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Abstract
A rigid-flexible coupled dynamic model of the planetary gear transmission system was developed considering the flexibility 
of the internal ring gear (flexible internal ring gear) and the sun shaft based on the shell theory and Timoshenko beam theory, 
respectively. For the dynamic modeling, the time-varying meshing stiffness and static transmission error excitations were 
considered and the Runge–Kutta numerical algorithm was applied to calculate the dynamic response. The results indicate 
that the flexibility of internal ring gear sharply decreases the dynamic factor between the internal ring gear and the planet 
gear, and it also shows significant positive influences on the system load-sharing performance. For the fixed internal ring 
gear, the maximum stress is located on the midpoint along the axial direction. The maximum dynamic deformations appear 
at the ends of the tooth surface along width direction, and the dynamic deformation shows a decremental trend from the 
tooth top edge to the tooth root edge. The load-sharing coefficient decreases rapidly with the increase in the thickness, as the 
support stiffness is small. The misalignment of one of the planet pins and various static transmission errors have a negative 
influence on the load-sharing coefficient of the planetary gear transmission system.

Keywords  Planetary gear transmission system · Flexible internal ring gear · Flexible shaft · Dynamic stress and 
deformation · Load-sharing coefficient

List of symbols
M	� Mass
Cd	� Damping
K	� Stiffness
α	� Pressure angle
β	� Helical angle
e	� Static transmission error
e	� Natural constant
X	� Displacement
A, B, C	� Fourier expanded coefficients
Uv	� Elastic strain energy
Psp	� Potential energy
T	� Kinetic energy
ρ	� Density

E	� Young’s modulus
μ	� Poisson’s ratio
R0	� Addendum circle radius of the ring gear
R1	� Outer radius of the ring gear
B	� Tooth with of the ring gear
x, θ, r	� Cylindrical coordinates in the axial, circumfer-

ential and radial directions
h	� Thickness of the ring gear
r̄	� r = r − R0

u, v, w	� Displacement components
U, V, W	� Robust form of the Fourier series expansions
δ	� Equivalent displacement
ω	� Natural frequency

Subscripts
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c	� Carrier
i	� Ordinal number
je	� Pitch circle
p	� Planet gear
r	� Ring gear
s	� Sun gear
l, g, q	� Supplement coefficient
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1  Introduction

Planetary gear transmission system is widely used in aero-
space, wind power, electric cars and other fields because 
of the compact structure, light quality, high power den-
sity, high carrying capacity, large transmission ratio and 
high transmission efficiency. The lightweight requirement 
of the components makes the thin-wall internal ring gear 
and the hollow sun shaft widely used, and they have obvi-
ous effects on the overall performance due to their dis-
tinct vibration and deformation. Therefore, to provide a 
theoretical basis for prolonging its service span, reducing 
vibration and noise and improving reliability, a thorough 
dynamic behavior analysis of planetary gear transmission 
system must be performed, which considers the flexibility 
of the internal ring gear and sun shaft.

Recently, the dynamics of a planetary gear transmis-
sion system has been extensively investigated. Wei et al. 
(2015) analyzed the dynamic response of a planetary gear 
transmission system under uncertainty by establishing a 
torsional planetary dynamic model. Parker and Wu inves-
tigated the effect of the internal ring gear and elastic defor-
mations for the ring gear on the parameter stability (Wu 
2010; Parker and Wu 2010, 2012). Velex et al. established 
a dynamic planetary model with a finite element model of 
the ring gear and analyzed the dynamic response (Abou-
sleiman and Velex 2006; Abousleiman et al. 2007). Shao 
established a planetary bending-torsional coupled dynamic 
model and investigated the response of the system consid-
ering a flexible ring and the plastic deflection of the gear 
tooth stiffness (Chen et al. 2013). Considering time-var-
ying parameters and a flexible pin, Zhu et al. established 
a planetary gear dynamic model with the deformation of 
the flexible pin and analyzed the potential resonance point 
using the modal energy distribution and order frequency 
sweep methods (Zhu et al. 2014, 2015). Qiu et al. (2015) 
developed a coupled dynamic model to investigate the 
effect of gravity and backlash on the vibration response 
of the planetary gear transmission system. Helsen et al. 
(2011, 2014) built a flexible multibody vibration model 
for a wind turbine gear transmission system considering 
six degrees of freedom of a bearing and flexible structure. 
Cooley et al. investigated the vibration and parametric 
instabilities of rotating elastic rings coupled with the con-
stant and fluctuating fixed discrete stiffness in a high-speed 
state (Cooley and Parker 2014a, b, 2015; Liu et al. 2017). 
Zhai et al. (Zhai et al. 2015, 2016) studied the dynamic 
performance of planetary gear transmission system consid-
ering the carrier assembly errors. Wang et al. (Wang et al. 

