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Abstract
This article presents a finite element (FE) model for free vibration and static analysis of layered skew magneto-electro-

elastic (SMEE) plates by incorporating the shear deformation theory. The coupled constitutive equations of the MEE

materials are used to derive the FE model accounting the effect of electro-elastic and magneto-elastic couplings. The

displacement, electric potential and magnetic potential are considered as primary variables, while the stresses, electric

displacement and magnetic induction are derived from the primary variables using constitutive equations. Influence of

boundary conditions and material stacking sequences on the natural frequency, displacement and stresses of the SMEE

plates has been investigated. Particular emphasis has been put on studying the effect of skew angles and aspect ratios on the

natural frequencies, stresses, electric displacement and magnetic induction. The present study reveals that skew angle and

aspect ratio significantly influence the structural behavior of SMEE plates.
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1 Introduction

Recently, the study of smart structures has gained traction

with its ability to design and establish multifunctional

components. As the interest of smart structures is vested in

next-generation smart transportation systems, sensors and

actuators, aerospace applications, marine applications,

medical instruments and energy harvesting, just to name a

few, a new era of smart structures composed of smart

composites has emerged (Ray et al. 1994; Zhang et al.

2015; Datta and Ray 2016). In particular, magneto-electro-

elastic (MEE) composites composed of piezoelectric

(BaTiO3) and magnetostrictive (CoFe2O4) materials have

attracted the attention of researchers. The MEE composites

exhibit a unique ability to convert one form of the energy

into other (among mechanical, electric and magnetic). This

new class of composites exhibits a coupled property called

the magneto-electric effect along with the electro-elastic

and the magneto-elastic effects, which is absent in indi-

vidual constituents of the MEE composites. For an applied

load on a traditional structure, reaction is a function of

geometry and material property. However, in the case of

smart structures with MEE composites, electric and mag-

netic fields have their influence along with material prop-

erty and geometry. The increasing demand for structures

that are more adaptable to the applied load might have

motivated the recent developments in MEE composites.

Extensive research has been carried out to assess the

structural behavior of magneto-electro-elastic plates (Pan

2001; Pan and Heyliger 2002, 2003; Pan and Han 2005;

Liu 2011). The magneto-electric effect in composites of

piezoelectric and piezomagnetic phase was theoretically

investigated by Nan (1994). Free vibration characteristics

of the MEE structures have been extensively studied by

many researchers through various methodologies (Bucha-

nan 2004; Li et al. 2014; Anandkumar et al. 2007; Liu and

Chang 2010; Bhangale and Ganesan 2005; Ramirez et al.

2006; Razavi and Shooshtari 2015; Shooshtari and Razavi

2016). Subsequently, the behavior of MEE plates under

static loads is extensively investigated and well established
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through many methods (Lage et al. 2004; Moita et al. 2009;

Liu et al. 2016; Bhangale and Ganesan 2006). Kattimani

and Ray (2014a, b, 2015) investigated on the control of

geometrically nonlinear vibrations of MEE plates and

shells using 1–3 piezoelectric composite. Kondaiah et al.

(2015, 2017) evaluated the MEE sensor patch for pyroef-

fects. Ebrahimi and Barati (2016, 2017a, b) extensively

investigated the FG nano-MEE structures. The behavioral

study of MEE plate for free vibration and large deflection

was established by Milazzo (2014a, b, 2016; Chen et al.

2015) via various methodologies. The static behavior of

anisotropic multilayered MEE hollow sphere was studied

by Vinyas and Kattimani (2017a). Vinyas and Kattimani

(2017b, c) and Ebrahimi et al. (2017a) investigated the

static behavior of stepped functionally graded and multi-

phase MEE plates subjected to different thermal loads.

Ebrahimi et al. (2017b) and Kattimani (2017) investigated

the vibration characteristics of porous smart structures.

Recently, Carrera et al. (2017) obtained the nonlinear

vibration characteristics of multiferroic plates and shells.

Recently, Carrera unified formulation is used by many

researchers to assess the structural characteristics of the

MEE plates (Carrera and Valvano 2017; Cinefra et al.

2017; Zappino et al. 2017; Kumar et al. 2017; Nair and

Durvasula 1973).

Skew plates and laminates are of importance in many

engineering applications as geometric changes imple-

mented to the rectangular plate influence various response

characteristics. In addition, such plates specifically exhibit

high strength to weight ratio and excellent fatigue resis-

tance capturing the attention of many researchers. Exten-

sive research has been carried out to study the effect of

skew angle on free vibration and static analysis of skew

composite plates (Naghsh and Azhari 2015; Upadhyay and

Shukla 2012; Liew and Wang 1993; Kanasogi and Ray

2013). Active vibration control of skew composite plates

was studied by Garg et al. (2006)). McGee et al. (1994)

developed a higher-order shear deformation theory to

analyze the vibration behavior of different skew laminates.

Higher-order shear deformation theory has been incorpo-

rated to analyze the natural vibrations of rhombic plates by

Butalia et al. (1990). Chen et al. (2014) critically analyzed

the response of skew plates under bending using a

Heterosis element. Recently, Kiran and Kattimani

(2017, 2018a, b, c) and Kiran et al. (2018) have investi-

gated the structural behavior of various rectangular and

skew MEE structures. The comprehensive literature review

reveals that extensive research has been published on free

vibration and static analysis of the multilayered MEE

plates and fiber-reinforced skew composite plates. How-

ever, to the best of the author’s knowledge, no research has

been reported on the free vibration and static analysis of

layered skew magneto-electro-elastic plates. Consequently,

this paper presents the development of FE model for the

free vibration and the static analysis of layered SMEE

plates using 1–2 shear deformation theory. Special atten-

tion has been paid to study the effect of skew angle on the

natural frequencies, displacements, potentials, induced

stresses, electric displacement and magnetic induction of

the SMEE plates. Effect of aspect ratios, layer stacking

sequence and boundary conditions on the behavior of

SMEE plates has been thoroughly investigated.

2 Problem Description and Governing
Equation

A schematic diagram of a skew magneto-electro-elastic

plate with coordinate system is illustrated in Fig. 1a, while

Fig. 1b illustrates the two-dimensional x–y plane of the

skew MEE plate. The length, the width and the total

thickness of the plate are a, b and H, respectively. The

skew angle of the SMEE plate is a. The SMEE plate

consists of three layers of equal thickness hi (i = 1, 2, 3).

The top and the bottom layers are made of identical

material either piezoelectric (BaTiO3) commonly repre-

sented by B or magnetostrictive (CoFe2O4) commonly

represented by F, while the middle layer is of the other

material, i.e., magnetostrictive or piezoelectric. Based on

the stacking sequence of the material, the MEE composite

is called B/F/B or F/B/F indicating the top/middle/bottom

layer, respectively, in which, B stands for BaTiO3 and F

stands for CoFe2O4. Since the structure is composed of

layers of dissimilar materials, the kinematics of deforma-

tion of the SMEE plate may be difficult to define by using

an equivalent single layer displacement theory because of

the fact that the material properties of the adjacent continua

of the overall plate differ in order. Hence, the 1–2 shear

deformation theory (Hildebrand et al. 1949; Tessler 1993)

has been incorporated to derive the deformations of the

SMEE plate.

