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Abstract
This paper presents a method for establishing a unified dynamics model of constrained metamorphic mechanisms. Based on 
the equivalent resistance, the influences of geometric constraints and/or force constraints on metamorphism are discussed, 
and the kinematic characteristics of metamorphic joints are described and analyzed in detail. On this basis, the metamor-
phic configurations of augmented Assur groups can be classified into three types, including non-collision, internal collision 
and external collision configurations, and the configuration complete dynamics models of augmented Assur groups are 
established. Then, the dynamics models of active parts, Assur groups and augmented Assur groups are summarized into a 
unified mathematical framework, and the unified dynamics model of constrained metamorphic mechanisms can be obtained. 
Based on the research mentioned above, the initial conditions of all components and the motion law of the active parts are 
given. The motion laws of all components, the driving force/torque of the active parts and the constraint force/torque of the 
metamorphic joints can be obtained by iteration and solution based on the theory that velocity and acceleration are same 
in an extremely brief period. Taking the planar double-folded metamorphic mechanism and the metamorphic nipper swing 
mechanism as examples, the computer numerical analysis and dynamic simulation are carried out to verify the correctness 
and effectiveness of the proposed theory and method.

Keywords Constrained metamorphic mechanisms · Augmented Assur groups · Dynamics · Iterative algorithm

1 Introduction

The metamorphic mechanisms originated from the study 
of foldable and erectable artifacts cartons (Dai and Rees 
1997a, b, c) and were first proposed in 1998 at the 25th 
ASME Biennial Conference (Dai and Rees 1999). This 
kind of mechanism has the facilities to change configuration 
from one to another to fulfill the different function demands 
according to the changes in environment and working con-
ditions (Ding and Yang 2010). In contrast to the traditional 
mechanism, metamorphic mechanisms have the innate abil-
ity to change their form, topology and configuration, from 
one type to another with resultant changes in the number of 
effective links, and the mobility of the mechanism in order 

to accomplish different tasks (Valsamos et al. 2012). This 
can be achieved by two approaches. One is to change the 
number of links by changing the coupled links and the link-
age relationships (Liu and Yang 2004). The other is to apply 
constraint to joints to change the joint property. Parise et al. 
(2000) developed ortho-planar metamorphic mechanisms 
which can change their topological structures in two orthog-
onal planes and obtain the configuration change by reducing 
or increasing the number of effective links during operation. 
Zhang and Ding (2012) analyzed the constraint variation in 
the metamorphic mechanisms based on its multi-configura-
tion characteristic and proposed a methodology for configu-
ration syntheses in accordance with the realization of vari-
ation and coupling of adjacent configurations by applying 
metamorphic kinematic joints. Yan and Kuo (2006, 2007) 
investigated variable topology mechanisms and kinematic 
pairs with mobility change and presented the topological 
representation of variable mobility joints in the form of 
graphs and topology matrices. Xu et al. (2017) designed 
a metamorphic mechanism cell which can realize deploy-
ing, self-locking, unlocking, retracting and interlocking with 
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other cells by incorporating variable kinematic joints. The 
study concluded that mechanisms can change their topology 
through the change of kinematic joints and special mecha-
nism configurations.

However, the metamorphic mechanisms usually used for 
practical operation are the kind of constrained metamorphic 
mechanisms (Li et al. 2016). One of the metamorphosis oper-
ations is realized by using kinematic pair constraints, geomet-
ric constraints and/or force constraints to reduce the number 
of degrees of freedom (DOFs) of a multi-DOF metamorphic 
mechanism to the number of driving links. Then, the cor-
responding work configuration is built for the metamorphic 
mechanism. The approach to perform the intended working 
configuration using constrained metamorphic mechanisms is 
implemented by designing the constraint and structure types 
of metamorphic kinematic pair in order to provide the cor-
responding geometric constraints and/or force constraints. 
Zhang et al. (2010) presented metamorphic kinematic pair 
extracted from origami folds and investigated the topological 
reconfiguration and mobility change of the evolved parallel 
mechanism. Gan et al. (2009) created a new metamorphic 
joint called reconfigurable Hooke (rT) joint that changes the 
installation angle of the joint to form various structures of par-
allel mechanisms (Gan et al. 2010). Li et al. (2015) induced 
the concept of equivalent resistance of the constrained meta-
morphic mechanisms and investigated the constrained ways, 
characteristics and relationships of metamorphic joints.

The dynamics modeling of constrained metamorphic 
mechanisms is the basis of dynamic performance analysis, 
optimization design and control, and it is a problem that must 
be solved in practical application of constrained metamorphic 
mechanisms. To-this-date, great progress has been made in 
the study of kinematics and dynamics of metamorphic mecha-
nisms. Jin et al. (2003, 2004) described different configura-
tions of metamorphic mechanisms through the method of 
Huston lower-body arrays and gave the kinematics analyses 
with generalized topological structures including the velocity, 
angular velocity acceleration and angular acceleration. Valsa-
mos et al. (2015) introduced a global kinematic measure for 
the evaluation of the emerging anatomies, of a given structure 
of a class of 3 DOF modular metamorphic manipulators. Gan 
et al. (2013, 2016a, b) presented unified forward and inverse 
kinematics modeling of metamorphic parallel mechanisms 
by combining geometric constraints. Zhang et al. (2016) 
conducted forward and inverse kinematics analysis of the 
parallel metamorphic mechanism in different configurations 
based on the unified mathematical model. Wang et al. (2017) 
established the nonlinear dynamics model of the novel con-
trol metamorphic palletizing robot mechanism considering the 
effect of damping. Though the configuration complete dynam-
ics model of metamorphic mechanisms has been preliminarily 
established, it is only applicable to metamorphic mechanisms 
with geometric constraints and has certain limitations on 

metamorphic mechanisms with force constraints. Generally, 
constrained metamorphic operations of the constrained meta-
morphic mechanisms are implemented by using geometric 
constraints and/or force constraints of metamorphic joints to 
overlap two links to one or to make the metamorphic joints 
locked. Therefore, it is necessary to establish the unified 
dynamics model of constrained metamorphic mechanisms 
considering typical constraints (geometric constraints and/or 
force constraints).

Following the dynamics model, a numerical iterative 
algorithm is presented based on the theory that velocity 
and acceleration are same in an extremely brief period. As 
well known, the constrained metamorphic mechanisms are 
the kind of under-actuated mechanisms. Dynamics model 
of under-actuated mechanism is a kind of highly complex 
system of nonlinear differential–algebraic equations. For 
the problem of solving the equations, Katake et al. (2000) 
modified the Acrobot so as to impose holonomic constraints 
on the system. The problem of formulating the equations 
of motions of the system along with the holonomic con-
straints using traditional methods is then addressed. Xiong 
et al. (2015) reduced the under-actuated mechanisms to three 
subsystems with holonomic constraints by controlling the 
angles of the actuated links in stages and solved the tar-
get angles of actuated links by particle swarm optimization 
algorithm. The characteristic of this method is that different 
geometric constraints should be set for different mechanisms 
without considering force constraints. Considering con-
strained metamorphic mechanisms in this paper, the theory 
that velocity and acceleration are same in an extremely brief 
period shows a good way to solve the dynamic equations 
including both geometric constraints and force constraints.

