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Abstract
The Gantry-Tau is a family of parallel manipulators with three linear actuators. This mechanism is of interest for various 
applications because of the large workspace and its performance in terms of high acceleration, precision, and stiffness char-
acteristics. This paper presents workspace analysis and calibration for a Gantry-Tau mechanism using its forward kinematics. 
The mathematical model of the systematic errors in the kinematics model of the manipulator is obtained. Analysis of the 
error is then performed to identify the parameters that have a dominant effect on the kinematics error and the regions of the 
workspace with a high error due to the calibration. Minimization of the mean square and mean absolute errors is employed for 
calibration through kinematics parameters. For demonstration purposes, a SimMechanics kinematic model of the mechanism 
is used and its calibration is performed over many sampled positions within the workspace borders of the robot. The result 
demonstrates that the kinematic error is significantly reduced after the calibration.
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1 Introduction

Industrial robots are an important part of the current and 
future automation systems, especially for manufacturing 
and assembly. Currently, many of these robots are based 
on serial mechanisms, which suffer from limited flexibility, 
low stiffness, and inadequate precision for some applica-
tions (Dressler et al. 2007a). For some industrial applica-
tions, such as grinding or machining where high stiffness 
is required, parallel robots are of special interest (Patel 
and George 2012; Pedrammehr et al. 2011a, 2013, 2014; 
Kong and Gosselin 2007; Qazani et al. 2014, 2018; Pedram-
mehr 2012). Among parallel robots, there is a high level of 
focus on the Stewart platform manipulator (Li et al. 2017; 
Pedrammehr et al. 2011b, 2012; Harib and Srinivasan 2003; 
Rahmani et al. 2014); however, this platform has limited 
application due to its small workspace. The SCARA Delta 
robot was introduced to reduce some of the limitations in 
common parallel robots. Kinematic and dynamic analyses of 

this robot have been studied in Zhu et al. (2005) and Croth-
ers et al. (2009). This mechanism also has some limitations 
in its workspace and relatively small payload. Therefore, the 
SCARA-Tau concept has been extended to six degree-of-
freedom (DOF) octahedral hexarot mechanisms in Pedram-
mehr et al. (2016, 2017, 2018a, b, c, d, 2019a, b, c).

Since the introduction of the Gantry-Tau mechanism by 
Johannesson et al. (2003), several researchers have per-
formed different studies of it. The first Gantry-Tau prototype 
was built at the University of Queensland, in 2004 (Tyapin 
et al. 2007a), and its workspace has been extracted with a 
geometric method. Williams et al. (2006) have introduced 
the early version of the Gantry-Tau mechanism with three 
DOF. The kinematic error model and calibration method 
have also been presented in their study. Later, a five DOF 
Gantry-Tau mechanism has been introduced by Murray et al. 
(2006), and the inverse kinematic model of it has been devel-
oped. It has also shown that the collisions can be avoided by 
appropriate platform design. The triangle arm and the end-
effector platform were designed to maximize the workspace 
area of the mechanism (Murray et al. 2008; Tyapin et al. 
2007b). The benefits of exchanging the single-link arm of 
the three-DOF version with telescopic actuator have been 
investigated in Hovland et al. (2007a). Due to the importance 
of calibration of robotic systems, the subject of calibration 
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has been widely discussed within the robotics community 
(Daney et al. 2006; Yoosefi and Rahmani 2017; Arora and 
Bera 2017; Ebrahimi and Eshaghiyeh-Firoozabadi 2016). 
The optimization techniques for calibration of the different 
parallel mechanisms have also been studied and compared 
in the reported literature (Ridgeway and Crane 2003; Daney 
et al. 2005). Johannesson et al. (2003) and Mady (2012) have 
studied the error kinematic modeling and calibration of the 
three-DOF Gantry-Tau mechanism. Dressler et al. (2007a, 
b, 2010) have investigated the accuracy of the kinematic and 
dynamic models of the Gantry-Tau mechanism. The configu-
ration support for a reconfigurable Gantry-Tau mechanism 
as well as its kinematic error model has also been addressed 
in their research works.

In this paper, first, a CAD model of an existing Gantry-
Tau mechanism in the Institute for Intelligent Systems 
Research and Innovation (IISRI) at Deakin University is 
built. Then, the inverse kinematics model of the mechanism 
is developed and validated through the CAD model. Work-
space of the mechanism is obtained based on the joint and 
collision limitations and singularities with a considerably 
high footprint. The region of workspace with a high level 
of dexterity is also determined. The kinematics error of the 
mechanism is investigated; then, the calibration method is 
studied using the SimMechanics model of the mechanism. 
Hence, the main contribution of this paper is a full deriva-
tion of the kinematics and kinematic error formulation, the 
dexterity analysis of the robot, and the simulation and evalu-
ation of the calibration efficiency through a SimMechan-
ics model of the Gantry-Tau manipulator. This allows us to 
quickly perform performance evaluation and testing of the 
proposed calibration method and compare different methods 
or algorithms for calibration.

