheel J 10 kg m2

Static friction torque between dynamometer belt and flywheel Tstatic friction 0.1 N m
Kinetic friction torque between dynamometer belt and flywheel Tkinetic friction 0.1 N m
Drag coefficient at � = � CD(�) 0.9126
Drag coefficient at � = 0 CD(0) 1.1279
Lift coefficient at � = � CL(�) 0.56195
Lift coefficient at � = 0 CL(0) 0.02832

Fig. 2  Time variation of mast angle (results of the numerical simula-
tion by the generated code) Fig. 3  Time variation of mast and flywheel angular velocity (results 

of the numerical simulation by the generated code)
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Substituting the parameters in (21) leads to:

which gives �̄� = 0.2219 rad . Substituting this value in (15), 
we have:

Solving (23) for the initial conditions �̃�(0) = 0.2021

−0.2219 = −0.019796 rad , and ̇̃𝜑(0) = 0 , we get:

and

for the coupled phase of motion.
During the coupled phase, if the mast and flywheel speed 

crosses zero, they remain stationary due to the friction 
torque, unless the pushing torque generated by wind can 
overcome the static friction torque.

The angular velocity of the coupled mast plus fly-
wheel becomes zero at t = 3.3072 s where we have 
�̃�(3.3072) = −0.005330 rad and �(3.3072) = −0.005330

+0.2219 = 0.2165 rad . This means that the mast together 
with flywheel stick at t = 3.3072 s and remain stationary to 
the end of the coupled phase.

By switching the sail angle from 0 to � , the 
decoupled phase begins again. Therefore, the ini-
tial conditions for the decoupled phase are ̇̃𝜑 = 0 and 
�̃� = 0.2165 − 0.2021 = 0.01446 rad  .  C o n s e q u e n t l y , 
a = 0.01446 . Substituting in (19) and (20), we get:

(22)5.5267 cos �̄� + 15.8293 sin �̄� − 40�̄� = 0,

(23)11.3333 ̈̃𝜑 + 10.5777 ̇̃𝜑 + 12.6951�̃� = −0.1.

(24)

�̃�(t) = −0.005855e−0.4667t sin (0.9499t)

− 0.01192e−0.46666t cos (0.9499t) − 0.007877,

(25)

̇̃𝜑(t) = 0.01405e−0.4784t sin (0.9441t)

+ 1.4896 × 10−7e−0.4784t cos (0.9441t),

(26)�̃�(t) = 0.01867e−1.2907t − 0.004205e−6.1099t,

and

for the decoupled phase of motion.

3.3  Cross‑validation of the Analytical Solution 
Versus the Numerical Simulation

Figures 4 and 5 illustrate the comparison between one cycle 
of oscillation of mast resulting from numerical simulation 
and the closed form solution of the linearized equations of 
motion, derived in Sects. 2.3 and 3.2.

As it is evident, a close likelihood is achieved. This 
permits us to rely on the linearized equations of motion in 
order to extract parametric relationships and constraints, as 
approximate criteria for design and analysis of the turbine.

It is obvious that by increasing the amplitude of oscil-
lations of the sail (δ), the amplitude of oscillations of the 
mast ( ̃𝜑 ) will grow up, and the nonlinear terms will become 
significant and effective. Therefore, deviation of numerical 
simulation from the linearized analytical solution will be 
more serious. However, an exact threshold for the plausibil-
ity of the linearized approximation is not exactly definable 
and is arbitrary.

3.4  Some Criteria Exploited from the Linearized 
Equations of Motion

There are several parametric relationships derivable from 
the linearized equations of motion.

First of all, the relationship for equilibrium angle is 
extractable from the linearized equations of motion. In 
this work, the sail is considered to switch instantaneously 
between the vertical orientation and a small deviation from 
the vertical direction. If the sail oscillates continuously, say, 

(27)̇̃𝜑(t) = −0.02488e−1.2907t + 0.02488e−6.1099t,

Fig. 4  Time variation of mast angle for one period of oscillations 
from numerical simulation and analytical solution

Fig. 5  Time variation of mast angular velocity for one period of 
oscillations from numerical simulation and analytical solution
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harmonically, we have to integrate the equation of motion 
over one period of oscillation to find �̄�.