Consequently, the axial displacements u and v at any

point in the SMEE plate along the x- and y-direction, and

the transverse displacement w at any point in the SMEE

plate can be expressed as (Hildebrand et al. 1949; Tessler

1993)

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zhxðx; y; tÞ
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zhyðx; y; tÞ
wðx; y; z; tÞ ¼ w0ðx; y; tÞ þ zhzðx; y; tÞ þ z2jzðx; y; tÞ

ð1Þ

where u0 and v0 are the translational displacements at any

point on the midplane of the plate along x- and y-direction,

while w0 is the transverse displacement along z-direction at

any point in the SMEE plate. hx and hy denote the gener-

alized rotation of the normal to the middle plane of the
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SMEE plate about the y- and x-axis, respectively. hz and jz
are the generalized rotational displacements for the SMEE

plate with respect to the thickness coordinate. For the ease

of computation, rotational and translational displacements

are considered separately as follows:

dtf g ¼ u0 v0 w0½ �T; fdrg ¼ ½hx hy hz jz�T ð2Þ

To overcome the shear locking in thin structures and to

emphasize the computation of elemental stiffness matrices

linked with the transverse shear deformation, the selective

integration rule has been employed. To address such

specific need, the state of strain at any point in the plate is

separated by in-plane and transverse normal strain vector eb

and the transverse shear strain vector es expressed as

follows:

febg ¼ ½ex ey ez cxy�T; fesg ¼ ½cxz cyz�T ð3Þ

where ex, ey and ez represent the normal strains along x-, y-

and z-direction, respectively; cxy represents the in-plane

shear strain, cxz and cyz are the transverse or out-of-plane

shear strains. Making use of the displacement field given in

Eq. (1) and from the linear strain–displacement relations,

the strain vectors eb and es defining the state of in-plane,

transverse normal and transverse shear strain at any point

in the SMEE plate can be expressed as

Fig. 1 a SMEE plate with B/F/

B stacking sequence, b the two-

dimensional x–y plane of the

skew SMEE plate
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fekbg ¼ febtg þ ½Z1�ferbg; feksg ¼ fetsg þ ½Z2�fersg ð4Þ

wherein k designates the layer number for the overall plate,

the transformation matrices [Z1] and [Z2] are expressed as

Z1½ � ¼

z 0 0 0 0

0 z 0 0 0

0 0 0 1 2z

0 0 z 0 0

2
6664

3
7775;

Z2½ � ¼ 1 0 z 0 z2 0

0 1 0 z 0 z2

� �
ð5Þ

while the generalized strain vectors appearing in Eq. (4)

are given by

febtg ¼ ou0

ox

ov0

oy
0

ou0

oy
þ ov0

ox

� �
; fetsg

¼ ow0

ox

ow0

oy

� �

and ferbg ¼ ohx
ox

ohy
oy

ohx
ox

þ ov0

ox
hz jz

� �
ð6Þ

Analogous to the strain vectors given in Eq. (3), the

state of stress at any point in the SMEE plate can be written

as follows:

frbg ¼ ½rx ry rz sxy�T; frsg ¼ ½sxz syz�T ð7Þ

in which rx, ry and rz are the normal stresses along x-, y-

and z-directions, respectively; sxy is the in-plane shear

stress; sxz and syz are the transverse shear stresses along xz-

and yz- direction, respectively. Considering the effect of

coupled fields, the constitutive equations for the SMEE

plate can be expressed as follows:

rkb
� �

¼ �Ck
b

� �
ekb

� �
� ekb
� �

Ez � qkb
� �

Hz;

rks
� �

¼ �Ck
s

� �
eks

� � ð8aÞ

Dz ¼ ekb
� �T

ekb
� �

þ nk33Ez þ d33Hz ð8bÞ

Bz ¼ qkb
� �T

ekb
� �

þ dk33Ez þ l33Hz ð8cÞ

where k = 1, 2, 3 designates the layer number starting from

the bottom layer of the overall SMEE plate and

�Ck
b

� �
¼

�Ck
11

�Ck
12

�Ck
13

�Ck
16

�Ck
12

�Ck
22

�Ck
23

�Ck
26

�Ck
13

�Ck
23

�Ck
33

�Ck
36

�Ck
16

�Ck
26

�Ck
36

�Ck
66

2
664

3
775; �Ck

s

� �
¼

�Ck
55

�Ck
45

�Ck
45

�Ck
44

� �

ð9Þ

where �Ck
b

� �
and �Ck

s

� �
are the transformed coefficient

matrices, nk33 and l33 are the dielectric constant and the

magnetic permeability constant, respectively; d33 is the

electromagnetic coefficient. Since the plate is considered to

be thin, the electric displacement, the electric field, the

magnetic induction and the magnetic field along the z-di-

rection are only considered and represented by Dz, Ez, Bz

and Hz, respectively. The electric coefficient matrix ekb
� �

and the magnetic coefficient matrix qkb
� �

are given by

ekb
� �

¼ e31 e32 e33 e36f gT; qkb
� �

¼ q31 q32 q33 q36f gT

ð10Þ

Employing the principle of virtual work the governing

equations for the SMEE plate is established as

X3
k¼1

Z

Kk

d ekb
� �

rkb
� �

dKkþ

0
B@

Z

Kk

d eks
� �

rks
� �

dKk þ
Z

Kk

d dtf gTqk €dt
� �

dKk

1
CA

�
Z

Kt

dEt
zD

t
zdK

t �
Z

Kb

dEb
zD

b
zdK

b �
Z

Km

dHm
z B

m
z dK

m �
Z

Ael

d dtf gTFtdA
el ¼ 0

ð11Þ

where Kk (k = 1, 2, 3) indicates the volume of the

respective layer, Ft is the applied surface traction force on

the top surface area Ael, qk denotes the mass density of the

kth layer and d is the symbol representing the first varia-

tion. Kt, Kb and Km represent the volume of the top

piezoelectric, the bottom piezoelectric and the middle

magnetostrictive layer, respectively. Et
z, E

b
z and Dt

z, D
b
z are

the electric fields and the electric displacements of the top

and bottom layers of the SMEE plate, whereas Hm
z and Bm

z

are the magnetic field and magnetic induction in the middle

layer, respectively. The transverse electric field (Ez) is

related to the electric potential and the transverse magnetic

field (Hz) is related to the magnetic potential in accordance

with the Maxwell’s equation as follows:

Et
z ¼ � o/t

oz
; Eb

z ¼ � o/b

oz
and Hm

z ¼ � owm

oz
ð12Þ

where t/b/m represents the top/bottom/middle layer of the

SMEE plate, respectively, depending on the stacking

sequence of the layers. It is assumed that the interfaces

between the piezoelectric and magnetostrictive layers are

suitably grounded. In addition, the thickness of the layers

of the SMEE plate is very small. Hence, the variation of the

electric potential and the magnetic potential functions can

be assumed linear across the thickness of the layers. Thus,

the electric potential functions /t and /b, respectively, for

the top and bottom piezoelectric layers while the magnetic

potential distribution field wm in the magnetostrictive layer

of the SMEE plate can be expressed as

/t ¼ z� zb

h
/1; /b ¼ � z� h2

h
/2 and wm ¼ z� h2

h
�w

ð13Þ

where zb is the z-coordinate of the bottom surface of the top

piezoelectric layer, h2 is the z-coordinate of the top surface

of the bottom piezoelectric layer, /1 and /2 are the electric
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potentials on the top and the bottom surfaces of the top and

the bottom layers, and �w is the magnetic potential on the

bottom surface of the middle magnetostrictive layer.