2  Gantry‑Tau Mechanism

The Gantry-Tau manipulator is basically a three-DOF paral-
lel kinematic robot. This robot consists of three active pris-
matic guideways and six passive links connecting the active 
joints to the end-effector platform that shape three sets of 
arms (See Fig. 1). The arms are connected to the prismatic 
joints through a cart mechanism.

As shown in the schematic model of the Gantry-Tau 
mechanism in Fig. 2a, arms 1, 2, and 3, respectively, consist 
of 1, 2, and 3 links that are connecting between the carts and 
the platform. The simple mechanism of the passive links 
allows flexibility in the geometric design of the linkages 
and leads to low manufacturing costs for these robots. The 
triangular 3-link arm has several advantages including the 
capability of reconfiguring the robot (Hovland et al. 2007b). 
This reconfiguration capability is achieved by flipping the 
links to the other side of the carts. The spherical joint offsets 

on the actuator side are reduced, and the robot has larger 
reachable workspace limits and no inter-workspace singu-
larity points. However, the constant end-effector orientation 
could lead to a collision between links and platform. The 
joints between the links with the carts and the platform are 
passive spherical joints. This, however, brings the advan-
tage that the platform and the links could be light weight, 
which could significantly increase the frequency bandwidth 
of the robot resulting in high acceleration and velocity. The 
position of the spherical joints on the platform and the carts 
according to the so-called Tau configuration are such that 
the links within the arms 2 and 3 form vertices of a paral-
lelogram. This creates a constant orientation and a purely 
translational movement of the platform.

Figure 2b shows A CAD model that has been developed 
for this mechanism in CATIA software environment using 
the geometric parameters of the Gantry-Tau manipulator 
given in the “Appendix.” In this design, the length of the 
passive link is two meters and the length of the guideways is 
three meters. The platform of the mechanism has an angle of 
45° with the x axis of the guideway and 60° with the y axis. 
The Gantry-Tau manipulator could be easily reconfigured 
with different link lengths and cart angles.

A SimMechanics model for the Gantry-Tau manipulator 
has been developed based on the multi-rigid-body method 
that is shown in Fig. 3a. In this model, the three solver con-
figuration, world frame, and mechanism configuration gener-
ate the systems environment and simulation characteristics. 
There are three translational blocks for each guideway which 
have been shown as Guideways 1 to 3. The mechanisms of 
the prismatic joints have been presented as Joints 1 to 3. 
There are a single-link, double-link, and triple-link blocks 
that are, respectively, used for modeling of the arms 1, 2, 
and 3. The last block is named platform, which contains 
the sub-blocks building the end-effector platform and its 
connections to the links. This SimMechanics model allows 

Fig. 1  Gantry-Tau mechanism
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us to perform kinematics and dynamics analysis. Figure 3b 
shows the graphical output of the SimMechanics model for 
the Gantry-Tau mechanism.

3  Kinematics Modeling

For many of the parallel robots, the position forward kin-
ematics of the robot cannot be obtained in a closed math-
ematical form. Hence, the kinematics modeling commonly 
starts by studying the inverse kinematics. Moreover, to the 
best of the authors’ knowledge, the full kinematics of posi-
tion, velocity, and acceleration of the Gantry-Tau mecha-
nism has not been given in the literature yet. Therefore, the 

kinematics of the mechanism is derived in this section and 
is used for workspace and error analyses in other sections.

3.1  Inverse Kinematics

The inverse kinematics of the Gantry-Tau mechanism 
involves the determination of the displacement, velocity, 
and acceleration of the three joints on the guides for a given 
end-effector position, velocity, and acceleration (Pedram-
mehr et al. 2012).

Kinematics modeling vector notation for the Gantry-Tau 
manipulator is presented in Fig. 4. The x direction of the 
world coordinate frame W is assumed to be in the direction 
of the guideways, and its z axis is vertical. It is also assumed 
that �s

i
 , with i = 1 to 3, is a fixed vector pointing from the 

Fig. 2  a The schematic model of the Gantry-Tau mechanism; b the CAD model

Fig. 3  a The main blocks of the SimMechanics model of the Gantry-Tau mechanism; b the graphical representation of the developed SimMe-
chanics model
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origin of the world coordinate frame to the point at the start 
position of the ith guideway. qi is a vector from the starting 
point of the ith guideway to the position of the prismatic 
joint on that guideway. cik is also a fixed vector pointing 
from the position of the prismatic joint on the ith guideway 
to the kth joint of the ith cart. Here, the subscript k indicates 
the number of the links in each arm set, and for arm 1 (i = 1 
and k = 1), for arm 2 (i = 2 and k = 1, 2), and for arm 3 (i = 3 
and k = 1, 2, 3).

The position of the kth spherical joint of the ith arm is 
defined in the world coordinate as:

One characteristic of the Gantry-Tau mechanism is that 
the positions of the spherical joints on the platform and carts 
are such that the links within either arm 2 or 3 form paral-
lelograms. The positions of the spherical joints on the cart 
are fixed, and they only have linear movement because of 
qi. This, however, assures that the orientation of the plat-
form will not change with the movement of the active joints. 
Therefore, the motion of the platform is purely 3D transla-
tional. This property simplifies the kinematics model into 
only translation vectors and does not require rotation trans-
formation. In addition, it is inferred that the vectors between 
the platform spherical joint positions and any point on the 
platform will remain with no angular change with the move-
ment of the actuated joints; hence, they are constant vectors. 
According to Fig. 4, dik is a constant vector which relates any 
of the platform spherical joints to the origin of tool center 
point coordinate frame (TCP) which is at an arbitrary center 
of the platform.