2011) investigated the distinctive wave vibration of a spur 
ring gear. Shao established a planetary bending-torsional 
coupling dynamic model and researched impact on the 
response of the system by considering flexible ring and 
plastic deflection of gear tooth stiffness (Chen et al. 2013). 
Yi et al. (Yi et al. 2015) investigated the load-sharing char-
acteristic of planetary gear system considering the mesh-
ing error and floating error. Zhang et al. investigated the 
efforts of assembly errors on the dynamic characteristics 
of helical planetary gear transmission system (Zhang and 
Liu 2014). The nonlinear dynamics with mesh phase of the 
2D planetary gear system was investigated by Ambarisha 
and Parker (2007). Guo et al. set up a nonlinear dynamic 
model for planetary to analyze the effect of gravity on 
the dynamic response (Guo et al. 2014; Guo and Parker 
2010). Ambarisha and Parker (2006) established a numeri-
cal model of the planetary gear transmission system to 
study the nonlinear effects of the mesh phasing on vibra-
tion reduction. Erkaya et al. (2007) investigated the kin-
ematic and dynamic analysis of a modified slider–crank 
mechanism, which has an eccentric connector and drives 
a planetary gear mechanism. Cooley and Parker (2014b) 
published a review of literature on planetary gear dynam-
ics. Sun and Hu (2003) established a lateral–torsional cou-
pled model and investigated the nonlinear dynamics of a 
planetary gear system with multiple clearances. Cervantes-
Sánchez and Rico-Martínez (2009) established a plane-
tary gear train model by using multi-bond graph diagrams 
and verified the validity by resorting to the Lagrange’s 
equations. Gawande et al. (Gawande and Shaikh 2014; 
Gawande and Kokare 2017) researched the effect of planet 
phasing on noise and vibration of a planetary gear system 
using the experimental work and established an FE plan-
etary gear model to investigate the dynamic analysis. In 
order to investigate the dynamic behavior of the planetary 
gear transmission system deeply, many researches discuss 
the modeling methods and the dynamic behavior consid-
ered many factors, like flexibility, errors.

For discussing the effect of the flexibility on the dynamic 
characteristics of the planetary gear transmission system, in 
this paper, a rigid-flexible coupled dynamic model of the plan-
etary gear transmission system was developed considering the 
flexible internal ring gear, flexible shaft, time-varying meshing 
stiffness and static transmission error excitation. The flexibil-
ity of the internal ring gear is based on the shell theory. The 
dynamic characteristics of the planetary gear transmission sys-
tem, such as the distribution of dynamic stress and deformation 
on the pitch line and tooth root of the ring, were investigated.
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2 � Basic Structure and Parameters 
of the Planetary Gear Transmission 
System

A schematic of the planetary gear transmission system as 
a research object including a rotating carrier C, five planet 
gears P1,P2,P3,P4,P5 , a sun gear S and a fixed internal ring 
gear R is shown in Fig. 1.

The basic parameters of the planetary gear transmission 
system, which are from a 5-MW wind turbine gearbox, are 
listed in Table 1. The time-varying meshing stiffness and the 
static transmission errors were determined according to the 
references (Zhai et al. 2016; Sun et al. 2015).