3 Finite Element Formulation for Skew
Magneto-Electro-Elastic Plate

The SMEE plate is discretized by using eight nodded iso-

parametric elements. Defining the coordinate of the SMEE

plate as illustrated in Fig. 1b, the two opposite boundaries

are lined y = 0 and y = b cos a and the two opposite

skewed edges are defined by the lines x = y tan a and

x = a ? y tan a. In accordance with Eq. (2), the general-

ized displacement vectors dtif g and drif g associated with

the ith node (where, i = 1, 2, 3, …, 8) of an element can be

expressed as

dtif g ¼ ½u0i v0i w0i�T and drif g ¼ ½hxi hyi hzi /zi�T ð14Þ

At any point within the element, the generalized dis-

placement vectors dtf g and drf g, the magnetic potential

vector wf g and the electric potential vector /f g can be

expressed in terms of nodal generalized displacement

vectors delt
� �

and delr
� �

, the nodal magnetic potential

vector wel
� �

and the nodal electric potential vector /el
� �

,

respectively, as follows:

dtf g ¼ ½nt� delt
� �

; drf g ¼ ½nr� delr
� �

;

/f g ¼ /1 /2½ �T¼ n/
� �

/el
� �

and

wmf g ¼ nmw

h i
wel
m

� � ð15Þ

where nt½ �, nr½ �, n/
� �

and nw
� �

are the (3 9 24), (4 9 32),

(2 9 16) and (1 9 8) shape function matrices, respec-

tively. The detailed matrices corresponding to shape

functions are provided in Eq. (39) of ‘‘Appendix’’. It and Ir
are the (3 9 3) and (5 9 5) identity matrices, respectively.

Ni is the shape function of natural coordinate associated

with the ith node. /1i, /2i (where i = 1, 2, 3, …, 8) are the

electric potential degrees of freedom, and �wi are the

magnetic potential degrees of freedom. Using Eqs. (12)–

(15), the transverse electric field for the top and the bottom

layer (Et
z, E

b
z ) and the transverse magnetic field for the

middle layer (Hm
z ) are given by

Et
z ¼ � 1

h
1 0½ � n/

� �
/el

� �
;

Eb
z ¼ � 1

h
0 1½ � n/

� �
/el

� �
and Hm

z ¼ � 1

h
nw
� �

wel
� � ð16Þ

Now, using Eq. (4) and shape function vectors, the

generalized strain vectors at any point within the element

can be expressed in terms of the nodal generalized strain

vectors as follows:

ebtf g ¼ btb½ � delt
� �

; ebrf g ¼ brb½ � delr
� �

etsf g ¼ bts½ � delt
� �

; ersf g ¼ brs½ � delr
� � ð17Þ

in which btb½ �, brb½ �, bts½ � and brs½ � are the nodal strain–

displacement matrices. The explicit form of the matrices is

given in ‘‘Appendix’’. Substituting Eqs. (4), (8), (16) and

(17) into (11) and simplifying, we obtain the elemental

equations of motion for the SMEE plate as follows:

Mel
� �

€delt
� �

þ keltt
� �

delt
� �

þ keltr
� �

delr
� �

þ kelt/

h i
/el

� �

þ keltw

h i
wel

� �
¼ Fel

t

� � ð18Þ

keltr
� �T

delt
� �

þ kelrr
� �

delr
� �

þ kelr/

h i
/el

� �
þ kelrw

h i
wel

� �
¼ 0

ð19Þ

kelt/

h iT
delt

� �
þ kelr/

h iT
delr

� �
� kel//

h i
/el

� �
¼ 0 ð20Þ

keltw

h iT
delt

� �
þ kelrw

h iT
delr

� �
� kelww

h i
wel

� �
¼ 0 ð21Þ

The matrices and the vectors appearing in Eqs. (18)–

(21) are the elemental mass matrix Mel
� �

, the elemental

elastic stiffness matrices keltt
� �

, keltr
� �

and kelrr
� �

, the elemental

electro-elastic coupling stiffness matrices and the elemen-

tal magneto-elastic coupling stiffness matrices are kelt/

h i
,

kelr/

h i
and keltw

h i
, kelrw

h i
, respectively; Fel

t

� �
is the elemental

mechanical load vector; kel//

h i
and kelww

h i
are the elemental

electric and elemental magnetic stiffness matrices,

respectively. The elemental matrices and vectors are

detailed in Eq. (40) of ‘‘Appendix.’’

3.1 Skew Boundary Transformation

In case of skew MEE plates, the supported adjacent edges

of the boundary element are not parallel to the global axes

(x, y, z). Hence, in order to specify the boundary conditions

at the skew edges of the plate, the displacements u1, v1 and

w1 at any point on the skew edges of the local coordinates

must be restrained along the x1-, y1- and z1-direction. The

boundary conditions can be specified conveniently by

transforming the element matrices corresponding to the

global axis to the local axis along the edges. A simple

transformation relation can be expressed between the local

degrees of freedom and the global degrees of freedom for

the generalized displacement vectors of a point lying on the

skew edges of the plate as follows:

dtf g ¼ Lt½ � d1t
� �

; drf g ¼ Lr½ � d1r
� �

ð22Þ
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d1t
� �

¼ u10 v10 w1
0

� �T
; d1r

� �
¼ h1x h1y h1z j1z

h iT
; ð23Þ

where dtf g, drf g and dlt
� �

, d1r
� �

are the displacements on

the global and the local edge coordinate system, respec-

tively. Lt½ � and Lr½ � are the transformation matrices for a

node on the skew boundary and are given by

Lt½ � ¼
c s 0

�s c 0

0 0 1

2
4

3
5; Lr½ � ¼

c s 0 0

�s c 0 0

0 0 1 0

0 0 0 1

2
664

3
775 ð24Þ

in which c ¼ cos a and s ¼ sin a, the skew angle of the

plate is a. It may be noted that for the nodes which do not

lie on the skew edges, the transformation from global

coordinates to the local coordinates is not required. The

transformation matrices in such cases are the diagonal

matrices in which the values of the principal diagonal

elements are unity. The elemental stiffness matrices of the

element containing the nodes laying on the skew edges are

given as follows:

k
el

tt

h i
¼ T1½ �T keltt

� �
T1½ �; k

el

tr

h i
¼ T1½ �T keltr

� �
T2½ �;

k
el

rr

h i
¼ T2½ �T kelrr

� �
T2½ �; Mel

� �
¼ T1½ �T Mel

� �
T1½ �

ð25Þ

where the transformation matrices [T1] and [T2] are given

by

T1½ � ¼

Lt½ � ~o ~o ~o ~o ~o ~o ~o

~o Lt½ � ~o ~o ~o ~o ~o ~o

~o ~o Lt½ � ~o ~o ~o ~o ~o

~o ~o ~o Lt½ � ~o ~o ~o ~o

~o ~o ~o ~o Lt½ � ~o ~o ~o

~o ~o ~o ~o ~o Lt½ � ~o ~o

~o ~o ~o ~o ~o ~o Lt½ � ~o

~o ~o ~o ~o ~o ~o ~o Lt½ �

2
66666666666664

3
77777777777775

;