The position of the spherical joints on the platform, bik, 
can be obtained as:

(1)�ik = �s
i
+ �i + �ik

(2)�ik = �s
i
+ �i + �ik + �ik

where lik is the length vector denoting the relationship 
between the joint on the cart of the kth link of the ith arm, 
which has a fixed length but variable direction, and can be 
obtained as:

T is the position of the TCP coordinate frame and can be 
obtained as the following:

where �i = �s
i
+ �ik + �ik , and this vector is constant, as all 

its components are constant.
The kinematic constraint for the ith kinematic chain is as 

the following:

The below constraints reduce the number of the equa-
tions of Eq. (6) from 2 to 1 for the arm 2, and from 3 to 1 
for the arm 3.

It was mentioned earlier that the vectors qi are in the x 
direction only, i.e., �i =

[
(qi)x 0 0

]T . Therefore, the inverse 
kinematics of position can be obtained with:

where x, y, z indices show the x, y, and z components of the 
vectors and lik is the length of the corresponding link. The 
negative sign before the square root operators is because qi 
is always less than (T)x . �ik =

[ (
lik
)
x

(
lik
)
y

(
lik
)
z

]T
 can also 

be determined by substituting the joint positions from 
Eq. (9) into Eq. (5).

The joint velocity, �̇i , can be obtained by taking the time 
derivative on both sides of Eq. (2), which gives:

where �̇ is the platform positional velocity, and �̇ik is the 
velocity of each passive link. �̇ can be obtained by taking 
inner product of both sides of Eq. (10) with �ik , which gives:

where �̇i = (qi)x �̂ and �̂ is the unit vector along x axis. The 
velocity of the links can be related to the velocity of the end 
effector as:

(3)�ik = �ik − �ik

(4)� = �ik + �ik = �i + �i + �ik

(5)�ik = � − �i − �i

(6)‖‖�ik‖‖2 = ‖‖� − �i − �i
‖‖2

(7)�2 1 + �2 1 + �2 1 = �2 2 + �2 2 + �2 2

(8)
�3 1 + �3 1 + �3 1 = �3 2 + �3 2 + �3 2 = �3 3 + �3 3 + �3 3

(9)
(qi)x = (T)x − (Fi)x −

√
l2
ik
−
(
(fi)y − (T)y

)2
−
(
(fi)z − (T)z

)2

(10)
�̇i = �̇ − �lik

× �ik
�����

�̇ik

(11)�̇i ⋅ �i = �̇ ⋅ �i

Fig. 4  The vector representation of the Gantry-Tau mechanism
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where �� and �� are, respectively, the inverse and forward 
Jacobian matrices and can be obtained as the following:

Therefore, the inverse velocity kinematics of the mecha-
nism in closed form will be as:

where �̇ =
[ (

q̇1
)
x

(
q̇2
)
x

(
q̇3
)
x

]T is the velocity of the 
joints, and �̇ =

[ (
Ṫ
)
x

(
Ṫ
)
y

(
Ṫ
)
z

]T
 is the velocity of the 

platform. J is the inverse Jacobian matrix of the mechanism 
that can be defined as:

Applying the time derivative on the two sides of Eq. (15) 
gives the joint acceleration, �̈� , as follows:

where �̈� is the translational acceleration of the platform and 
(d�∕dt) can be obtained as:

3.2  Forward Kinematics

The forward kinematics of the mechanism obtains the posi-
tion, velocity, and acceleration of the TCP for a given set of 
position, velocity, and acceleration of the three active joints. 
The position forward kinematic of the mechanism can be 
obtained through equaling Eq. (6) with zero and numeric 
solution of the resulting equation. This, therefore, can be 