3 � Rigid‑Flexible Coupled Dynamic Modeling 
of Planetary Gear Transmission System

3.1 � Coupled Modeling for Planetary Gear 
Transmission System

The modeling methods for the components of planetary 
gear transmission system are shown in Table 2. The flexible 
internal ring gear and sun shaft are modeled using the shell 
theory and finite element method, respectively.

Fig. 1   Schematic of planetary 
gear transmission

Table 1   Basic parameters of planetary gear transmission system

Item Ring gear Sun gear Planet gear

Number of teeth 91 29 31
Module (mm) 23 23 23
Helix angle (°) 5 5 5
Pressure angle (°) 25 25 25
Tooth width (mm) 505 505 515
Fillet (°) 66 – –
Mesh stiffness (N/m) K̄

i

sp
= 8.65e9

K̄
i

rp
= 10.9e9

Static transmission error (mm) e
i

sp
= 0.022

e
i

rp
= 0.022

Table 2   Modeling methods for 
components

Component Number Modeling Usage

Ring (R) 1 Shell theory Considering structural stiffness and damping
Sun (S) 1 6DOF rigid –
Sun shaft 1 Finite element method Connecting sun gear and output and provid-

ing torsional stiffness and damping
Planet (P) 5 6DOF rigid –
Carrier (C) 1 6DOF rigid –

Fig. 2   Schematic of the matrix assembly format
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The equations of a rigid-flexible coupled dynamic model 
for the planetary gear transmission system are directly 
expressed according to the rules in Fig. 2. C, R, P and 
S denote the carrier, ring gear, planet gear and sun gear, 
respectively. CP, RP and SP are the coupling terms of each 
component. The dotted rectangular shadow is the flexible 
sun shaft matrix.

The overall dynamic equation of the planetary gear sys-
tem can be represented by

where M, C and K are the effective mass, damping and stiff-
ness matrices, respectively.

The vibration displacements of the planetary gear trans-
mission system are

where Agq,Bgq,Cgq,A
r
lg
,Br

lg
,Cr

lg
,Ax

lq
,Bx

lq
,Cx

lq
 denote the Fou-

rier expanded coefficients and corresponding supplement 
coefficients for the vibration displacements (Ye et al. 2014). 
x∗∗
∗
, y∗∗

∗
, z∗∗

∗
, �∗∗

x∗
, �∗∗

y∗
, �∗∗

z∗
 represent six degrees of freedoms 

in the vibration displacements of the rigid components and 
flexible shaft nodes.

The static coordinates XCOYC , XSOYS and XROYR are 
defined in the centers of the carrier, sun and ring, respec-
tively. The moving coordinates XpiOYpi are defined in the 
centers of the planet gears. The locations and relationships 
of the components are shown in Fig. 3. The supporting stiff-
ness and damping are oriented along the positive direction 
of the corresponding coordinate. The supporting stiffness 
and damping matrices are calculated from reference (Zhai 
et al. 2016).

3.2 � Modeling for the Flexible Internal Ring Gear 
and Sun Shaft

The flexibilities of the internal ring gear and sun shaft are 
considered for the planetary gear transmission system. The 

(1)MẌ + CẊ + KX = F

(2)
X =

(
XC,XR,Xp1,Xp2,Xp3,Xp4,Xp5,X

1
Ss
,XS,X

3
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,X4
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,X6

Ss

)T
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r
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2Q

C00,… ,Cgq,… ,CGQ,C
r
10
,… ,Cr

lg
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2Q
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ej�t

X∗∗
∗

=
(
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, �∗∗
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, �∗∗
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, �∗∗
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)

sun shaft is described by the rotating shaft elements using 
Timoshenko theory.

As shown in Fig. 4a, the sun shaft is modeled as 5 ele-
ments and 6 nodes: Ss1, Ss2, Ss3, Ss4, Ss5 and Ss6. The 
white nodes Ss2 and Ss5 are connected with the sun gear 
and load torque. The shaft stiffness and damping matrices 
are calculated according to references (Chen et al. 2016). For 
the flexibility, the internal ring gear is modeled as a cylinder 
shell based on the shell theory (Ye et al. 2014).