Letting ̈̃𝜑 = 0 , ̇̃𝜑 = 0 , and �̃� = 0 in (14) or (15), and inte-
grating over one period of sail oscillation, we get:

Another useful criterion for designing the turbine is the sta-
bility criterion. For the turbine to be stable, it is desirable that 
equivalent stiffness and equivalent damping of the linearized 
equation both be positive. From Eqs. 14 or 15, we deduce:

and

depending on the worst values for CD(�) and CL(�).
To investigate the significance of the method utilized in 

this work, we consider �coupled = 60◦ and �decoupled = 90◦ , and 
for further simplification, we assume �̄� is small (albeit not 
zero). By solving the steady-state response of the bench-
marked turbine, the CP of the turbine will be derived as

where CD and CL are drag and lift coefficients of cou-
pled phase, respectively, I = Ī1 + m1r

2 + m2l
2 , � =

J

I
 , and 

Ts = Tstatic friction . Figure 6 compares (31) with numerical 

(28)

1

2
𝜌airAlU

2

[

cos �̄�
T

∫
0

CD(𝜃)dt + sin �̄�
T

∫
0

CL(𝜃)dt

]

− I2

T

∫
0

�̈�(t)dt + g
(

m1r + m2l
)

T sin �̄� − T�̄� = 0.

(29)

K1 − g cos �̄�
(

m1r + m2l
)

+
1

2
𝜌airAl

[

CD(𝜃) sin �̄� − CL(𝜃) cos �̄�
]

U2 > 0,

(30)𝜌airAl
2U

[

CD(𝜃) cos �̄� + CL(𝜃) sin �̄�
]

cos �̄� ≥ 0,

(31)

CP =
P

1

2
�airAU

3

=
2Ts

�

�airCDAlU
2 − 2Ts

�

���airAU
3
√

I + J

�

K1 − g
�

m1r + m2l
�

+
1

2
�airCLAlU

2

,

results generated by the code for the benchmark turbine. As 
it is obvious from the figure, the analytical formula forecasts 
the cut-in and cut-out wind speeds, and the speed at which 
CP is maximum. It is noteworthy that the cut-out speed is 
the verge of instability of the turbine. However, the value of 
CP calculated by (31) differs significantly with the numerical 
results. A proper correction factor can be obtained experi-
mentally to scale the analytical value.

4  Conclusion

In this work, a noble oscillatory wind turbine is studied. 
The reduced approximated equations for different phases of 
motion of the turbine have been linearized, and the closed 
solutions of these equations have been compared with 
numerical results of a generated computer code.

The comparison shows good likelihood between analyti-
cal and numerical methods, which permits some parametric 
relationships and criteria extracted from the linearized equa-
tions of motion to be utilized as approximate rules of thumb 
in design and analysis of the wind turbine.

Among these relationships are some important ones 
derived from the linearized equations of motion in this work: 
the equation of equilibrium angle of mast, and the criteria 
of stability of turbine.

To validate whether this method is significant or not, an 
approximate formula for CP is derived and compared with 
the numerical results.

As further work, more approximate parametric criteria 
may be extracted from the linearized equations of motion, 
especially for optimization purposes. Also, it seems better 
to check the validity of the linearized equations of motion 
for more sets of turbine parameters.

The experimental validation of the linearized equations 
and the approximate criteria extracted from these equations 
are left as a further work, after fabricating a prototype of 
the turbine.

Fig. 6  Comparison of CP versus 
wind speed from analytical rela-
tionship (Eq. 31) and numerical 
data for benchmarked turbine 
for three combinations of resis-
tive torque and spring constant
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