(12)���̇ = ���̇

(13)�� =

⎡
⎢⎢⎣

�̂ ⋅ �1 0 0

0 �̂ ⋅ �2 0

0 0 �̂ ⋅ �2

⎤
⎥⎥⎦

(14)�� =

⎡
⎢⎢⎣

�T
1

�T
2

�T
3

⎤
⎥⎥⎦

(15)�̇� = 𝐉−1
q
𝐉T�̇� = 𝐉�̇�

(16)� =

⎡⎢⎢⎢⎢⎣

1
�
l1k

�
y

��
l1k

�
x

�
l1k

�
z

��
l1k

�
x

1
�
l2k

�
y

��
l2k

�
x

�
l2k

�
z

��
l2k

�
x

1
�
l3k

�
y

��
l3k

�
x

�
l3k

�
z

��
l3k

�
x

⎤⎥⎥⎥⎥⎦

(17)�̈� = 𝐉�̈� + (d𝐉∕dt)�̇�

(18)(d�∕dt) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
��

�l1k

�
y

�
l1k

�
z
−
�
�l1k

�
z

�
l1k

�
y

�����
�
l1k

�
y

���
2 ��

�l1k

�
y

�
l1k

�
z
−
�
�l1k

�
z

�
l1k

�
y

�����
�
l1k

�
z

���
2

0
��

�l2k

�
y

�
l2k

�
z
−
�
�l2k

�
z

�
l2k

�
y

�����
�
l2k

�
y

���
2 ��

�l2k

�
y

�
l2k

�
z
−
�
�l2k

�
z

�
l2k

�
y

�����
�
l2k

�
z

���
2

0
��

�l3k

�
y

�
l3k

�
z
−
�
�l3k

�
z

�
l3k

�
y

�����
�
l3k

�
y

���
2 ��

�l3k

�
y

�
l3k

�
z
−
�
�l3k

�
z

�
l3k

�
y

�����
�
l3k

�
z

���
2

⎤⎥⎥⎥⎥⎥⎥⎦

achieved by finding the roots for i = 1 to 3 for the following 
equation:

where ‖‖�ik‖‖2 = lik and i = 1 to 3.
There are three equations with three unknown variables 

for � =
[
(T)x (T)y (T)z

]T that can be solved numerically. 
Equation (19) has only one solution or no solution. This, 
however, is because the solution is obtained from the cross 
section between three spheres. The spheres are with simi-
lar radius but different center points. These three spheres 
could only cross each other in one point; otherwise, there 
will be no point. Furthermore, from the inverse kinematics 
formulation, the system does not have any redundancy of 
configurations for each workspace point. Hence, the map-
ping between the TCP position and the joint configuration is 
1–1 if the point is in the robot workspace. Here, the fsolve() 
command of MATLAB software is used for this purpose 
with the acceptable error of 1 mm.

The velocity and acceleration forward kinematics of the 
mechanism can be expressed as:

4  Workspace Analysis

In this section, the workspace analysis of the Gantry-Tau 
mechanism including the boundaries of the workspace, sin-
gularity, and dexterity analysis is addressed.

4.1  Joints’ Limitations

Passive links contribute to a low mass/inertia and therefore 
high speed, acceleration, and stiffness of the mechanism. These 
links impose mechanical and physical constraints on the mech-
anism. Here, the directional cosine angles between the links 
and x, y, and z axes are obtained to understand the mechanical 
constraints. These angles are employed to impose the physical 
limitations of the passive joints in workspace analysis.

(19)
fi(�) = l2

ik
−
(
(T)x −

(
Fi

)
x
−
(
qi
)
x

)2
−
(
(T)y

−
(
Fi

)
y

)2

−
(
(T)z −

(
Fi

)
z

)2

= 0

(20)�̇ = �−1�̇

(21)�̈� = 𝐉−1�̈� − 𝐉−1(d𝐉∕dt)�̇�
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There are two types of joints in the Gantry-Tau mecha-
nism with different limitations (see Fig. 5). The first type is 
the spherical joints with three degrees-of-rotation movement 
between the link and support plate which is shown in Fig. 5a.

�̃ik is the unit vector normal to the cart supporting plane; 
this vector can be calculated by a rotation matrix with ± 45 
degrees of rotation along the x axis and ± 60 degrees of 
rotation along the y axis using the CAD model of the mech-
anism, which gives: �1k =

[
0.866 −0.3536 0.3536

]T , 
�2k =

[
0.866 0.3536 0.3536

]T , and �
3k
=
[
0.866 −0.3536

−0.3536
]T . Considering �

ik
 as the unit vector of kth link of 

the ith arm, the directional angles can be obtained as:

The joint limitation of the spherical joints can be consid-
ered and applied as 0 ≤ �ik ≤ 40◦.

A similar methodology has been used for the joints on the 
platform. Considering �ik as the angle between the unit vector 
normal to the platform, at the joint of the kth link of the ith arm, 
and the unit vector along that link (Fig. 5b). A similar limitation 
can be assumed and applied to this angle, i.e., 0 ≤ �ik ≤ 40◦ , 
and the unit vectors normal to the platform at the joint of the 
kth link of the ith arm are: �̃1k =

[
−0.866 −0.3536 0.3536

]T , 
�̃2k =

[
−0.866 0.3536 0.3536

]T  ,  a n d 
�̃3k =

[
−0.866 −0.3536 −0.3536

]T.

4.2  Collisions

There are two types of collisions to consider: the collision 
of the platform with the guideways, and the collision of the 
links with the guideways. As the motion of the platform is 
just translational, any collision between links of one arm, 
or with different arms will not happen here in Gantry-Tau 
mechanism.

Considering all the links and guideways as cylindrical 
parts, and �B and �B as the point to the endpoints of each 
body’s centerline, all the centerline positions of each body, 
�B , can be described as (Pedrammehr et al. 2018a):

(22)𝛼ik = cos −1(�̃ik ⋅ �ik)

(23)�B = �B + SB(�B − �B)

where 0 ≤ SB ≤ 1 and B denotes a symbol for the cylindri-
cal body.

The vector between two parts B and ⌢

B centerlines is 
named �

B
⌢
B

 and can be expressed as:

where SB and S⌢
B

 are unknown parameters.