This paper is arranged in the following structure. Sec-
tion 2 presents a unified dynamics model of constrained 
metamorphic mechanisms according to the constitution 
theory of mechanisms. To solve the dynamic equations of 
constrained metamorphic mechanisms, a numerical itera-
tive algorithm is proposed based on the theory that velocity 
and acceleration are same in an extremely brief period in 
Sect. 3. In Sect. 4, the planar double-folded metamorphic 
mechanism and the metamorphic nipper swing mechanism 
are introduced, and the computer numerical analysis and 
dynamic simulation are carried to demonstrate the proposed 
method. Finally, conclusions are drawn in Sect. 5.

2  Dynamics Model of Constrained 
Metamorphic Mechanisms

According to structural theory and formation methodol-
ogy of metamorphic mechanisms based on augmented 
Assur groups (Li and Dai 2010), the constrained metamor-
phic mechanisms can be divided into four parts including 
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frame, active parts, several basic Assur groups and at least 
one augmented Assur groups. To illustrate the Assur group 
based metamorphic mechanisms, the 2-DOF metamorphic 
mechanism is taken as an example. The 2-DOF metamorphic 
mechanism is composed of active part, augmented Assur 
group RRRR and Assur group RRP (Fig. 1b, d) and its com-
position principle are shown in Fig. 1. The mechanism has 
two loops. The active part and frame are connected with 
augmented Assur group RRRR to form a loop. The other 
loop is composed of Assur group RRP connected to the for-
mer loop and frame.

The metamorphic process of mechanism based on aug-
mented Assur group is the process of transforming 1-DOF 
augmented Assur group into basic Assur group. The 2-DOF 
metamorphic mechanism shown in Fig. 1 consists of an aug-
mented Assur group, and its four metamorphic configura-
tions are shown in Fig. 2.

According to the above-mentioned structural theory and 
formation methodology of metamorphic mechanisms based 
on augmented Assur groups, the unified dynamics modeling 
method of constrained metamorphic mechanism is studied.

2.1  Dynamics Model of Active Parts

The driving forms of active parts are shown in Fig. 3. Fig-
ure 3a and b shows active parts in pure rotational and pure 
prismatic form, respectively.

According to the Newton–Euler equation (referred to as 
N/E equation), the dynamic equations of active parts can be 
written as follows,

where Fi−1,i and Fi+1,i are the force vectors at component 
Li exerted by components Li−1 and Li+1 , respectively, and 

(1)
{

Fi−1,i − Fi,i+1 + Fi = miC̈i

Mi−1,i − li × Fi−1,i −Mi,i+1 − hi × Fi,i+1 +Mi = IC,i𝜺i

Fi+1,i = −Fi,i+1 ; Mi−1,i and Mi+1,i are the moments at com-
ponent Li exerted by components Li−1 and Li+1 , respectively, 
and Mi+1,i = −Mi,i+1 ; Fi is the external force vector acting on 
the component Li ; Mi is the external moment acting on the 
component Li ; IC,i is the moment of inertia of the component 
Li around the centroid Ci ; �i is the angular acceleration of the 
component Li ; C̈i is the acceleration vector at the centroid of 
the component Li.

2.2  Dynamics Model of the Assur Groups

The simplest Assur groups are a kind of Class II Assur 
groups composed of two components and three low pairs, 
and it is also the most widely used Assur group. In addition 
to Class II Assur groups, there are also higher-level Assur 
groups such as Class III and IV Assur groups. The dynamic 
analysis diagrams of Class II and III Assur group are given 
in Table 4 in “Appendix 1.” According to the dynamic analy-
sis of Assur group in Table 4 in “Appendix 1,” the dynamic 
equation of the Class II Assur groups can be written based 
on N/E equation as follows,

(2)

⎧⎪⎨⎪⎩

Fi−1,i + Fi − Fi+1,i+2 + Fi+1 = miC̈i + mi+1C̈i+1

Mi−1,i − (li + hi) × Fi−1,i +Mi − hi × Fi −Mi,i+1 = Ik−1,k𝜺i
−Mi+1,i+2 + (li+1 + hi+1) × Fi+1,i+2 +Mi+1 − hi+1 × Fi+1

+Mi,i+1 = Ik+1,k𝜺i+1
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Fig. 1  The 2-DOF metamorphic mechanism and its composition 
principle
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Fig. 2  Four metamorphic configurations of the 2-DOF metamorphic 
mechanism
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where Ik−1,k and Ik+1,k are the moments of inertia of com-
ponents Li and Li+1 around the internal kinematic joint Pk , 
respectively.

Similarly, the dynamic equation of Class III Assur groups 
can be written as follows,

where Fn−1,i−1 , Fn,i and Fn+1,i+1 are the constraint force vec-
tors at the external kinematic joints Pk−1 , Pk and Pk+1 exerted 
by components Li−1 , Li and Li+1 , respectively; Mn−1,i−1 , Mn,i 
and Mn+1,i+1 are the constraint torques at the external kin-
ematic joints Pk−1 , Pk and Pk+1 exerted by components Li−1 , 
Li and Li+1 , respectively; Ik−1 , Ik and Ik+1 are the moments of 
inertia of components Li−1 , Li and Li+1 around the internal 
kinematic joints Qk−1 , Qk and Qk+1 , respectively; IC,i+2 is the 
moment of inertia of the component Li+2 around the centroid 
Ci+2 ; si−1 , si and si+1 are the radius vectors of the centroid 
Ci+2 on the component Li+2 relative to the internal kinematic 
joints Qk−1 , Qk and Qk+1 , respectively.

2.3  Dynamics Model of the Augmented Assur 
Groups

Since the constrained metamorphic mechanisms only imple-
ment metamorphism for the augmented Assur groups, the 
metamorphic process is realized by constraining the move-
ment cycle of the metamorphic joints. Therefore, the kin-
ematic characteristics of metamorphic joints should be 
considered in the dynamic analysis of the augmented Assur 
groups.

(3)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Fn−1,i−1 + Fi−1 + Fn,i + Fi + Fn+1,i+1 + Fi+1 + Fi+2 =
2∑

n=−1

mi+nC̈i+n

Mn−1,i−1 − (𝐥i−1 + 𝐡i−1) × Fn−1,i−1 +Mi−1 − 𝐡i−1 × 𝐅i−1

−Mi−1,i+2 = Ik−1𝛆i−1
Mn,i − (𝐥i + 𝐡i) × 𝐅n,i +Mi − 𝐡i × 𝐅i −Mi,i+2 = Ik𝛆i
Mn+1,i+1 − (𝐥i+1 + 𝐡i+1) × 𝐅n+1,i+1 +Mi+1 − 𝐡i+1 × 𝐅i+1

−Mi+1,i+2 = Ik+1𝛆i+1
Mi−1,i+2 − 𝐬i−1 × 𝐅i−1,i+2 +Mi,i+2 − 𝐬i × 𝐅i,i+2 +Mi+1,i+2

− 𝐬i+1 × 𝐅i+1,i+2 +Mi+2 = IC,i+2�̈�i+2

2.3.1  Analysis of Kinematic Characteristics of Metamorphic 
Joints

In order to effectively reflect the variation of constraint types 
of metamorphic joints during the metamorphic process, the 
equivalent resistance (Li et al. 2016) is introduced. Based 
on the functional requirements of the constrained metamor-
phic mechanisms at the different working configurations, the 
typical constraint forms and the corresponding kinematic 
characteristics of the metamorphic joints are analyzed, as 
shown in Table 1.