The structure schematic and mesh model of the flexible 
internal ring gear are shown in Fig. 4b. To simplify the 
model, although the location of the mesh point gradually 
varies during one mesh cycle, the mesh point between the 
ring and the planet is assumed to be the midpoint of the 
pitch line of the internal ring gear. Isotropic material was 
selected for the modeling of the internal ring gear. The red 
circles represent the mesh states, which are between each 

Fig. 3   Dynamic model of the helical planetary transmission

equispaced planet gear and the internal ring gear, and are on 
the internal ring gear as shown in the figure.

The structural energy expressions of the internal ring gear 
can be represented by
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Fig. 4   Structure schematic of 
the internal ring gear and the 
sun shaft

circle radius and outer radius of the ring, respectively. B is 
the tooth width of the ring. X, � and r are the cylindrical 
coordinates in the axial, circumferential and radial direc-
tions, respectively. u, v and w are the displacement com-
ponents at any point of the internal ring gear in the axial, 

where Uv , Psp and T  are the elastic strain energy, potential 
energy stored in the boundary springs and kinetic energy of 
the internal ring gear, respectively. � , E and � are the den-
sity, Young’s modulus and Poisson’s ratio of the material, 
respectively. h is the thickness from the addendum circle 
to the outer edge of the ring. R0 and R1 are the addendum 
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circumferential and radial directions and are expressed in a 
Fourier series expansion as follows:

where � is the natural frequency of the ring gear, j =
√
−1 . 

t is time. r̄ ∈ [0, h] , h = R1 − R0 . U(x, r̄) , V(x, r̄) and W(x, r̄) 
are the robust form of the Fourier series expansions and are 
shown as:

Because of the limited computing ability and moderate 
precision requirement, G and Q are generally 3–5.

The mesh point between the internal ring gear and the ith 
planet gear is the midpoint of the pitch line on the ring gear. 
The equivalent displacement between them is

where ui , vi and wi are the displacement components at the 
mesh point of the internal ring gear in the axial, circumfer-
ential and radial directions, respectively. i denotes the plan-
etary gear number, which can be 1–5.

The mesh potential energy between the internal ring gear 
and the planet gears is

(6)

⎧
⎪⎨⎪⎩
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ui = u(B∕2, �m, rm, t) = U(B∕2, rm) cos �me
j�t

vi = v(B∕2, �m, rm, t) = V(B∕2, rm) sin �me
j�t

wi = w(B∕2, �m, rm, t) = W(B∕2, rm) cos �me
j�t

The Lagrange energy function L can be expressed in 
terms of the kinetic energy, elastic strain energy, potential 
energy stored in the boundary springs and mesh potential 
energy as follows:

When the Lagrange energy method is applied, the num-
bers of equation can be up to 3*{(G + 1)*(Q + 1) + 2*(G + 
Q + 2)}.

4 � Dynamic Characteristics Analysis

It is very important to verify the accuracy of the model. The 
verification method of the reference (Ye et al. 2014) and the 
reference (Cooley and Parker a, b) is adopted in this paper. 
The natural frequency of the model is calculated compared 
with the reference (Zhai et al. 2016) and the finite element 
method as shown in Table 3.

By comparing with the methods and results published by 
Zhai et al., a close agreement between these two results can 
be found. Although different modeling method was used in 
the reference, the professional software Masta used in this 
paper is based on the finite element method (FEM). Compar-
ing with the results gotten from the FEM, the present results 
are closer to the results from the Masta.