T2½ � ¼

Lr½ � o
^

o
^

o
^

o
^

o
^

o
^

o
^

o
^

Lr½ � o
^

o
^

o
^

o
^

o
^

o
^

o
^

o
^

Lr½ � o
^

o
^

o
^

o
^

o
^

o
^

o
^

o
^

Lr½ � o
^

o
^

o
^

o
^

o
^

o
^

o
^

o
^

Lr½ � o
^

o
^

o
^

o
^

o
^

o
^

o
^

o
^

Lr½ � o
^

o
^

o
^

o
^

o
^

o
^

o
^

o
^

Lr½ � o
^

o
^

o
^

o
^

o
^

o
^

o
^

o
^

Lr½ �

2
666666666666664

3
777777777777775

ð26Þ

in which ~o and o
^
are the (3 9 3) and (4 9 4) null matrices,

respectively, and the number of Lt½ � and Lr½ � matrices is

equal to the number of nodes in the element. The elemental

equations of motion are assembled to obtain the global

equations of motion of the SMEE plate as follows:

M½ � €dt
� �

þ kgtt
� �

dtf g þ kgtr
� �

drf g þ k
g
t/

h i
/f g þ k

g
tw

h i
wf g ¼ Ftf g

ð27Þ

kgtr
� �T

dtf g þ kgrr
� �

drf g þ k
g
r/

h i
/f g þ k

g
rw

h i
wf g ¼ 0 ð28Þ

k
g
t/

h iT
dtf g þ k

g
r/

h iT
drf g � k

g
//

h i
/f g ¼ 0 ð29Þ

k
g
tw

h iT
dtf g þ k

g
rw

h iT
drf g � k

g
ww

h i
wf g ¼ 0 ð30Þ

where M½ � is the global mass matrix; k
g
tt½ �, k

g
tr½ � and kgrr

� �
are

the global elastic stiffness matrices; k
g
t/

h i
and k

g
r/

h i
are the

global electro-elastic coupling stiffness matrices; k
g
tw

h i
and

k
g
rw

h i
are the global magneto-elastic coupling stiffness

matrices; Ftf g is the global mechanical load vector; kg//

h i

and k
g
ww

h i
are the global electric and the global magnetic

stiffness matrices, respectively. Solving the global equa-

tions of motion (Eqs. (28)–(30)) to obtain global general-

ized displacement vector dtf g and drf g by condensing the

global degrees of freedom for /f g and wf g in terms of

drf g is as follows:

wf g ¼ k
g
ww

h i�1

k
g
tw

h iT
dtf g þ k

g
ww

h i�1

k
g
rw

h iT
drf g;

/f g ¼ k
g
//

h i�1

k
g
t/

h iT
dtf g þ k

g
//

h i�1

k
g
r/

h iT
drf g;

drf g ¼ � K3½ ��1
K2½ �T dtf g

ð31Þ

Now, substituting Eq. (31) in Eq. (27) and upon simpli-

fication, we obtain the global equations of motion in terms

of the global translational degrees of freedom as follows:

M½ � €dt
� �

þ K1½ � � K2½ � K3½ ��1
K2½ �T

� 	
dtf g ¼ Ftf g;

M½ � €dt
� �

þ K½ � dtf g ¼ Ftf g

and K½ � ¼ K1½ � � K2½ � K3½ ��1
K2½ �T

� 	 ð32Þ

The global matrices in Eq. (32) are provided in Eq. (41)

of ‘‘Appendix.’’

4 Results and Discussion

This section comprises the investigation of SMEE plate to

assess its free vibration and static response characteristics.

The influence of skew angle and stacking sequence on the

structural behavior of the SMEE plate is explicitly studied.

In addition, the influence of geometric parameters such as

boundary condition and aspect ratio on the SMEE plate is
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thoroughly investigated. The validity of the proposed FE

formulation is established considering different benchmark

solutions available in the literature. The SMEE plate con-

sidered for the numerical studies consists of three layers

with a magnetostrictive layer sandwiched between two

piezoelectric layers forming the stacking sequence B/F/B.

In the case of the F/B/F stacking sequence, the piezoelec-

tric layer is sandwiched between the two magnetostrictive

layers. The SMEE plate with three layers of equal thick-

ness has the following geometry: a = b = 1 m and the total

thickness H = 0.3 m. The material properties for the

BaTiO3 and the CoFe2O4 are tabulated in Table 1. The

skew boundary conditions considered for the analysis of

the SMEE plate are given as follows:

(a) Simply supported boundary condition

at x = y tana, x = a ? y tana

v10 ¼ w1
0 ¼ h1y ¼ h1z ¼ /1 ¼ w1 ¼ 0 ð33Þ

at y = 0, y = b cosa

u0 ¼ w0 ¼ hz ¼ / ¼ w ¼ 0

(b) Clamped–clamped boundary condition

at x = y tana, x = a ? y tana

u10 ¼ v10 ¼ w1
0 ¼ h1x ¼ h1y ¼ h1z ¼ /1 ¼ w1 ¼ 0 ð34Þ

at y = 0, y = b cosa

u0 ¼ v0 ¼ w0 ¼ hx ¼ hy ¼ hz ¼ / ¼ w ¼ 0

(c) Free edge boundary condition

at x = y tana, x = a ? y tana:

u10 ¼ v10 ¼ w1
0 ¼ h1x ¼ h1y ¼ h1z ¼ /1 ¼ w1 6¼ 0

ð35Þ

at y = 0, y = b cosa:

u0 ¼ v0 ¼ w0 ¼ hx ¼ hy ¼ hz ¼ / ¼ w 6¼ 0

4.1 Validation of Present FE Model

The validity of the proposed FE formulation and the code

generated are verified with the various benchmark solu-

tions available in the literature. To the best of the authors’

knowledge, the studies pertaining to structural behavior

of SMEE plate are unavailable in the open literature.

Hence, the results are verified for the rectangular MEE

plate reported by Naghsh and Azhari (2015). For the

identical geometric parameters and material properties of

Naghsh and Azhari (2015), the natural frequencies of the

skew MEE plate with the skew angle a = 0 are computed

for different mesh size to understand the convergence

behavior in Table 2. The element employed displayed a

good convergence property, and hence a 20 9 20 mesh is

found to be sufficient to model the whole plate. Further,

the same mesh size is employed for all subsequent

analysis. In addition, the transverse shear stresses across

the thickness of the SMEE plate for the B/F/B and the

F/B/F stacking sequence with a = 0 are presented in

Figs. 2 and 3. It may be seen from these figures that the

results are in excellent agreement with those of Lage

et al. (2004) and Moita et al. (2009). In addition, the FE

formulation for the MEE plate can be degenerated to

study the purely elastic laminated composite plates.