Wherein, j1 denotes that the metamorphic joint is in the 
extreme position under the constraint form; j2 denotes that 
the metamorphic joint is in the non-extreme position under 
the constraint form; c1 represents a constant larger than or 
equal to 1, c2 represents a constant less than or equal to 1, 
and the exact value can be obtained by reference (Li et al. 
2016). As can be seen from Table 1, there are two kinds of 
kinematic characteristics of the metamorphic joints under 
different constraints corresponding to different equivalent 
resistances. When the constraint form of the metamorphic 
joint is geometric constraint and it is in the non-extreme 
position, the equivalent resistance is f = 0 , and the meta-
morphic joint is in a relative moving state; when the con-
straint form of the metamorphic joint is geometric constraint 
and it is in the extreme position, the equivalent resistance 
is f = ∞ , and the metamorphic joint is in a relative static 
state; when the constraint form of the metamorphic joint is 
force constraint and it is in the non-extreme position, the 
equivalent resistance is f = c2 , and the metamorphic joint 
is in a relative moving state; when the constraint form of the 
metamorphic joint is force constraint and it is in the extreme 
position, the equivalent resistance is f = c1 , and the meta-
morphic joint is in a relative static state.

2.3.2  Configuration Division of the Augmented Assur 
Groups

Assuming that any kinematic joints in the augmented 
Assur groups may be metamorphic joints, it can be seen 
from Table 1 that the metamorphic joints exist relative 
moving and relative static states under different equivalent 

Table 1  Analysis of kinematic 
characteristics of metamorphic 
joints under typical constraints

Constraint forms Mechanism 
configuration

The equivalent resistance Kinematic characteristics

Geometric constraint j
1

f = ∞ Relative static
j
2

f = 0 Relative moving
Force constraint j

1
f = c

1
Relative static

j
2

f = c
2

Relative moving
Combination constraint j

1
f = ∞ Relative static

j
2

f = c
2

Relative moving
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resistances. Therefore, the configuration of the augmented 
Assur groups can be divided as follows,

(1) When the two components connected by the metamor-
phic joints in the augmented Assur groups move rela-
tive to each other, the augmented Assur groups can be 
divided into one Assur groups and one component with 
two pairs. The mechanism is in the non-extreme posi-
tion, and such a configuration is named non-collision 
configuration.

(2) When the two components connected by the metamor-
phic joints in the augmented Assur groups are relatively 
static, the augmented Assur groups are degenerated into 
the corresponding equivalent Assur groups. The mech-
anism is in the extreme position; if the metamorphosis 
occurs in the internal kinematic joints, it is the internal 
collision configuration; if the metamorphosis occurs in 
the external kinematic joints, it is the external collision 
configuration.

2.3.3  Dynamic Analysis of the Augmented Assur Groups

The augmented Assur group RRRR is taken as an exam-
ple. When the augmented Assur group RRRR is in the non-
collision configuration, it is shown in Fig. 4. Combining 
with the analysis of kinematic characteristics in Table 1 and 
the force analysis in Table 5 in “Appendix 2,” the dynamic 
equation of Class II augmented Assur groups in the non-
collision configuration based on the N/E equation can be 
written as follows,

where Fk−1 , Fk , Fk and Fk+2 are the internal constraint forces 
added to the kinematic joints Pk−1 , Pk , Pk+1 and Pk+2 , respec-
tively; Mk−1 , Mk , Mk+1 and Mk+2 are the internal constraint 
torques added to kinematic joints Pk−1 , Pk , Pk+1 and Pk+2 , 
respectively.

(4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Fk−1 + 𝐅i−1,i + 𝐅i − 𝐅i+1,i+2 − 𝐅k+1 + 𝐅i+1 = mi�̈�i + mi+1�̈�i+1

Mk−1 +Mi−1,i − (𝐥i + 𝐡i) × (Fk−1 + 𝐅i−1,i) +Mi

− 𝐡i × 𝐅i −Mi,i+1 −Mk = Ik−1,k𝛆i
−Mk+1 −Mi+1,i+2 + (𝐥i+1 + 𝐡i+1) × (𝐅k+1 + 𝐅i+1,i+2) +Mi+1

− 𝐡i+1 × 𝐅i+1 +Mi,i+1 +Mk = Ik+1,k𝛆i+1
𝐅i+1,i+2 + 𝐅k+1 + 𝐅i+2 − 𝐅i+2,i+3 − 𝐅k+2 = mi+2�̈�i+2

−Mk+2 −Mi+2,i+3 +
�
𝐥i+2 + 𝐡i+2

�
× (𝐅k+2 + 𝐅i+2,i+3) +Mi+2

− 𝐡i+2 × 𝐅i+2 +Mi+1,i+2 +Mk+1 = Ik+2,k+1𝛆i+2

When the augmented Assur group RRRR is in the inter-
nal collision configuration (as shown in Fig. 5), there is no 
relative moving between the two members connected by the 
metamorphic joints, and then the dynamic equation of Class 
II augmented Assur groups is,

Similarly, the dynamic equation of Class II augmented 
Assur groups in the external collision configuration (as 
shown in Fig. 6) can be expressed as,

The augmented Assur group RR-RR-RR-R is taken as an 
example. When the augmented Assur group RR-RR-RR-R 
is in the non-collision configuration, it is shown in Fig. 7. 
Combining with the analysis of kinematic characteristics in 
Table 1 and the force analysis Table 5 in “Appendix 2,” the 

(5)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐅i−1,i +
2∑

n=0

𝐅i+n − 𝐅i+2,i+3 − Fk−1 − 𝐅k+2 =
2∑

n=0

mi+n�̈�i+n

Mk−1 +Mi−1,i − (𝐥i + 𝐡i) × (Fk−1 + 𝐅i−1,i) +Mi

− 𝐡i × 𝐅i −Mi,i+1 −Mk = Ik−1,k𝛆i
(𝐥i+2 + 𝐡i+2 + 𝐥i+1 + 𝐡i+1) × (𝐅i+2,i+3 + 𝐅k+2) −Mk−2 −Mi+2,i+3

− (𝐡i+2 + 𝐥i+1 + 𝐡i+1) × 𝐅i+2 +Mi+2 +Mi+1 − 𝐡i+1 × 𝐅i+1

+Mi,i+1 +Mk = Ik+1,k𝛆i+1 + Ik+2,k+1𝛆i+2.