Based on the coupled dynamic model shown above, the 
Runge–Kutta numerical algorithm was applied to calculate 
the dynamic responses. Under the rated load conditions of a 
5-MW wind turbine gearbox (the input torque is 48,800 Nm, 
and the input rotation speed is 11.34 rpm), the dynamic 

(10)Um =

N∑
i=1

1

2
Ki
rp
(�i

rp
)2

(11)L = T − Uv − Psp − Um

Table 3   Natural frequencies of the planetary gear transmission sys-
tem

Orders Present (Hz) Zhai (Hz) Masta (Hz)

1 27 31 27
2 63 70 61
3 69 72 69
4 82 88 85
5 95 103 101
6 122 134 123
7 166 185 173
8 202 202 201
9 231 240 226
10 237 244 231



701Iranian Journal of Science and Technology, Transactions of Mechanical Engineering (2020) 44:695–706	

1 3

mesh forces and load-sharing performance of planetary gear 
transmission system are compared for the dynamic model 
with (flexible) and without (rigid) considering the flexibil-
ity of the internal ring gear. The dynamic mesh forces Frp 
(Ring-Planet gear) and Fsp (Sun-Planet gear) are shown in 
Fig. 5a, b. The dynamic load-sharing coefficient of the plan-
etary gear transmission is shown in Fig. 5c.

The flexibility of the internal ring gear sharply affects 
the maximum value and the vibration amplitude of Frp. 
The flexibility of the internal ring gear scarcely affects the 
maximum value and vibration amplitude of Fsp. It can be 

seen that the flexibility of the internal ring gear shows obvi-
ous influence on the peak–peak value of the Frp. But the 
flexibility of internal ring gear scarcely ever effects on the 
peak–peak value of the Fsp. The maximum value of the Frp 
has been decreased by 3.2%, and the maximum value of 
Fsp has been increased a little. The dynamic factor between 
the internal ring gear and the planet gear decreases from 
1.045 to 1.020, and the dynamic factor between the sun gear 
and the planet gear slightly increases. The maximum load-
sharing coefficient decreases from 1.029 to 1.0129 when the 

Fig. 5   Comparison schematic of the dynamic meshing forces and 
load-sharing coefficient Fig. 6   Dynamic stress schematic of midpoint in the pitch line and the 

tooth root
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flexible internal ring gear is considered. The flexibility of the 
internal ring gear makes a significant effect on the dynamic 
factor between the internal ring gear and the planet gear as 
well as the load-sharing coefficient.

The dynamic von Mises stress and deformation for the 
pitch line, tooth top and tooth root of the internal ring gear 
in planetary gear transmission were analyzed. The dynamic 
stress in the time and frequency domains of the midpoints 
for the pitch line and the tooth root (Fig. 4b) can be solved 
using Eqs. (6) and (9). The results include the dynamic stress 
of midpoint in the pitch line and the tooth root, respectively, 
as shown in Fig. 6.

The maximum stress values of the midpoint for the pitch 
line and the midpoint for the tooth root are 366 MPa and 
485 MPa, respectively. The spectra show that the main fre-
quency components are f1 and 2f1 (f1 = 17.2 Hz is the mesh 
frequency). A meshing course of the helical gear tooth is 
from the top to the end (the root to the top), from one end 
of the tooth to the other end. To simplify the model and 
the factors, the meshing process of a helical gear is equiva-
lent to the time-varying mesh stiffness and the equivalent 

displacement between the internal ring gear and the planet 
gear. And the mesh state is assumed to be the midpoint of 
the pitch line of the internal ring gear. Like a beam, the stress 
of the tooth root is larger than the stress of the pitch line. The 
dynamic stress distributions for the pitch line and the tooth 
root of the fixed internal ring gear are shown in Fig. 7. The 
horizontal axis represents mesh period T. The vertical axis 
represents the pitch line and the tooth root of the internal 
ring gear along the tooth width. 0 and B denote the front end 
and back end of the internal ring gear, respectively. The dash 
and dot lines at B/2 imply the stress variation of the midpoint 
for the pitch line.