C o n s i d e r i n g  � = �B − �⌢
B

 ,  �B = �B − �B  ,  a n d 

�⌢
B

= �⌢
B

− �⌢
B

 , the minimum of �
B
⌢
B

 is obtained by taking the 

derivative on the both sides of Eq. (24) with respect to SB 
and S⌢

B

 , and equaling the resultant equation with 0 which 

gives a two-equations system, as:

By considering �B and �⌢
B

 for the radius of the two bodies, 

if �
B
⌢
B

> �B + �⌢
B

 then there would not be a collision between 

the bodies and the considered point will be in the borders of 
the workspace. It is of note that the condition must be veri-
fied for both the cases to ensure there is no collision in the 
system.

4.3  Singularity and Dexterity

If the inverse Jacobian matrix’s determinant is equal to zero, 
the mechanism will be at a singular point. In this condition, 
the mechanism gets an extra DOF and is not controllable. In 
addition, when the determinant of the Jacobian matrix of the 
forward kinematics becomes zero, the mechanism will face 
other possible singularities which decrease the manipulator 
DOFs. It should be noted that in some configurations, the 
determinants of both the Jacobians may be 0. This condi-
tion is a synthetic singularity that is discussed as having 
mechanism motion in the condition with no actuating forces, 
or the condition of having the actuation forces without any 
motion of the end effector (Cheng et al. 2016). In this study, 
the inverse Jacobian matrix known as Jq is a diagonal matrix 
and its determinant is the product of the elements of Jq. 
Therefore, the proposed mechanism will not have the inverse 
singular points, and only the forward singularity points are 
concerned. Here, it has been assumed when JT becomes 
under 0.001, the point is a singular point and is not consid-
ered within the manipulator workspace.

Moreover, the robot dexterity is investigated. There are 
several measures for the dexterity of the robotic manipu-
lators; this includes a manipulability measure and the 

(24)
�
B
⌢
B

= �B − �⌢
B

= �B − �⌢
B

+ SB(�B − �B) − S⌢
B

(�⌢
B

− �⌢
B

)

(25)S
B
=

((
�T�

B

)(
�T

⌢
B

�⌢
B

)
−

(
�T�⌢

B

)(
�T
B
�⌢
B

))/
�T
B
�⌢
B

(
�T
B
�⌢
B

− �T
⌢
B

�⌢
B

)

(26)

S⌢
B

=

((
�T�

B

)(
�T
B
�⌢
B

)
−

(
�T�⌢

B

)(
�T
B
�
B

))/(
�T
B
�⌢
B

(
�T
B
�⌢
B

− �T
⌢
B

�⌢
B

))

Fig. 5  a The spherical joint between the link and support plate; b the 
spherical joint between the link and platform
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condition number. The manipulability of a robotic manipu-
lator is defined by (Merlet 2006):

where � represents the dexterity, and the norm of J is defined 
as:

It is easier to control the mechanism in the regions that 
offer a good level of manipulability. The manipulability 
value is closely related to the robot kinematics dimensions 
and joint configuration. For the dexterity analysis that is 
performed in this paper, these values are normalized with 
respect to their maximum value. It is of note that a manipu-
lability value close to zero is equivalent to the singularity 
at that point.

4.4  Workspace and Dexterity

To demonstrate the manipulator workspace, a simula-
tion is carried out for a Gantry-Tau mechanism with the 

(27)� = 1∕‖�‖����
−1���

(28)‖�‖ =

�
trace((1∕2)��T)

specifications given in the “Appendix.” To this end, the for-
mulation has been implemented in an m.file developed in 
MATLAB environment for the workspace of the Gantry-Tau 
manipulator. This program has three loops, due to the exist-
ence of three DOF of the Gantry-Tau manipulators which 
provides x-, y-, and z-directional motions, and examines all 
the workspace points considering the mentioned limits. Hav-
ing defined a cube of points, the workspace will be at hand 
after elimination of the points that are not within the borders 
of the workspace. Figure 6 shows the results obtained by 
workspace simulation for the Gantry-Tau manipulator.

The joint and links configurations are overlaid on the 
figure for better understanding of the workspace. Further-
more, the normalized dexterity of the mechanism has been 
considered for all the workspace points. Figure 6a shows the 
whole workspace with the dexterity range between 0 and 1. 
Manipulators are mostly required to work in the regions with 
higher dexterity. Therefore, the parts of the workspace with 
0.25 to 1, 0.5 to 1, and 0.75 to 1 dexterities are, respectively, 
illustrated in Fig. 6b–d. It is obvious that the size of the 
workspace with higher dexterity values is less than its size 
with lower dexterity limit.

Fig. 6  The workspace of the 
mechanism with the dexterity 
value between a 0 and 1; b 0.25 
and 1; c 0.5 and 1; d 0.75 and 1
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Due to the importance of the dexterity measure for the 
points in the workspace, the level of dexterity values for 
the different cross sections of the workspace in x direction 
is shown in Fig. 7, the contours for the dexterity values are 
shown on the bottom of the related plane, and the different 
colors of the contours are described for the dexterity values 
via the legend next to each plot. Similar analysis has been 
performed for the dexterity values in the various cross sec-
tions of the workspace in y and z directions. The results are 
illustrated in Figs. 8 and 9 for of the cross section planes in 
y and z axes.