Hence to verify the correctness of the transformation

matrix generated, the free vibration behavior of skew

laminated composite plate is studied. It is notable from

Tables 3 and 4 that the results reported from the present

FE model display a good agreement with the results

available in the literature facilitating the further investi-

gation on SMEE plates.

4.2 Free Vibration Analysis of Skew
Magneto-Electro-Elastic Plates

In this section, the free vibration behavior of skew mag-

neto-electro-elastic plate is investigated. The influence of

Table 1 Material properties of BaTiO3 and CoFe2O4. (Reproduced with permission from Pan 2001)

C11 = C22

(109 N/m2)

C12

(109 N/m2)

C13 = C23

(109 N/m2)

C33

(109 N/m2)

C44 = C55

(109 N/m2)

C66

(109 N/m2)

q (kg/m3)

BaTiO3 166 77 78 162 43 44.5 5800

CoFe2O4 286 173 170.5 269.5 45.3 56.5 5300

BaTiO3 e31 = e32

= - 4.4

(C/m2)

e32 = 18.6

(C/m2)

e24 = e15

= 11.6

(C/m2)

n11 = n22 = 11.2

(10-9 C/Nm2)

n33 = 12.6

(10-9 C/Nm2)

l11 = l22 = 5

(10-6 s2/C2)

l33 = 10

(10-6 Ns2/C2)

CoFe2O4 q31 = q32 = 180.3

(N/Am)

q33 = 699.7

(N/Am)

q24 = q15

= 550

(N/Am)

n11 = n22 = 0.08

(10-9 C/Nm2)

n33 = 0.093

(10-9 C/Nm2)

l11 = l22 = - 590

(10-6 s2/C2)

l33 = 157

(10-6 Ns2/C2)
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the introduced skew angle on the natural frequency of the

SMEE plate is finely presented. In addition, the influence

of stacking sequence and geometric parameters is exten-

sively studied. Table 5 presents the natural frequencies for

different skew angle. In addition, Table 5 also presents the

influence of stacking sequence and the boundary condition

on the natural frequency of the plate. The increase in skew

angle increases the natural frequency of the SMEE plate. It

is interesting to note that the natural frequency increases

rapidly for a = 45�. This increase in natural frequency can

be attributed to the reduction in the area of the SMEE plate.

Also, the plate stiffness considerably increases with the

increase in skew angle contributing to higher natural fre-

quency. Further, the F/B/F-stacked SMEE plate attains a

higher natural frequency than B/F/B plate. It is due to the

fact that the F/B/F plate possesses larger stiffness and

elastic property with two magnetostrictive layers. Fur-

thermore, it can be noticed from Table 5 that the fully

clamped plate attains the higher natural frequency over

simply supported and FCFC SMEE plate. It can be attrib-

uted to the increase in flexural rigidity at the plate edges

with higher constraints and hence the higher natural fre-

quency. Consequently, Table 6 presents the corresponding

mode shapes/contours for the clamped B/F/B SMEE plate

at various skew angles. It can be observed that the increase

in skew angle causes the modes to shift toward the corners

of the plate.

Influence of different aspect ratio (a/H) for various skew

angles on the natural frequencies of the simply supported

and fully clamped B/F/B SMEE plate is tabulated in

Tables 7 and 8, respectively. Similarly, Tables 9 and 10

present the same for F/B/F SMEE plate. It may be observed

from these tables (Tables 7, 8, 9, 10) that the increase in

aspect ratio decreases the natural frequencies for different

skew angles. It can be attributed to the thin plate which

possesses lower stiffness over thick plate and hence lower

natural frequency. Further, it is interesting to note that the

effect of aspect ratio on the natural frequencies is signifi-

cant as compared to the effects of skew angle, boundary

conditions and the stacking sequences.

4.3 Static Analysis of SMEE Plates

In this section, the static analysis of the plate subjected to a

sinusoidal load is presented. Equation (36) represents the

sinusoidal distributed load with an applied force F0 on the

Fig. 2 Transverse shear stress

(sxz) across the thickness for

a B/F/B, b F/B/F MEE plate

(a = 0)

Table 2 Non-dimensional natural frequency modes for clamped B/F/B plate

Source Non-dimensional normalized natural frequency of B/F/B clamped–clamped plate �x ¼ xa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmax=Cmax

p

1 2 3 4 5 6 7 8 9 10

Present (8 9 8) 1.3586 2.2481 2.2481 2.6342 2.6342 2.9708 3.0184 3.3587 3.4102 3.8285

Present (16 9 16) 1.3498 2.2319 2.2319 2.6222 2.6222 2.9521 2.9987 3.3247 3.3981 3.7845

Present (20 9 20) 1.3496 2.2316 2.2316 2.6217 2.6217 2.9515 2.9982 3.3242 3.3976 3.7839

Naghsh and Azhari (2015) 1.3452 2.2231 2.2231 2.6178 2.6178 2.9404 2.9939 3.3123 3.3758 3.7729
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top surface of the SMEE plate (Lage et al. 2004). The

geometrical parameters of the SMEE plate are similar to

that of dimensions of the free vibration analysis. The

results are obtained at a point x = 0.75 m, y = 0.25 m and

for the nearest Gauss points to these nodes.

Ft ¼ F0 sin
px
a

� 	
sin

py
b

� 	
ð36Þ

The effect of skew angle on the primary and secondary

parameters is presented in Fig. 3a–j. The displacements

(u and v) decrease with the increase in skew angle as

Fig. 3 Influence of a on a u,

b v, c /, d w, e rxx, f ryy, g sxy,
h sxz, i Dz, j Bz of the simply

supported B/F/B SMEE plate

(a/b = 1, H = 0.3 m)
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Table 3 Normalized frequency parameter k ¼ xb2=p2hðq=E2Þ1=2 for the clamped laminated composite plate (a/H = 10)

Skew angle (a) Source Antisymmetric cross-ply

(0�/90�/0�/90�)
Antisymmetric angle-ply

(45�/- 45�/45�/- 45�)
Symmetric cross-ply

(90�/0�/90�/0�/90�)

Modes Modes Modes

1 2 1 2 1 2

0� Present 2.2621 3.6072 2.2352 3.5152 2.2962 3.3981

Carrera et al. (2017) 2.2990 3.7880 2.2119 3.7339 2.3687 3.5399

Carrera and Valvano (2017) 2.3315 3.6531 2.2433 3.6000 2.3201 3.4769

15� Present 2.3014 3.5143 2.2864 3.4982 2.3281 3.4167

Carrera et al. (2017) 2.3809 3.7516 2.3099 3.6997 2.4663 3.6255

Carrera and Valvano (2017) 2.3741 3.5856 2.3049 3.5346 2.3699 3.4821

30� Present 2.4614 3.6997 2.4835 3.5612 2.5007 3.4915

Carrera et al. (2017) 2.6666 3.9851 2.6325 3.9549 2.7921 3.9557

Carrera and Valvano (2017) 2.5240 4.1943 2.4945 3.6113 2.5366 3.5696

Fig. 3 continued
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depicted in Fig. 3a, b. This can be attributed to the increase

in stiffness of the plate with the increase in skew angle and

thereby results in lower displacements. The electric

potential shown in Fig. 3c decreases with the increase in

skew angle, while the magnetic potential in Fig. 3d is

higher for a = 45�. The effect of skew angle on the stresses

of the simply supported B/F/B SMEE plate is presented in

Fig. 3e–h. It may be observed from these figures that the

Table 4 Non-dimensional frequency parameter k ¼ xb2=p2hðq=E2Þ1=2 for the simply supported laminated composite plate (a/H = 10)