(6)

⎧⎪⎪⎨⎪⎪⎩

Fk−1 + 𝐅i−1,i + 𝐅i − 𝐅i+1,i+2 − 𝐅k+1 + 𝐅i+1 = mi�̈�i + mi+1�̈�i+1

Mk−1 +Mi−1,i − (𝐥i + 𝐡i) × (Fk−1 + 𝐅i−1,i) +Mi

− 𝐡i × 𝐅i −Mi,i+1 −Mk = Ik−1,k𝛆i
−Mk+1 −Mi+1,i+2 + (𝐥i+1 + 𝐡i+1) × (𝐅k+1 + 𝐅i+1,i+2) +Mi+1

− 𝐡i+1 × 𝐅i+1 +Mi,i+1 +Mk = Ik+1,k𝛆i+1

Fig. 4  Non-collision configura-
tion
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dynamic equation of Class III augmented Assur groups in 
the non-collision configuration can be written as,

where Mq,k−1 , Mq,k and Mq,k+1 are the internal constraint 
torques added to kinematic joints Qk−1 , Qk and Qk+1 , 
respectively.

The dynamic equation of Class III augmented Assur 
groups in the internal collision configuration (as shown in 
Fig. 8) can be expressed as,

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fn−1,i−1 − Fi,i+3 + Fn+1,i+1 +
2∑

n=−1

Fi+n + Fk−1 − Fk

+ Fk+1 =
2∑

n=−1

mi+nC̈i+n

Mn−1,i−1 +Mk−1 − (�i−1 + �i−1) × (Fn−1,i−1 + �k−1) +Mi−1

− �i−1 × �i−1 −Mi−1,i+2 −Mq,k−1 = Ik−1�i−1
−Mk −Mi,i+3 + (�i + �i) × (�k + �i,i+3) +Mi

− �i × �i −Mi,i+2 −Mq,k = Ik�i
Mn+1,i+1 +Mk+1 − (�i+1 + �i+1) ×

�
�n+1,i+1 + �k+1

�
+Mi+1 − �i+1 × �i+1 −Mi+1,i+2 −Mq,k+1 = Ik+1�i+1

Mq,k−1 +Mi−1,i+2 − �i−1 × �i−1,i+2 +Mq,k +Mi,i+2 − �i × �i,i+2

+Mq,k+1 +Mi+1,i+2 − �i+1 × �i+1,i+2 +Mi+2 = IC,i+2�i+2
�i,i+3 + �i+3 + �n+3,i+3 + �k − �k+2 = mi+3C̈i+3

Mn+3,i+3 −Mk+2 −
�
�i+3 + �i+3

�
×
�
�n+3,i+3 − �k+2

�
+Mi+3 − �i+3 × �i+3 +Mk +Mi,i+3 = Ik+2,k�i+3

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Fn−1,i−1 + Fk−1 + Fn+1,i+1 + Fk+1 + Fn+3,i+3 − Fk+2

+
3∑

n=−1

Fi+n =
3∑

n=−1

mi+nC̈i+n

Mn−1,i−1 +Mk−1 − (�i−1 + �i−1) × (Fn−1,i−1 + �k−1) +Mi−1

− �i−1 × �i−1 −Mi−1,i+2 −Mq,k−1 = Ik−1�i−1
Mn+3,i+3 −Mk+2 − (�i+3 + �i+3 + �i + �i) × (�n+3,i+3 − �k+2)

+Mi+3 − (�i+3 + �i + �i) × �i+3 +Mi + �i × �i

−Mi,i+2 −Mq,k = Ik+2,k�i+3 + Ik�i
Mn+1,i+1 +Mk+1 − (�i+1 + �i+1) ×

�
�n+1,i+1 + �k+1

�
+Mi+1

− �i+1 × �i+1 −Mi+1,i+2 −Mq,k+1 = Ik+1�i+1
Mi−1,i+2 − �i−1 × �i−1,i+2 +Mi,i+2 − �i × �i,i+2 +Mi+1,i+2

− �i+1 × �i+1,i+2 +Mi+2 +Mq,k−1 +Mq,k +Mq,k+1 = Ii+2�i+2.

The dynamic equation of Class III augmented Assur 
groups in the external collision configuration (as shown in 
Fig. 9) can be expressed as,

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Fn−1,i−1 − Fi,i+3 + Fn+1,i+1 +
2∑

n=−1

Fi+n + Fk−1 − Fk

+ Fk+1 =
2∑

n=−1

mi+nC̈i+n

Mn−1,i−1 +Mk−1 − (�i−1 + �i−1) × (Fn−1,i−1 + �k−1) +Mi−1

− �i−1 × �i−1 −Mi−1,i+2 −Mq,k−1 = Ik−1�i−1
−Mk −Mi,i+3 + (�i + �i) × (�k + �i,i+3) +Mi − �i × �i

−Mi,i+2 −Mq,k = Ik�i
Mn+1,i+1 +Mk+1 − (�i+1 + �i+1) ×

�
�n+1,i+1 + �k+1

�
+Mi+1

− �i+1 × �i+1 −Mi+1,i+2 −Mq,k+1 = Ik+1�i+1
Mi−1,i+2 − �i−1 × �i−1,i+2 +Mi,i+2 − �i × �i,i+2 − �i+1 × �i+1,i+2

+Mi+1,i+2 +Mi+2 +Mq,k−1 +Mq,k +Mq,k+1 = IC,i+2�i+2.Pk-1
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Fig. 7  Non-collision configuration
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The augmented Assur groups and/or Assur groups 
together constitute the groups of the constrained metamor-
phic mechanisms, and the connection relations and rules 
of the mechanism are the same as those of the traditional 
Assur groups. Therefore, the obtained dynamics models of 
the active parts, the Assur groups and the augmented Assur 
groups are generalized to the modular mathematical frame-
work, and the unified dynamics model of constrained meta-
morphic mechanisms is established, which can be expressed 
in matrix form as,

where M is symmetric positive definite inertia matrix, q̈ is 
generalized acceleration terms, C is the Coriolis force and 
centrifugal force terms, h is the generalized force terms, and 
f  is the constraint force terms.

3  Specific Solution Process for Dynamics 
of Constrained Metamorphic Mechanisms

Assuming that the DOF of constrained metamorphic 
mechanisms is N1, the number of active parts N2, and the 
number of dynamic equations N3, the dynamic equation of 
constrained metamorphic mechanisms shown in Eq. (10) 
is a mixed differential–algebraic equation, which contains 
(N1–N2) differential variables and (N3 − N1 + N2) algebraic 
variables. In the course of solution, the expression of alge-
braic variable about differential variable can be obtained by 
choosing arbitrarily (N3 − N1 + N2) equations in the dynamic 
equations. Subsequently, the expression of algebraic vari-
able about differential variable is replaced by the remain-
ing (N1–N2) dynamic equations, which are transformed into 
highly complex nonlinear differential equations. To solve 
this problem, a numerical iterative method for solving such 
differential linear equations is proposed. When the motion 
law of active parts and the initial position of the differential 
variables are given, the motion law of each component, the 
driving force/torque of active parts and the constraint force/
torque of metamorphic joints can be obtained through itera-
tion. The iteration process is described as follows.

3.1  Kinematics and Dynamics at Time t0

There is a hypothesis at the initial moment t0.