From the results, the minimum dynamic stress for the 
pitch line and the tooth root of the fixed internal ring gear 
can be obtained for the time 0 and T, and the maximum 
dynamic stress is located at the time T/2 and the time 3T/2. 
The dynamic stress varies periodically. The maximum 
dynamic stress value of the pitch line is on the midpoint 
because the contact region between the internal ring gear 
and the planet gear is assumed to be the midpoint of pitch 
line. Like a beam, the stress of the tooth root is larger than 
the stress of the pitch line. The dynamic stress of the pitch 

Fig. 7   Dynamic stress distribution in the pitch line and the tooth root 
of the fixed internal ring gear

Fig. 8   Dynamic deformation distribution for the pitch line and the 
tooth top of the fixed internal ring gear
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line and the tooth root is symmetric about the midpoint 
and gradually declines to both ends of the tooth width. The 
dynamic deformation distributions for the pitch line and the 
tooth top of the fixed internal ring gear are shown in Fig. 8.

The minimum dynamic deformation for pitch line and 
tooth top of the internal ring gear is located at the time 0 
and T. The maximum dynamic deformation is at the time 
T/2 and the time 3T/2. The dynamic deformation varies 
periodically. The maximum deformation for both the pitch 
line and the tooth top appear at the ends of the internal 

ring gear tooth along the width direction. The deformation 
of the tooth top is larger than the deformation of the pitch 
line. The dynamic deformation of the pitch line and the 
tooth top is symmetric about the midpoint and gradually 
increases to both ends along the tooth width direction. The 
stress and deformation distribution of the tooth surface at 
the time T/2 is shown in Fig. 9.

The results show that the stress gradually increases 
from tooth top edge to tooth root edge. The stress distribu-
tion is symmetric around the centerline of the tooth surface 
and the maximum value on the midpoint of the tooth root 
(at B/2) is 485 MPa, which is 25% larger than the value for 
the midpoint of the pitch line. The stress mainly appears 
in the middle of the tooth width. The deformation gradu-
ally increases from tooth root edge to tooth top edge. The 
deformation distribution is symmetric around the center-
line of the tooth surface, and the maximum deformation 
at both ends of the tooth top is 316 μm. The deformation 
exceeds 250 μm in approximately 25% of the tooth surface. 
The deformation mainly appears in both ends of the tooth 
width.

For simplicity and convenience in the analysis, the thick-
ness parameter γ, which is defined as the outer–inner ratio 
of the internal ring gear, is introduced here (γ = R1/R0). The 

Fig. 9   Stress and deformation distribution of the tooth surface of the 
internal ring gear

Table 4   Different support stiffness of the internal ring gear

Item Transverse stiffness 
(N/m)

Axial 
stiffness 
(N/m)

Low support stiffness 6e10 2e10
Mediate support stiffness 18e10 6e10
High support stiffness 30e10 10e10

Fig. 10   Load-sharing coefficient of the planetary gear transmis-
sion system with various thickness parameters in different boundary 
spring conditions
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different support stiffness of the internal ring gear is listed 
in Table 4.

The effects of support stiffness of the different boundary 
spring conditions on the internal ring gear with the different 
thickness parameters are investigated as shown in Fig. 10.

The load-sharing coefficients (the maximum) of the 
planetary gear transmission system almost remain constant 

when the support stiffness is moderate and high, the change 
of the thickness parameter has little effect on the load-
sharing coefficient of the planetary transmission system. 
However, as the support stiffness decreases, a distinct influ-
ence can be observed, in which the load-sharing coefficient 
decreases rapidly with the increase in the thickness param-
eter. The influences of misalignments of one of the planet 
pins on the load-sharing coefficients are shown in Fig. 11a. 
The dynamic load-sharing coefficients of the planetary gear 
transmission system with the different misalignments of 
the planet pin in time domain for the internal ring gear are 
shown in Fig. 11b, c.