Skew angle (a) Source Antisymmetric cross-ply

(0�/90�/0�/90�)
Antisymmetric angle-ply

(45�/- 45�/45�/- 45�)
Symmetric cross-ply

(90�/0�/90�/0�/90�)

Modes Modes Modes

1 2 1 2 1 2

0� Present 1.4848 2.4439 1.8125 3.2411 1.5369 2.4437

Upadhyay and Shukla (2012) 1.4829 2.4656 1.7974 3.3351 1.5699 2.8917

Liew and Wang (1993) 1.5076 2.4380 1.8493 3.3359 1.5635 2.4383

15� Present 1.5701 2.7091 1.8236 3.1258 1.6319 2.7286

Upadhyay and Shukla (2012) 1.5741 2.5351 1.8313 3.2490 1.6874 3.0458

Liew and Wang (1993) 1.5796 2.5775 1.8675 3.2075 1.6571 2.9840

30� Present 1.8416 3.1581 1.9429 3.1683 1.9323 3.1083

Upadhyay and Shukla (2012) 1.8871 2.9372 2.0270 3.4431 2.0840 3.4023

Liew and Wang (1993) 1.8226 2.9585 1.9894 3.2365 1.9596 3.1690

Table 5 Normalized natural frequencies for SMEE plate (a = 1 m, a = b, H = 0.3 m)

Sl.

No.

Skew angle

(a)
Stacking

sequence

Boundary

condition

Modes of natural frequencies

1 2 3 4 5 6 7 8 9

1 0� B/F/B SSSS 1.7919 2.4637 2.4637 3.4856 3.5657 3.5657 4.8579 4.9448 4.9448

CCCC 2.4152 3.9625 3.9625 5.0231 5.0231 5.1678 5.6643 5.8908 5.9568

FCFC 1.4324 1.7456 2.2897 3.0141 3.2975 3.6588 4.2036 4.2600 4.6537

F/B/F SSSS 1.9063 2.5633 2.5633 3.6266 3.6994 3.6994 4.9962 5.1446 5.1446

CCCC 2.4375 3.2775 3.2775 4.6370 4.7300 4.7300 6.3881 6.5779 6.5779

FCFC 1.5321 1.8551 2.3878 3.2420 3.4547 3.8225 4.4138 4.4522 4.8732

2 15� B/F/B SSSS 1.8898 2.5364 2.5678 3.5210 3.5744 3.9059 4.8969 5.0536 5.1151

CCCC 2.5103 3.9281 4.2728 4.9191 5.2142 5.4065 5.8508 6.0826 6.2868

FCFC 1.4754 1.7955 2.3697 3.1084 3.4124 3.7677 4.3031 4.3423 4.6672

F/B/F SSSS 1.9312 2.6279 2.6279 3.7124 3.7124 3.7250 5.0046 5.1483 5.2484

CCCC 2.4692 3.3600 3.3600 4.7467 4.7467 4.7628 6.3988 6.5826 6.7106

FCFC 1.5835 1.9029 2.4710 3.3340 3.5716 3.9409 4.5185 4.5422 4.8863

3 30� B/F/B SSSS 2.2237 2.7778 2.9360 3.7765 3.8681 4.6435 5.1583 5.3973 5.6826

CCCC 2.8301 4.1812 4.9507 5.1027 5.4823 6.1744 6.4917 6.7231 6.8995

FCFC 1.6019 1.9479 2.6308 3.3051 3.7888 4.2218 4.6524 4.6726 4.7629

F/B/F SSSS 2.3992 2.9969 3.1676 4.0745 4.1733 5.0099 5.5653 5.8232 6.1310

CCCC 3.0676 3.8319 4.0501 5.2096 5.3360 6.4057 7.1158 7.4455 7.8391

FCFC 1.7147 2.0629 2.7425 3.5171 3.9549 4.4255 4.8804 4.9061 4.9833

4 45� B/F/B SSSS 2.9506 3.2845 3.7684 4.4722 4.4849 5.8973 6.0669 6.0861 6.4475

CCCC 3.5143 4.8625 5.7152 6.2263 6.2772 7.6176 7.6608 7.9240 8.0850

FCFC 1.8378 2.2983 3.1709 3.6842 4.5098 5.2083 5.2997 5.3740 5.4701

F/B/F SSSS 3.1834 3.5437 4.0658 4.8250 4.8388 6.3626 6.5456 6.5663 6.9562

CCCC 4.0704 4.5309 5.1985 6.1693 6.1869 8.1352 8.3692 8.3957 8.8943

FCFC 1.9553 2.4305 3.3046 3.8945 4.6861 5.4448 5.5248 5.6427 5.7592
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normal stresses (rxx and ryy) are compressive on the top

layer and tensile in the bottom layer with zero stress in the

midplane of the SMEE plate. The normal stress compo-

nents are discontinuous at the interface of the layers of

dissimilar materials. It can be attributed to the difference in

material properties and displacement gradient across the

thickness. It may also be noticed from these figures that the

effect of skew angle on the stress components is minimum

for a = 45�. A similar trend has been observed for the in-

plane shear stress (sxy). The magnitude of transverse shear

stress (sxz) also decreases with the increase in the skew

angle. Further, it has been observed from the results that

the stiffness of the SMEE plate changes with the change in

skew angle, thereby directly affecting various plotted

parameters. It may also be observed that the transverse

shear stress (sxz) is zero at the top and the bottom layers of

the plate while satisfying the continuity at the interface of

the layers exhibiting the maximum at the midplane. It is

interesting to note that the transverse shear stress (sxz) is
significantly reduced with the increase in plate skew angle

by a = 0� to a = 45�. This reduction in interlayer stresses

signifies the lower the occurrence of delamination at higher

skew angle. Figure 3i, j illustrate the effect of the skew

angle on the electric displacement (Dz) and magnetic

induction (Bz), respectively. From these figures, it may be

observed that the electric displacement (Dz) varies linearly

in the top and the bottom layers, while the effect of skew

angle appears to be negligible in the middle layer. Electric

displacement (Dz) decreases with the increase in the skew

angle as the electric potential decreases for higher skew

angles. A similar trend has been noticed in the behavior of

the magnetic induction (Bz) also. The minimum electric

displacement and magnetic induction are observed for

a = 45�.