(1) The input positions of active parts are known, 
recorded as qi(t0) , i = 1, 2, 3,⋯ ,N2 ; the initial posi-
tions of differential variables are known, recorded 
as qj(t0) , j = N2 + 1,⋯ ,N2 + N1 . Using the kin-
ematic position equations of constrained meta-
morphic mechanisms, qk(t0) can be obtained, 
k = N1 + N2 + 1,⋯ ,N1 + N2 + N3.

(10)Mq̈ + C = h + f

(2) At the initial moment, the velocities of active parts are 
q̇i(t0) , and the velocities of differential variables are 
q̇j(t0) . Base on step (1), q̇k(t0) can be obtained by using 
the kinematic velocity equations.

(3) The input accelerations of active parts are known, 
recorded as q̈i(t0) ; Based on steps (1) and (2), the 
nonlinear differential equation can be used to obtain 
the accelerations of differential variables, recorded as 
q̈j(t0) . Then, the obtained results are introduced into 
the expressions of algebraic variables about differen-
tial variables, and the driving force/torque of the active 
parts and the constraint force/torque of the metamor-
phic joints can be obtained.

(4) On the basis of steps (1) to (3), q̈i(t0) and q̈j(t0) are 
introduced into the kinematic acceleration equations, 
and q̈k(t0) can be obtained.

3.2  Kinematics and Dynamics at Time Tn

Let the time interval from time tn−1 to time tn be infinitely 
small, denoted as �t . It can be considered that velocity and 
acceleration of the differential variable are constant within 
an infinitesimal time interval, which is equal to velocity 
and acceleration of the previous moment in the interval, 
and the interval velocity and acceleration at different time 
are changed by steps. There are several situations at time 
tn(n = 1, 2, 3,⋯).

(1) The input positions of active parts are known, 
recorded as qi(tn) ; the initial positions of differ-
ential variables are known, recorded as qj(tn) and 
qj(tn) = qj(tn−1) + q̇j(tn−1)𝛿t  . Using the kinematic 
position equations of constrained metamorphic mecha-
nisms, qk(tn) can be obtained.

(2) The velocities of active parts are known, recorded as 
q̇i(tn) ; the velocities of differential variables are known, 
recorded as q̇j(tn) . q̇j(tn) = q̇j(tn−1) + q̈j(tn−1)𝛿t can be 
obtained based on the results at time tn−1 . q̇k(tn) can be 
obtained by using the kinematic velocity equations.

(3) The input accelerations of active parts are known, 
recorded as q̈i(tn) ; the accelerations of differential vari-
ables q̈j(tn) can be obtained by nonlinear differential 
equations, and they are introduced into the expression 
of algebraic variables about differential variables. The 
driving force/torque of the active parts and the constraint 
force/torque of the metamorphic joints can be obtained.

(4) Substituting q̈i(tn) and q̈j(tn) into the kinematic accelera-
tion equations, q̈k(tn) can be obtained.

According to the above steps, the position, velocity, 
acceleration, the driving force/torque of active parts and 
the constrained force/torque of metamorphic joints can be 
obtained at time tn by iteration.
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The iteration flowchart is shown in Fig. 10.

4  Simulation Examples

4.1  The Planar Double‑Folded Metamorphic 
Mechanism

Taking the planar double-folded metamorphic mecha-
nism (Wang and Dai 2007) as an example, the types and 
constraints of metamorphic joints based on the kinematic 

characteristics of metamorphic joints are given. According 
to the working task, the planar double-folded metamorphic 
mechanism (as shown in Fig. 11) must complete three work-
ing requirements: horizontal folding, vertical folding and 
reset.

(1) Horizontal folding, as shown in Fig. 11a, horizontally 
pushing the left side of the single-layer cardboard and 
rotating the second side of the left side along the sec-
ond crease to vertical position.

(2) Vertical folding, as shown in Fig. 11b, completing the 
rotation of the first surface around the first crease and 
coinciding with the second surface.

(3) Reset, as shown in Fig. 11c, the mechanism returns to 
its initial position.

Figure 12 shows the schematic diagram of the planar 
double-folded metamorphic mechanism and its compo-
sition principle. According to the above requirements, 
force metamorphism is adopted at kinematic joint D, that 
is, when the mechanism is in configuration 1, the spring 
force is set at kinematic joint D, so that the relative mov-
ing resistance between the components 3 and 4 is larger 
than the motion resistance of the slider, and it keeps the 
components 3 and 4 relatively static. When the mechanism 
is in configuration 2, a geometric constraint is added at 
kinematic joint E, so that the slider moves to the speci-
fied position and stops moving when the mechanism meets 
the geometric limit. When the mechanism is in configu-
ration 3, the spring force at kinematic joint D makes the 
components 3 and 4 to be relatively static. Based on the 
principle of augmented Assur groups, the planar double-
folded metamorphic mechanism is divided into a fixed-
axis rotating active part and an augmented Assur group 
RRRP (Fig. 12b and c).

Fig. 10  The flowchart for numerical iterative algorithm

    
(a) Horizontal folding (b) Vertical folding

(c) reset

Fig. 11  The planar double-folded metamorphic mechanism
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According to the geometric and physical parameters 
of the planar double-folded metamorphic mechanism in 
Table 2, a three-dimensional model is established in Solid-
Works, as shown in Fig. 13. The initial location of compo-
nent 4 is 227.73 mm, and the initial position of the compo-
nent 1 is π rad.

Assuming that the active part 1 rotates at a constant speed 
of 6 r/min (motion period is 10 s), the dynamic simulation 
is carried out in SolidWorks virtual prototype environment, 
and the relationship between the driving torque and time 

of the planar double-folded metamorphic mechanism is 
obtained.

When the planar double-folded metamorphic mechanism 
is in configurations 1 and 3, the mechanism under force con-
straint can be regarded as consisting of an active part and an 
augmented Assur group RRRP (as shown in Fig. 12b and 
c). The dynamic analysis of the planar double-folded meta-
morphic mechanism in configurations 1 and 3 is shown in 
Fig. 14.

The dynamic equations in configurations 1 and 3 can be 
obtained by Eqs. (1) and (4) as follows,

When the mechanism is in configuration 2, the mecha-
nism under geometric constraint can be regarded as consist-
ing of an active part and an Assur group RRR, as shown in 
Fig. 15. The dynamic analysis of the planar double-folded 
metamorphic mechanism in configuration 2 is shown in 
Fig. 14a and b. The dynamic equations in configuration 2 
can be obtained by Eqs. (1) and (6) as follows,

(11)

⎧⎪⎨⎪⎩

Fax + Fbx = m1a1x
Fay + Fby − G1 = m1a1y
0.5LABFbx sin(𝜃1 − π) + 0.5LABFby cos(𝜃1 − π) +M1

− 0.5LABFax sin(𝜃1 − π) − 0.5LABFay cos(𝜃1 − π) = J1�̈�1

(12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Fbx + Fdx = m2a2x + m3a3x
−Fby + Fdy − G2 − G3 = m2a2y + m3a3y
−LBCFbx sin 𝜃2 + LBCFby cos 𝜃2 + 0.5LBCG2 cos 𝜃2 = JBC�̈�2
−LCDFdx sin 𝜃3 + LCDFdy cos 𝜃3 − G3l3 cos(𝜃3 + 𝛼3) +Md = JDC�̈�3
−Fdx = m4a4x
−Fdy + Fe − G4 = m4a4y
l4Fdx +Me −Md = 0.
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(b) (c)
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Fig. 12  The schematic diagram