5  Error Analysis

The kinematic error modeling of the Gantry-Tau mechanism 
is essential for its calibration. The error model can also be 
used to determine the maximum error region of the work-
space, and the parameters that have a dominant effect on 
the error can be studied. There are various error sources 
that cause inaccuracy in the kinematic model, which can 
be attributed to the measuring device, the environmental 
and measuring conditions, manufacturing and assembling 
of the parts, or computing and geometrical errors. Several 
research works have been reported in the literature which 
focuses on the error modeling and calibration of the dif-
ferent parallel manipulators. All the error causes cannot be 
modeled; however, some of the systematic error elements 

can be simulated and then addressed in the calibration of the 
mechanism (Greenway 2000; Visinsky et al. 1994).

The error model is a mathematical formulation that 
relates the �� to the effective parameters of the model. The 
effective parameters in this kinematics model include the 
joints center errors, ��ik, ��ik , the cart position error, ��s

i
 , 

and the linear displacement error, ��i . The source of these 
errors could be manufacturing and measurement or thermal 
and mechanical deformations. Accordingly, the error model 
is obtained by perturbation of Eqs. (1)–(4), which gives:

Considering �i ⋅ �̂ =
(
qi
)
x
 , and taking the inner product of 

the two sides of Eq. (29) with �̂ =
[
1 0 0

]T , gives:

Considering �i = �oi + Δ�i with Δ�i and �oi , respectively, 
as the joint displacement and the constant offset of the ith 
joint displacement, and with 𝛿�i ⋅ �̂ as the displacement error, 
Eq. (29) can be rewritten as:

Equation (30) can be expressed in a matrix form as:

(29)�� = �
(
�s
i
+ �ik + �ik

)
+ ��i + ��ik

(30)
𝛿�i ⋅ �̂ = 𝛿� ⋅ �̂ −

(
𝛿�Lik

× �ik
)
⋅ �̂ − 𝛿�s

i
⋅ �̂ + 𝛿�ik ⋅ �̂ + 𝛿�ik ⋅ �̂

(31)
𝛿
(
Δ�i

)
⋅ �̂ +

(
𝛿�oi

)
⋅ �̂ = �(i, ∶)𝛿� − 𝛿�s

i
⋅ �̂ + 𝛿�ik ⋅ �̂ + 𝛿�ik ⋅ �̂

Fig. 7  Dexterity for the different cross sections of the workspace in: a x = 2000; b x = 2500; c x = 3500; d x = 4500; e x = 4900; all in mm
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in which

(32)

⎡⎢⎢⎣

�
�
Δq1

�
x

�
�
Δq2

�
x

�
�
Δq3

�
x
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=
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1
�
l1k

�
y

��
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x

�
l1k

�
z

��
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x

1
�
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��
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��
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x

1
�
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�
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��
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�
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�
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�
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��
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�
x

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎣

(�T)x
(�T)y
(�T)z
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+

⎡⎢⎢⎣

��1 �1×4 �1×4
�1×4 ��2 �1×4
�1×4 �1×4 ��3

⎤
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��

(33)�� =
[ (

�as
1

)
x

(
�d1

)
x

(
�c1

)
x
�qo1

(
�as

2

)
x

(
�d2

)
x

(
�c2

)
x
�qo2

(
�as

3

)
x

(
�d3

)
x

(
�c3

)
x
�qo3

]T

and ��i =
[
−1 1 1 −1

]
 is referred as the diagnostic Jaco-

bian matrix of the ith arm.
Equation (32) can be rewritten in a closed form as:

where J is the Jacobian matrix. 
[
�(Δqi)x

]
3×1

 is the vector of 
linear displacement error of the carts, �� is position error, 
and �� is error vector of kinematic parameters.

Equation (34) is known as the inverse error model of the 
robot. Accordingly, the direct error model is obtained by:

(34)
[
�
(
Δqi

)
x

]
3×1

= � �� + �� ��

Fig. 8  Dexterity for the different cross sections of the workspace in: a y = − 800; b y = − 600; c y = − 400; d y = − 200; e y = 0; f y = 200; g 
y = 400; h y = 600; all in mm
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To analyze the positioning error in a point within the 
workspace, the end-effector platform is first positioned at its 
reference point, i.e., x = 3500 mm, y = 0 mm, and z = 0 mm; 
then, 200 different series of error scenarios have been ran-
domly produced with uniform distribution between [− 1 mm, 
+ 1 mm]. These error scenarios, moreover, are added to the 
different parameters of the mechanism. The position error 
values for the 200 error scenarios are shown in Fig. 10. The 
mean and standard deviations of the position error for this 
analysis are, respectively, obtained as MEAN = 2.4726 mm 
and STD = 1.2901 mm.