4.3.1 Effect of Geometrical Parameters and Stacking
Sequence

This section includes the assessment of influence of geo-

metric parameters such as the boundary condition and the

aspect ratio on the static behavior of the SMEE plate. In

addition, the effect of material stacking sequence on the

static response characteristics of SMEE plate is also pre-

sented. The influence of different boundary restraints

Table 6 Contour plots for B/F/B clamped SMEE plate (a = 1 m, a = b, H = 0.3 m)
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applied to the SMEE plate is presented in Fig. 4a–j. The

displacements (u and v) shown in Fig. 4a, b are lower for

the simply supported (SSSS) plate in comparison with the

fully clamped (CCCC) plate. The increase in flexural

rigidity in the plate edges contributes to the lower dis-

placements for CCCC plate. The electric and the magnetic

potential are higher for fully clamed plate as depicted in

Fig. 4c, d. The stresses rxx and sxy are higher for fully

clamped plate, while the stress ryy in the y-direction is

higher for SSSS plate. The transverse shear stress is higher

for fully clamped plate in comparison with SSSS plate as

shown in Fig. 4h. The electric displacement is higher for

CCCC plate, while the magnetic induction is seen to be

higher for SSSS plate as shown in Fig. 4i, j. In addition, the

effect of aspect ratio on the stresses, electric displacement

and magnetic induction is investigated. Figures 5 and 6

Table 7 Normalized natural

frequencies for different aspect

ratios (a = 1 m, a = b, B/F/B,

SSSS)

Sl. No. Skew angle (a) a/H Modes of natural frequencies for B/F/B plate

1 2 3 4

1 0� 10 0.2462 0.8212 0.9133 1.1397

20 0.0631 0.2540 0.3206 0.4106

50 0.0101 0.0455 0.0543 0.0858

100 0.0098 0.0455 0.0530 0.0850

2 15� 10 0.2687 0.8454 0.9325 1.2037

20 0.0714 0.2633 0.3598 0.4227

50 0.0129 0.0476 0.0643 0.0951

100 0.0122 0.0466 0.0629 0.0907

3 30� 10 0.3450 0.9256 1.0287 1.4232

20 0.0962 0.3037 0.4628 0.4840

50 0.0177 0.0577 0.0898 0.1169

100 0.0164 0.0556 0.0875 0.1155

4 45� 10 0.5200 1.2533 1.3167 1.8010

20 0.1500 0.4003 0.6037 0.6265

50 0.0272 0.0808 0.1348 0.1731

100 0.0261 0.0787 0.1318 0.1592

Table 8 Normalized natural

frequencies for different aspect

ratios (a = 1 m, a = b, B/F/B,

CCCC)

Sl. No. Skew angle (a) a/H Modes of natural frequencies for B/F/B plate

1 2 3 4

1 0� 10 0.4247 1.1534 1.4216 1.6633

20 0.1163 0.3559 0.4410 0.5489

50 0.0204 0.0672 0.0779 0.1012

100 0.0059 0.0180 0.0202 0.0268

2 15� 10 0.4486 1.1786 1.5260 1.6737

20 0.1234 0.3678 0.4780 0.6101

50 0.0216 0.0710 0.0846 0.1119

100 0.0062 0.0192 0.0218 0.0294

3 30� 10 0.5332 1.2886 1.6976 1.8604

20 0.1489 0.4134 0.6043 0.7590

50 0.0262 0.0837 0.1086 0.1425

100 0.0074 0.0236 0.0280 0.0376

4 45� 10 0.7332 1.5795 2.0966 2.5157

20 0.2124 0.5310 0.7733 0.9463

50 0.0377 0.1110 0.1683 0.2144

100 0.0105 0.0333 0.0436 0.0573
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illustrate the variation of normal stresses (rxx and ryy) for
different aspect ratios for the skew angles a = 15� and 45�,
respectively. From these figures, it can be observed that the

normal stresses decrease with the increase in aspect ratios

for the skew angles a = 15� and 45�, respectively. The in-

plane shear stress (sxy) presented in the Fig. 7a, b shows

minimal variation for all the aspect ratios and skew angles

considered. The transverse shear stress (sxz), the electric

displacement (Dz) and the magnetic induction (Bz) are

presented in Figs. 8, 9 and 10, respectively. It may be

noticed from these figures that the transverse shear stress

(sxz), the electric displacement (Dz) and the magnetic

induction (Bz) follow a similar trend of the normal stresses.

Further, the effect of material stacking sequence on the

Table 9 Normalized natural

frequencies for different aspect

ratios (a = 1 m, a = b, F/B/F,

SSSS)

Sl. No. Skew angle (a) a/H Modes of natural frequencies for F/B/F plate

1 2 3 4

1 0� 10 0.2732 0.8544 1.0033 1.2607

20 0.0709 0.2919 0.3826 0.4272

50 0.0115 0.0577 0.0712 0.1140

100 0.0106 0.0544 0.0660 0.1113

2 15� 10 0.2923 0.8757 1.0191 1.2762

20 0.0847 0.3078 0.4018 0.4378

50 0.0186 0.0703 0.0920 0.1308

100 0.0160 0.0658 0.0884 0.1279

3 30� 10 0.3388 0.9396 1.0638 1.3225

20 0.1069 0.3450 0.4509 0.4697

50 0.0229 0.0902 0.1294 0.1621

100 0.0203 0.0856 0.1263 0.1564

4 45� 10 0.3929 1.0504 1.1291 1.3962

20 0.1228 0.3853 0.5103 0.5250

50 0.0247 0.1051 0.1596 0.1881

100 0.0220 0.0982 0.1501 0.1716

Table 10 Normalized natural

frequencies for different aspect

ratios (a = 1 m, a = b, F/B/F,

CCCC)

Sl. No. Skew angle (a) a/H Modes of natural frequencies for F/B/F plate

1 2 3 4

1 0� 10 0.4813 1.2796 1.5618 1.7377

20 0.1389 0.4447 0.5981 0.7136

50 0.0268 0.1251 0.1897 0.2219

100 0.0237 0.1206 0.1748 0.2013

2 15� 10 0.5075 1.3113 1.6292 1.7018

20 0.1474 0.4619 0.6260 0.7186

50 0.0285 0.1299 0.1973 0.2269

100 0.0261 0.1247 0.1791 0.2033

3 30� 10 0.5996 1.4367 1.7651 1.9837

20 0.1778 0.5224 0.7224 0.7948

50 0.0347 0.1465 0.2237 0.2526

100 0.0326 0.1366 0.2097 0.2390

4 45� 10 0.8134 1.7487 1.9767 2.3560

20 0.2515 0.6656 0.9420 0.9874

50 0.0499 0.1859 0.2842 0.3121

100 0.0458 0.1597 0.2567 0.2701
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static response characteristics of the SMEE plate is pre-

sented in Fig. 11a–j. The displacements (u and v) are

higher for B/F/B plate over F/B/F plate. This can be

attributed to the lower stiffness associated with B/F/B plate

in comparison with F/B/F plate. The electric potential in

the B/F/B SMEE plate and the magnetic potential in the

F/B/F SMEE plate are observed to be constant in the

middle layer, while it varies linearly in the top and the

bottom. However, the electric potential in F/B/F plate and

the magnetic potential in B/F/B plate are found to be zero

Fig. 4 Influence of boundary

condition on a u, b v, c /, d w,
e rxx, f ryy, g sxy, h sxz, i Dz, j Bz

of the B/F/B SMEE plate (a/

b = 1, H = 0.3 m)
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at the top and the bottom layer. The stresses are found to be

higher for B/F/B stacking sequence over F/B/F stacking.