Table 2  Geometric and inertia properties of the planar double-folded 
metamorphic mechanism (SI units)

Parameter Measurement 
value

Parameter Measurement value

LAB 0.08 m2 0.165
LBC 0.2 m3 0.162
LCD 0.9 m4 0.455
LAEy 0.1425 J1 1.8 × 10−4

l3 0.06 JBC 2.3 × 10−3

l4 0.078 JDC 8.8 × 10−4

α3 0.424 k 3.24/π
m1 0.075 c 0.18/π

Fig. 13  Three-dimensional graph
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Fig. 14  Dynamic analysis in configurations 1 and 3
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The parameters in Table  2 are substituted into the 
dynamic equations of the planar double-folded metamor-
phic mechanism, and the numerical iterative algorithm is 
adopted (the iteration time step is 0.01 s). The relationship 
between driving torque and time is obtained by using Matlab 
numerical simulation software. The results are compared 
with those of SolidWorks virtual dynamics simulation. As 
shown in Fig. 16, the numerical results of driving torque 
are in good agreement with those of virtual simulation. It 
verifies the correctness and validity of the dynamics model 
for Class II augmented Assur groups and solves the difficult 
problem of solving the dynamics model of constrained meta-
morphic mechanisms due to the existence of non-holonomic 
constraints and strong coupling.

(13)

⎧⎪⎨⎪⎩

Fax + Fbx = m1a1x
Fay + Fby − G1 = m1a1y
0.5LABFbx sin(𝜃1 − π) + 0.5LABFby cos(𝜃1 − π) +M1

− 0.5LABFax sin(𝜃1 − π) − 0.5LABFay cos(𝜃1 − π) = J1�̈�1

(14)

⎧⎪⎨⎪⎩

−Fbx + Fdx = m2a2x + m3a3x
−Fby + Fdy − G2 − G3 = m2a2y + m3a3y
−LBCFbx sin 𝜃2 + LBCFby cos 𝜃2 + 0.5LBCG2 cos 𝜃2 = JBC�̈�2
−LCDFdx sin 𝜃3 + LCDFdy cos 𝜃3 − G3l3 cos(𝜃3 + 𝛼3) +Md = JDC�̈�3.

In addition, the relative motion law and the constraint 
force/torque of the metamorphic joints of the planar double-
folded metamorphic mechanism in two working cycles can 
be obtained by numerical calculation, as shown in Figs. 17, 
18 and 19.

Figure 17 shows that the planar double-folded meta-
morphic mechanism is in horizontal folding state within 
0–2.63 s, in which metamorphic joint D is relatively static 
and metamorphic joint E is relatively moving; the planar 
double-folded metamorphic mechanism is in vertical folding 
state within 2.63–7.3 s, in which metamorphic joint D is rel-
atively moving and metamorphic joint E is relatively static; 
the planar double-folded metamorphic mechanism is in reset 
state within 7.3–10 s, in which metamorphic joint D is rela-
tively static and metamorphic joint E is relatively moving. 
At the same time, it can be seen from Fig. 17 that the relative 
angular displacement of the metamorphic joint D and the 
relative linear displacement of the metamorphic joint E have 
a sudden change at the initial moment. The sudden change 
is related to the initial position of the torsional spring. The 

(a) (b)

Fig. 15  Configuration 2
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Fig. 16  Driving torque of the planar double-folded metamorphic 
mechanism
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Fig. 17  The relative motion laws of metamorphic joints

Fig. 18  The constraint forces of metamorphic joint D 
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deformation of the torsional spring can be obtained by static 
analysis of the mechanism at the initial moment of configu-
ration 1; thus, the sudden change of metamorphic joint can 
be avoided at the initial position.

As can be seen from Figs. 18 and 19, the variation law of 
the constraint force/torque of the metamorphic joint before 
and after the configuration change has changed greatly, 
and there is a sudden change between the constraint force/
torque of the metamorphic joints at the time of configura-
tion change. The sudden change is related to the impact of 
configuration change.

4.2  The Metamorphic Nipper Swing Mechanism

Taking the metamorphic nipper swing mechanism (Zhang and 
Sun 2015) as an example, the types and constraints of meta-
morphic joints based on the kinematic characteristics of meta-
morphic joints are given. The mechanism has three configu-
rations, which are: the nipper is gradually closed, the nipper 
is closed, and the nipper is gradually opened during working 
cycle. Based on that, the nipper gradually closed configura-
tion and the nipper gradually opened configuration are taken 
as a mechanism in order to achieve the above requirements, 
as shown in Fig. 20a. In this mechanism, spring is added to 
kinematic joint G, so that the slider 5 and the component 6 are 
combined into one component under the constraint of spring, 
and the nipper is in an open state at this time. The nipper closed 
configuration is shown in Fig. 20b. In this mechanism, a geo-
metric constraint is added at kinematic joint C, and the upper 
nipper 4 which combined with the lower nipper 2 to form one 
component is gradually moved from position b to position a.

Based on the principle of augmented Assur groups, the 
metamorphic nipper swing mechanism is divided into a 
fixed-axis rotating active part, an Assur group RPR and an 
augmented Assur group RP–RR–RR–R, as shown in Fig. 21.

According to geometric and inertia properties of the 
metamorphic nipper swing mechanism in Table  3, a 

three-dimensional model is established in SolidWorks, as 
shown in Fig. 22. The initial distance between slider 5 and 
H is 172.37 mm, and the initial position of the component 
9 is 3�∕5 rad.

Assuming that the active part 9 rotates at a constant 
speed of 6 r/min (motion period is 10 s), the dynamic simu-
lation is carried out in SolidWorks virtual prototype envi-
ronment, and the relationship between the driving torque 
and time of the metamorphic nipper swing mechanism is 
obtained.

Fig. 19  The constraint force/torque of metamorphic joint E 

(a) Nipper opened (b) Nipper closed
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Fig. 20  Working configuration of the metamorphic nipper swing 
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Fig. 21  The schematic diagram

Table 3  Geometric and inertia properties of the metamorphic nipper 
swing mechanism (SI units)

Parameter Measurement value Parameter Measurement value

LAB 0.082 m8 0.067
LBC 0.112 m9 0.04
LCE 0.075 J1 1.583 × 10−3

LED 0.074 J2C 3.51 × 10−4

LCF 0.075 J3 3.3 × 10−5

LOP 0.065 J4C 3.4 × 10−5

m1 0.165 J5 6.6 × 10−6

m2 0.098 J6 2.59 × 10−4

m3 0.044 J8 6.6 × 10−6

m4 0.045 J9 2.5 × 10−5

m5 0.067 k 2000
m6 0.088 c 1000
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When the metamorphic nipper swing mechanism is in 
gradually closed and gradually opened configurations, the 
dynamic equations can be obtained by Eqs. (1), (2) and (7). 
When the mechanism is in closed configuration, the dynamic 
equations can be obtained by Eqs. (1), (2) and (8). The param-
eters in Table 3 are substituted into the dynamic equations of 
the metamorphic nipper swing mechanism, and the numerical 
iterative algorithm is adopted (the iteration time step is 0.01 s). 
The relationship between driving torque and time is obtained 
by using Matlab numerical simulation software. The results 
are compared with SolidWorks virtual dynamics simulation.