(35)�� = �−1
([
�
(
Δqi

)
x

]
3×1

− �� ��
)

The next stage for the error analysis is to obtain the 
error through the workspace. For this purpose, we move 
the previous test point along the y axis from x = 3500 mm, 
y = − 800 mm, z = 0 mm to x = 3500 mm, y = + 800 mm, 
z = 0 mm, with the step size of dy = 50 mm. Then for each 
step, the position error values for 6 different error scenarios 
are obtained and shown in Table 1. According to Table 1, 
the position vector, a, has the most significant effect on the 
kinematics error of the mechanism. This will be considered 
in Eqs. (36) and (37) to reduce the error after calibration. 
The position error for this end-effector positioning in the y 
direction is shown in Fig. 11 which contains the error for 
each scenario, and the mean of the obtained errors for the 
six scenarios in each step of the movement.

Figure 11 represents the fact that in x = 3500 mm and 
z = 0 mm planes error along positive side of y axis has the 
higher value rather than the other region of the workspace. 
Furthermore, the center of workspace in y = 0 mm plane has 
the most sensitivity to the error of the kinematics parameter. 
Thus, in discussing the calibration of the Gantry-Tau mecha-
nism, most of the chosen positions must be from this part of 
the workspace. Such a selection of the test points guarantees 
the calibration for the whole workspace. Similar analysis has 
been performed for the motion of the end-effector platform 
position along the x and z axes, and the corresponding results 
are, respectively, shown in Fig. 11b, c.

Furthermore, a set of two-dimensional motions through-
out the workspace has been implemented and the error 

Fig. 9  Dexterity for the different cross sections of the workspace in: a z = − 600; b z = − 400; c z = − 200; d z = 0; e z = 200; f z = 400; all in mm

Fig. 10  The position error value of 200 error scenarios for the initial 
end-effector position
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analysis has been performed for the grid of points in y–z, 
x–z, and x–y planes. In this analysis, the error scenario 4 
of Table 1 has been applied to the mechanism. The fourth 
error scenario is selected for these analyses, as this scenario 
produced the maximum error among the other scenarios. 
The results of these analyses are shown in Fig. 12.

6  Calibration Design

The purpose of kinematic calibration is to increase the kin-
ematic accuracy of the manipulator through optimization of 
model parameters and cancelation of the systematic errors.

Table 1  The error scenarios 
of the different kinematic 
parameters

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

(�as
1
)x 0.629 0.629 0.629 0.811 0.811 0.811

(�as
2
)x − 0.746 − 0.746 0.826 − 0.746 0.826 0.826

(�as
3
)x − 0.804 0.264 − 0.804 0.264 − 0.804 0.264

(�d
1k)x − 0.443 − 0.443 0.093 − 0.443 − 0.443 − 0.443

(�d
2k)x 0.915 0.915 0.929 0.915 0.929 0.929

(�d
3k)x − 0.684 − 0.684 0.941 − 0.684 0.941 − 0.684

(�c
1k)x − 0.029 − 0.029 − 0.029 0.914 − 0.029 − 0.029

(�c
2k)x − 0.716 − 0.716 − 0.716 − 0.716 0.600 − 0.716

(�c
3k)x − 0.156 − 0.156 − 0.156 0.831 0.831 − 0.156

�q
1

0.584 0.584 0.918 0.584 0.918 0.584
�q

2
− 0.928 − 0.928 0.311 0.311 0.311 0.311

�q
3

0.698 0.698 0.867 0.867 0.698 0.867
�Δq

1
0.357 0.515 0.357 0.515 0.357 0.357

�Δq
2

− 0.215 0.486 0.486 0.486 − 0.215 − 0.215
�Δq

3
0.310 0.310 0.310 − 0.657 0.310 − 0.657

Fig. 11  The position error for the selected scenarios and the average error of the end effector: a y-directional motion; b x-directional motion; c 
z-directional motion
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6.1  Calibration Methodology

There are several methods of kinematic calibration for 
robots, some of which are preferred for parallel robots. 
Furthermore, the requirements for the calibration system 
of parallel robots are somehow different from those for 
serial robots due to workspace conditions (Merlet 2001). 
Within the literature, the calibration of parallel robots can 
be performed based on external measurement systems, the 
constrained method, or through self-calibration, with the 
external calibration as the main method for that. There are 
mechanical measurement systems (Tavolieri et al. 2006; 
Huang et al. 2006) and optic systems (Renaud et al. 2006; 
Motta et al. 2001) for such applications. In the self-calibra-
tion method, the calibration is performed by the mechanism 
using some redundant sensors located on the joints or other 
components of the robot. However, in the constrained cali-
bration method, the motion of some of the links are mechan-
ically fixed or constrained to reduce the degrees of freedom 
of the robot (Daney 1999).

The Gantry-Tau manipulator does not have any built-in 
redundant sensors for the self-calibration, and it is difficult 
to immobilize the joints of the robot for constrained calibra-
tion. Hence, external measurement is the remaining option. 
However, the implementation of such calibration is costly, 
and difficult due to the requirement of precise measurement 
and the high expense of measuring equipment. Furthermore, 
it is time-consuming, as it requires numerous measurements, 
where the number of measurements depends on the num-
ber of parameters of the kinematic model that need to be 
calibrated and the required quality level of the calibration. 