The definition of the misalignment of the planet pin 
is from reference (Zhai et al. 2016). The misalignments 
from 0 to 0.05 mm along the radial direction, tangen-
tial direction and axial direction of one planet pin have 
a negative effect on the load-sharing coefficient of the 
planetary gear transmission system. And the misalign-
ment of the planet pin along the tangential direction has 
the most significant influence on the load-sharing coef-
ficient for the internal ring gear. With the increase in the 
radial misalignment quantities from 0 mm to 0.05 mm, 
the load-sharing coefficient of the planetary gear trans-
mission system with rigid ring gear is increased from 
1.03 to 1.10 and the load-sharing coefficient of the plan-
etary gear transmission system with flexible ring gear is 
increased from 1.015 to 1.05. With the increase in the 
tangential misalignment quantities from 0 to 0.05 mm, the 
load-sharing coefficient of the planetary gear transmis-
sion system with rigid ring gear is increased from 1.03 to 
1.12 and the load-sharing coefficient of the planetary gear 
transmission system with flexible ring gear is increased 
from 1.015 to 1.065. With the increase in the axial mis-
alignment quantities from 0 to 0.05 mm, the load-sharing 
coefficient of the planetary gear transmission system with 
rigid ring gear is increased from 1.03 to 1.046 and the 
load-sharing coefficient of the planetary gear transmis-
sion system with flexible ring gear is increased from 
1.015 to 1.02. With the increase in the tangential mis-
alignment quantities from 0 to 0.05 mm, the dynamic 
load-sharing coefficient of the planetary gear transmis-
sion system becomes larger and the amplitude increases 
obviously. After considering the flexibility of the inter-
nal ring gear, the load-sharing performance becomes bet-
ter. The influences of various static transmission errors 
between one planet gear and the internal ring gear on the 
load-sharing coefficient of the planet gear transmission 
system are shown in Fig. 12.

With the increase in the static transmission error quan-
tities from 0 to 0.022 mm, the load-sharing coefficient 
of the planetary gear transmission system with rigid ring 
gear is decreased from 1.20 to 1.03. With the increase 
in the static transmission error quantities from 0.022 to 

Fig. 11   Comparison schematic of the load-sharing coefficient
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0.05 mm, the load-sharing coefficient of the planetary 
gear transmission system with rigid ring gear is increased 
from 1.03 to 1.27. The load-sharing coefficients of the 
planetary gear transmission system for the rigid inter-
nal ring gear decrease fast when the static transmis-
sion error between one planet gear and the internal ring 
gear approaches 0.022 mm, which is equal to the static 

transmission errors between other planet gears and the 
internal ring gear. As it further increase, the load-sharing 
coefficients increase rapidly. After considering the flex-
ibility of the internal ring gear, the static transmission 
error has less effect on the dynamic load-sharing coef-
ficient of the planetary gear transmission system.

5 � Conclusions

In this paper, considering the flexibility of the internal ring 
gear and shaft, the time-varying meshing stiffness and the 
system transmission error excitations, a rigid-flexible cou-
pled dynamic model of planetary gear transmission system 
has been developed, and the Runge–Kutta numerical algo-
rithm was used to calculate the dynamic response. The main 
conclusions are summarized as follows:

1.	 When the flexibility of the internal ring gear is consid-
ered in the dynamic model, the system load-sharing 
performance is improved obviously. The dynamic fac-
tor between the internal ring gear and the planet gear 
decreases from 1.045 to 1.020, and the dynamic fac-
tor between the sun gear and the planet gear slightly 
increases.

2.	 The maximum stress of the internal ring gear tooth 
is located at the midpoint along the width of the ring 
tooth root. The maximum stress of the tooth root in the 
internal ring gear is higher than the maximum stress of 
the pitch line. The stress of the internal ring gear tooth 
surface gradually increases from tooth top edge to tooth 
root edge. The maximum deformation of the pitch line 
and tooth top in the internal ring gear is located at the 
ends of the tooth surface along the tooth width direc-
tion, and the dynamic deformation shows an incremental 
trend from the tooth root edge to the tooth top edge.

3.	 When the support stiffness is mediate and high, the 
change of the thickness of the internal ring gear has lit-
tle effect on the load-sharing coefficient of the planetary 
transmission system. As the support stiffness decreases, 
the load-sharing coefficient decreases rapidly with the 
increase in the thickness. The misalignment of one 
planet pin and various static transmission errors have a 
negative effect on the load-sharing coefficient, and the 
tangential misalignment has greatest influence on the 
load-sharing coefficient.
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Fig. 12   Load-sharing coefficient with various static transmission 
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