As shown in Fig. 23, the numerical results of driving 
torque are in good agreement with those of virtual simula-
tion. It verifies the correctness and validity of the Class III 
augmented Assur groups dynamics model.

5  Conclusions

Based on the constrained metamorphic mechanisms, a 
simple and straightforward approach to develop a unified 
dynamics model and a systematic numerical iterative algo-
rithm for solving dynamic equations were presented in this 
paper, considering the impact of force constraints and/or 
geometric constraints.

What conclusions can be arrived in this paper are as 
following,

(1) Presented a simple and straightforward approach to 
establish a unified dynamics model of constrained 
metamorphic mechanisms considered force constraints 
and/or geometric constraints. In this approach, a unified 
dynamics model of constrained metamorphic mecha-
nisms is composed of dynamics models of active parts, 
Assur groups and augmented Assur groups, and all of 
these models are established by N/E equation. In the 
dynamics model of augmented Assur groups, metamor-
phic joints have an important influence on augmented 
Assur groups. By considering the kinematic charac-
teristics of the metamorphic joints, there are non-col-
lision configuration, internal collision configuration 
and external collision configuration. Meanwhile, the 
complete configuration dynamics model of augmented 
Assur groups is established.

(2) Proposed a numerical iterative algorithm for solving the 
dynamic equations of constrained metamorphic mecha-
nisms based on the theory that velocity and accelera-
tion are same in an extremely brief period. It solves 
the difficult problem for the dynamic solution of con-
strained metamorphic mechanisms due to the existence 
of non-holonomic constraints and strong coupling.

(3) Taking the planar double-folded metamorphic mecha-
nism and the metamorphic nipper swing mechanism 
as examples, the numerical simulations are finished by 
Matlab software and SolidWorks software. Simulation 
results show that the unified dynamics model of con-
strained metamorphic mechanisms and the numerical 
iterative algorithm are correct and effective. On the 
other hand, it shows that impact motion of constrained 
metamorphic mechanisms exists in the transformation 
of configuration, and it provides a theoretical basis for 
the follow-up study of such mechanisms.
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Appendix 1

See Table 4.

Fig. 22  Three-dimensional graph
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Fig. 23  Driving torque of the metamorphic nipper swing mechanism
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Table 4  Dynamic analysis of Class II and III Assur group

Assur group name Dynamics analysis of Assur group 

Class II Assur group 

(1) RRR 

li

hi
Fi

Ci

Fi-1,i

Mi-1,i
Pk-1

Li

Pk

Pk+1

hi+1

li+1

Fi+1

Mi+1

-Mi+1,i+2

-Fi+1,i+2

Li+1

Ci+1

Mi

 

(2) RRP 

li

hi

Ci
Li+1Li

Pk-1

hi+1

li+1

Pk

Pk+1

-Mi+1,i+2

-Fi+1,i+2

Ci+1
Fi

Mi

Mi-1,i

Fi+1

Mi+1

Fi-1 i,
 

(3) RPR 

li

hi

Ci

Pk-1

Li li+1

hi+1

Ci+1

Pk+1

Li+1

Pk

Fi

Mi

Fi-1,i

Mi-1,i

-Mi+1,i+2

-Fi+1,i+2

Fi+1

Mi+1

 

(4) PRP 

li

hi

Ci
Li+1Li

Pk-1

hi+1

li+1

Pk

Pk+1

Ci+1
Fi

Mi
Fi+1

Mi+1

-Mi+1,i+2

-Fi+1,i+2
Mi-1,i

Fi-1 i,  
(5) PPR 

li

hi

Ci

Li li+1

hi+1

Ci+1

Pk+1

Li+1

Pk

Pk-1

Fi

Mi

Fi+1

Mi+1

-Mi+1,i+2

-Fi+1,i+2Mi-1,i

Fi-1 i,  

Class III Assur 

group 

(1) RR-RR-RR 

li-1

hi-1
Mi-1

Fi-1

Pk-1

Qk-1 Qk

Qk+1 Pk

Pk+1

Li-1
Ci-1

Fn-1,i-1

Mn-1,i-1

Mi
Fi

Ci

li

hi

Li

hi+1

li+1
Ci+1

Li+1

Fi+1
Mi+1

Mn+1, i+1

Fn+1,i+1

Li+2

si-1
si

si+1

Ci+2

Mi+2

Fi+2

Mn, i

Fn, i

 

(2) RP-RR-RR 

Mi-1

Fi-1Ci-1

Ci+1Fi+1

Mi+2

Fi+2

Li-1

li-1

hi-1
Qk-1

Pk-1

si-1
sisi+1

Li+2
Qk

hi

li

Li

MiFi

Pk

Ci+2

Qk+1

Li+1

Pk+1

Mn, i

Fn, i

Fn-1,i-1
Mn-1,i-1

CiMn+1, i+1

Fn+1,i+1

li+1

hi+1Mi+1

 
(3) PR-RP-RR 

Ci-1

Ci+1

Li-1

li-1

hi-1
Qk-1

Pk-1

si-1
sisi+1

Li+2
Qk

hi

li

Li

Pk

Ci+2

Qk+1

hi+1

li+1 Li+1

Pk+1 CiMn+1, i+1

Fn+1,i+1

Fi+1

Mi+1

Mi+2

Fi+2 MiFi Mn, i

Fn, i

Mi-1

Fi-1

Fn-1,i-1
Mn-1,i-1  

(4) RP-PR-RP 

Li-1

Fn-1,i-1

Mn-1,i-1
Pk-1

Ci-1

li-1

hi-1Mi-1

Fi-1

QkQk-1

li

hi

Pk

Mn, i

Fn, i

Li

Fi

Mi

Ci

si
si-1

si+1

Fi+2

Ci+2

Li+2Qk+1

li+1

hi+1

Li+1

Mi+1

Fi+1
Ci+1

Mn+1, i+1

Fn+1,i+1

Pk+1

Mi+2
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Appendix 2

See Table 5.