These specifications of the real calibration make the evalua-
tion between different calibration methods difficult and very 
time-consuming. Here, in this study, a fast and low-cost tool 
for evaluation of a calibration method is presented using a 
SimMechanics model of the Gantry-Tau mechanism. It is 
also observed that there is not any research work which uses 
a SimMechanics model for the calibration purposes which 
is a motivation of this paper.

The calibration methodology is as follows:

1. First, several joint configurations are selected for cali-
bration design; these points are mostly selected from a 
region with a high level of error.

2. The joint positions are then applied to the SimMechanics 
model, and the position of the end-effector platform is 
obtained from this model for each of the selected joint 
positions.

3. The position error of the platform is obtained for each 
selected configuration using parametric model.

4. This error is then used to build a cost function for opti-
mization; here, the mean square of the position error 
values (MSE) is used which is obtained by:

 In cost functions of Eqs. (36) and (37), the first Σ has 
been considered for all the selected points (M points), 
the second Σ has been considered for the three arms 
of the Gantry-Tau, and the last Σ has been considered 

(36)(1∕M)

M∑
m=1

3∑
j=1

N∑
k=1

(‖‖‖�
s
j
+ qjm(�) − �m

‖‖‖
2

− l2
jk

)2

Fig. 12  Two-dimensional motion error of the mechanism in: a y–z plane with x = 3500 mm; b x–z plane with y = 0; c x–y plane with z = 0
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for the number of links in one arm (N = 1 is for arm 1, 
N = 2 is for arm 2, and N = 3 is for arm 3). Also, v is the 
corresponding unit vector for the active joints with qjm 
length in the three directions (x, y, and z). In addition, 
the other designing parameters such as d and c are omit-
ted because we want to reduce the calibrating parameters 
of the robot through the simplicity and practicality.

5. The final stage of the calibration is obtained from the 
minimization of the cost function.

6.2  Calibration Evaluation

As a part of an evaluation of this calibration methodology, a 
MATLAB code has been developed and 200 initial positions 
have been used. Then, the optimization has been performed 
and the optimal robot kinematics parameters are obtained 
as listed in Table 2. The position error value for the selected 
200 positions before and after calibration is shown in Fig. 13 
with an approximate error reduction of 68.64%.

As it was explained earlier, the main benefit of the pro-
posed SimMechanics model for calibration is the possibility 
of benchmarking and evaluation between different calibra-
tion methods. Here, the second calibration method is con-
sidered which is obtained with the cost function based on 
the mean absolute error values (MAE), which is obtained by:

The results of this calibration are obtained and listed in 
Table 3.

The position error value for the selected 200 positions 
before and after calibration based on minimization of MAE 
is shown in Fig. 14, with an approximate 69.54% reduction 
in the error.

7  Conclusion

This study investigated the kinematics, workspace analysis, 
and calibration for a Gantry-Tau mechanism. A workspace 
and dexterity analyses were performed, and the region of 
the workspace with high level of dexterity was determined. 
A mathematical model of the systematic error in the kin-
ematics model of the robot was obtained. Error analysis was 
performed to identify the parameters that affect the robot 
position error. Minimization of the error was then employed 
for the calibration of kinematics parameters, and the calibra-
tion of the mechanism was performed over a large number of 

(37)(1∕M)

M∑
m=1

3∑
j=1

N∑
k=1

||||
‖‖‖�

s
j
+ qjm(�) − �m

‖‖‖
2

− l2
jk

||||

Table 2  The kinematic parameters before and after calibration based 
on the minimization of MSE

Arm l
i
 (mm) �s

i
 (mm)

Before calibration 1 2000 [
0 −550 550

]T
2 2000 [

0 550 550
]T

3 2000 [
0 −550 −550

]T
After calibration 1 2000.39 [

0.347556 −550.42 552.12
]T

2 2001.01 [
−0.56963 552.17 544.48

]T
3 2001.13 [

−001.64 −542.97 −555.70
]T

Fig. 13  The position error before and after the calibration process, 
based on minimization of MSE

Table 3  The kinematic parameters before and after calibration based 
on the minimization of MAE

Arm l
i
 (mm) �s

i
 (mm)

Before calibration 1 2000 [
0 −550 550

]T
2 2000 [

0 550 550
]T

3 2000 [
0 −550 −550

]T
After calibration 1 2000.39 [

0.35685 −550.37 552.17
]T

2 2001.02 [
−0.58655 552.17 544.38

]T
3 2001.14 [

−001.64 −542.88 −555.74
]T

Fig. 14  The position error before and after the calibration process, 
based on minimization of MAE
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sampled robot positions. The results demonstrated that after 
the calibration, the position error of the model was reduced 
significantly. The use of a CAD and SimMechanics model 
for performance evaluation of the mechanism calibration 
allowed us to quickly and effectively evaluate the perfor-
mance of two calibration methods.

Appendix

The geometric parameters of the Gantry-Tau manipulator:
The profile of the guideways is square with 110 mm 

length.
The length of the guideways:

The profile of the links is circle with 25 mm radius.
The length of the links:

The start position of the guideways, �s
i
 (mm):

The joint position of the carts, �ik (mm):

The joint position of the platform, �ik (mm):
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