Table 5  Dynamic analysis of Class II and III augmented Assur group

Augmented Assur 

group name 

Class II and III augmented Assur group 
Structure diagram Dynamics analysis of augmented Assur group 

Class II augmented 

Assur group 

(1) RRRR 

 

Fi+1

Mi

Fi

hi

hi+1

li+1

Mk-1

Pk-1

li

Mi+1

Fk-1

Mi-1,i

Pk

Pk+1

-Fk+1

Fi-1,i

-Mk+1

-Mi+1,i+2
-Fi+1,i+2

Li

Li+1

Ci+1

Ci

   

Fi+2

hi+2

li+2

Pk+1

Pk+2

-Mk+2

-Fk+2
-Fi+2,i+3

-Mi+2,i+3

Fk+1

Mk+1 Fi+1,i+2

Mi+1,i+2

Li+2 Ci+2

Mi+2

 
(2) RRPR 

 

Fi+1Pk-1

Mi+1

li

hi
Fi

Pk

hi+1

li+1

-Fk+1-Mk+1

Pk+1Li

Ci

Li+1

Ci+1

Mk-1

Fk-1

Mi-1, i

Fi-1, i

Mi

-Mi+1, i+2

-Fi+1 , i+2

  

Mi+2

Fi+2

Pk+2

-Mk+2-Fk+2

hi+2

li+2

Pk+1

Li+2

Ci+2

Fk+1
Mk+1

Mi+1 , i+2

Fi+1 , i+2

-Fi+2 , i+3

-Mi+2, i+3

 
(3) RPPR 

 

Fi+1 Mi+1

Mk-1

Pk-1

Fk-1

hi
Pk

hi+1

li+1

Ci

Li

Pk+1

-Fk+1
-Mk+1Ci+1

Li+1

Mi

Fi

-Fi+1, i+2

Mi-1, i

Fi-1, i

li

-Mi+1, i+2

    

Pk+2

hi+2

li+2

Pk+1

Li+2

Ci+2

-Mk+2
-Fk+2 -Fi+2, i+3

-Mi+2,i+3

Mi+2
Fi+2

Fk+1
Mk+1

Mi+1, i+2

Fi+1, i+2

 
(4) RRRP 

 

Fi+1

Mi

Fi

hi

hi+1

li+1

Mk-1

Pk-1

li

Mi+1

Fk-1

Mi-1,i

Pk

Pk+1

-Fk+1

Fi-1,i

-Mk+1

-Mi+1,i+2
-Fi+1,i+2

Li

Li+1

Ci+1

Ci

    

Pk+2

-Mk+2-Fk+2
-Fi+2,i+3

-Mi+2,i+3

Pk+1
hi+2

li+2

Li+2
Ci+2

Fk+1

Mk+1
Fi+1,i+2

Mi+1,i+2

Fi+2

Mi+2

 
(5) RRPP 

 
Pk-1

li

hi
Pk

hi+1 li+1

Pk+1Ci

Li

Li+1

Ci+1

Mk-1
Fk-1

Mi-1,i

Fi-1,i

Mi

Fi

Fi+1

Mi+1

-Fk+1
-Mk+1

-Mi+1,i+2

-Fi+1,i+2

   

Pk+2

hi+2

li+2

Pk+1

Li+2
Ci+2

-Mk+2-Fk+2
-Fi+2,i+3

-Mi+2,i+3

Fi+2

Mi+2

Fk+1

Mk+1

Mi+1,i+2

Fi+1, i+2

 
(6) RPRP 

 

Pk-1

li

hi

Pk

hi+1

li+1

Pk+1
Ci

Li

Li+1

Ci+1Mi

Fi

Mk-1
Fk-1

Mi-1,i

Fi-1,i

Fi+1
Mi+1

-Fk+1
-Mk+1

-Mi+1,i+2
-Fi+1,i+2

   

Pk+2

-Mk+2-Fk+2
-Fi+2,i+3

-Mi+2,i+3

Pk+1
hi+2

li+2

Li+2
Ci+2

Fk+1

Mk+1
Fi+1,i+2

Mi+1,i+2

Fi+2

Mi+2
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Table 5  (continued)

Augmented Assur 

group name

Class II and III augmented Assur group

Structure diagram Dynamics analysis of augmented Assur group

Class II augmented 

Assur group

(7) RPPP Fi+1 Mi+1

Mk-1

Pk-1

Fk-1

hi
Pk

hi+1

li+1

Ci

Li

Pk+1

-Fk+1
-Mk+1Ci+1

Li+1

Mi

Fi

-Fi+1, i+2

Mi-1, i

Fi-1, i

li

-Mi+1, i+2

Pk+2

hi+2

li+2

Pk+1 Ci+2

Li+2

Fk+1
Mk+1

Mi+1, i+2

Fi+1, i+2

Mi+2
Fi+2

-Mk+2-Fk+2

-Fi+2 i+3,

-Mi+2,i+3

(8) PRRP

Pk-1

li

hi
Pk

hi+1

li+1

Pk+1

Ci

Li

Li+1

Ci+1Mi

Fi

Fi+1
Mi+1

-Fk+1 -Mk+1

-Mi+1,i+2
-Fi+1,i+2

Mk-1

Fk-1

Mi-1,i

Fi-1,i
Pk+2

-Mk+2-Fk+2
-Fi+2,i+3

-Mi+2,i+3

Pk+1
hi+2

li+2

Li+2
Ci+2

Fk+1

Mk+1
Fi+1,i+2

Mi+1,i+2

Fi+2

Mi+2

(9) PRPP

li

hi
Pk

hi+1 li+1

Pk+1

Pk-1

Li

Ci
Li+1

Ci+1

Mi

Fi

Fi+1

Mi+1

-Fk+1
-Mk+1

-Mi+1,i+2

-Fi+1,i+2

Mk-1Fk-1

Mi-1,i

Fi-1,i Pk+2

hi+2

li+2

Pk+1

Li+2
Ci+2

-Mk+2-Fk+2
-Fi+2,i+3

-Mi+2,i+3

Fi+2

Mi+2

Fk+1

Mk+1

Mi+1,i+2

Fi+1, i+2

Class III augmented 

Assur group

(1) RR-RR-RR-R

li-1

hi-1

Mk-1

Pk-1

Fk-1

Qk-1 Qk

Qk+1 Pk

Pk+1

Li-1
Ci-1

Fn-1,i-1

Mn-1, i-1

Ci

li

hi

Li

hi+1

li+1 Ci+1

Li+1

Fk+1
Mk+1

Mn+1,i+1

Fn+1, i+1

Li+2

si-1

si+1

Ci+2

-Mk -Fk

-Mi , i+3

-Fi, i+3siMi-1

Fi-1

Mi+2

Fi+2

Fi+1
Mi+1

Mi
Fi

Pk

Fk

Mk Fi,i+3

Mi,i+3

Li+3

Pk+2

-Mk+2

-Fk+2

hi+3

Fi+3

Mi+3

Ci+3

li+3

Fn+3, i+3

Mn+3, i+3

(2) RR-PR-RR-R

Mk-1

Fk-1

Fn-1,i-1

Mn-1, i-1

Mi-1

Ci-1

Ci+1Fi+1
Mi+1

Mi+2Fi+2

Li-1

li-1

hi-1
Qk-1

Pk-1

si-1
sisi+1

Li+2
Qk

hi

li

Li

Mi
Fi

Ci

Pk

Ci+2

Qk+1

hi+1

li+1 Li+1

Pk+1
Fk+1

Mk+1

Mn+1,i+1
Fn+1, i+1

Fi-1

-Mk
-Fk

-Mi , i+3

-Fi, i+3

Pk

Fk

Mk Fi,i+3

Mi,i+3

Li+3

Pk+2

-Mk+2

-Fk+2

hi+3

Fi+3

Mi+3

Ci+3

li+3

Fn+3, i+3

Mn+3, i+3
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