The electric displacement in the B/F/B SMEE plate and the

magnetic induction in the F/B/F SMEE plate are observed

to be zero in the middle layer, while it varies linearly in the

top and bottom layers. However, the electric displacement

in F/B/F plate and the magnetic induction in the B/F/B

Fig. 4 continued

Fig. 5 Normal stress (rxx) for
different aspect ratios a a = 15�,
b a = 45� (a/b = 1)
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Fig. 6 Normal stress (ryy) for
different aspect ratios a a = 15�,
b a = 45� (a/b = 1)

Fig. 7 In-plane shear stress (sxy)
for different aspect ratios

a a = 15�, b a = 45� (a/b = 1)

Fig. 8 Transverse shear stress

(sxz) for different aspect ratios
a a = 15�, b a = 45� (a/b = 1)
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plate are found to be zero at the top and the bottom layers,

while they varied linearly in the middle layer.

5 Conclusion

In this paper, a finite element analysis has been carried out

to investigate the free vibration and static behavior of the

layered skew magneto-electro-elastic plates. The kinemat-

ics of the SMEE plate is described by layerwise shear

deformation theory. The transformation matrix between the

global and local degrees of freedom for the nodes lying on

the skew edges has been successfully incorporated to

investigate the behavior of the SMEE plate. The natural

frequencies of the SMEE plate increase with an increase in

the skew angle for both the plates of B/F/B and F/B/F

stacking sequence. However, for a = 45� the increase in

natural frequency is rapid. In addition, F/B/F SMEE plate

produces higher natural frequency over B/F/B plate. The

displacements and the electric potential decreases with the

increase in skew angle, while the magnetic potential is

higher for a = 45�. The magnitude of the normal stresses

decreases with the increase in a skew angle which may be

attributed to the increase in SMEE plate stiffness with the

increase in the skew angle. Further, it is observed that the

transverse shear stresses in the thickness direction decrease

with the increase in the skew angle, while the influence on

the in-plane shear stresses is marginal. The boundary

condition, the aspect ratio and the stacking sequence

exhibit noticeable influence on the induced magnetic,

electric and the elastic fields. The results presented here

may serve as a benchmark for further analysis of the SMEE

structures.

Fig. 9 Electric displacement

(Dz) for different aspect ratios

a a = 15�, b a = 45� (a/b = 1)

Fig. 10 Magnetic induction (Bz)

for different aspect ratios

a a = 15�, b a = 45� (a/b = 1)

78 Iran J Sci Technol Trans Mech Eng (2020) 44:61–82

123



Fig. 11 Influence of stacking

sequence on a u, b v, c /, d w,
e rxx, f ryy, g sxy, h sxz, i Dz, j Bz

of the B/F/B SMEE plate (a/

b = 1, H = 0.3 m)
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Appendix

The nodal strain–displacement matrices [btb], [brb], [bts]

and [brs] appearing in the Eq. (16) are given by

btb½ � ¼ btb1 btb2 : : : btb8½ �; brb½ � ¼ brb1 brb2 : : : brb8½ �;
bts½ � ¼ bts1 bts2 : : : bts8½ � and brs½ � ¼ brs1 brs2 : : : brs8½ �

ð37Þ

The various sub-matrices [btbi], [brbi], [btsi] and [brsi]

(i = 1, 2, 3, …, 8) are as follows

btbi½ � ¼

oni

ox
0 0

0
oni

oy
0

oni

oy

oni

ox
0

2
6666664

3
7777775
; btsi½ � ¼

0 0
oni

ox

0 0
oni

oy

2
664

3
775;

brbi½ � ¼

oni

ox
0 0 0

0
oni

oy
0 0

oni

oy

oni

ox
0 0

0 0 ni 0

0 0 0 ni

2
666666666664

3
777777777775

; brsi½ � ¼

ni 0 0 0

0 ni 0 0

0 0
oni

ox
0

0 0
oni

oy
0

0 0 0
oni

ox

0 0 0
oni

oy

2
6666666666666664

3
7777777777777775

ð38Þ

The shape function matrices and vectors in Eq. (15) are

given as follows:

Fig. 11 continued
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delt
� �

¼ delt1
� �T

delt2
� �T

: : : delt8
� �T

h iT
;

delr
� �

¼ delr1
� �T

delr2
� �T

: : : delr8
� �T

h iT
;

/el
� �

¼ /11 /21 /12 /22 : : : /18 /28f gT ;
wel

� �
¼ w1 w2 : : : w8f gT;

nt½ � ¼ nt1 nt2 : : : nt8½ �T; nr½ � ¼ nr1 nr2 : : : nr8½ �T

n/
� �

¼
n/11

0 n/12
0 : : : n/18

0

0 n/21
0 n/22

: : : 0 n/28

� �T
;

nw
� �

¼ nw1 nw2 : : : nw8
� �T

;

nti ¼ NiIt; nri ¼ NiIr ð39Þ

The elemental matrices and vectors appearing in

Eqs. (18)–(21) are given by

keltt
� �

¼ keltb
� �

þ kelts
� �

; keltr
� �

¼ keltrb
� �

þ keltrs
� �

;

kelrr
� �

¼ kelrrb
� �

þ kelrrs
� �

;

kelt/

h i
¼ kel/t

h iT
; keltw

h i
¼ kelwt

h i
T;

kelt/

h i
¼

Zael

0

Zbel

0

btb½ �T Dt/
� �

n/
� �

dx dy;

kelr/

h i
¼

Zael

0

Zbel

0

brb½ �T Dr/
� �

n/
� �

dx dy;

keltw

h i
¼

Zael

0

Zbel

0

btb½ �T Dtw
� �

nw
� �

dx dy;

kelrw

h i
¼

Zael

0

Zbel

0

brb½ �T Drw
� �

nw
� �

dx dy;

ð40Þ

where Dt/
� �

, Dr/
� �

, Dtw
� �

, Drw
� �

, D//
� �

and Dww
� �

are the

rigidity matrices appearing in Eq. (40) are given as follows:

Dt/
� �

¼
Zh4

h3

ebf g 1
h

1 0½ �dzþ
Zh2

h1

ebf g 1
h

1 0½ �dz;

Dtw
� �

¼
Zh3

h2

qbf g 1
h
dz;

Dr/
� �

¼
Zh4

h3

z1½ �T ebf g 1
h

1 0½ �dzþ
Zh2

h1

z1½ �T ebf g 1
h

1 0½ �dz;

Drw
� �

¼
Zh3

h2

z1½ �T qbf g 1
h
dz

D//
� �

¼ n33
h

1 0

0 1

� �
; Dww ¼ 1

h
l33

The global matrices in Eq. (32) are given as follows:

K1½ � ¼ kgtt
� �

þ k
g
t/

h i
k
g
//

h i�1

k
g
t/

h iT
þ k

g
tw

h i
k
g
ww

h i�1

k
g
tw

h iT
;

K2½ � ¼ kgtr
� �

þ k
g
t/

h i
k
g
//

h i�1

k
g
r/

h iT
þ k

g
tw

h i
k
g
ww

h i�1

k
g
rw

h iT
;

K3½ � ¼ kgrr
� �

þ k
g
r/

h i
k
g
//

h i�1

k
g
r/

h iT
þ k

g
rw

h i
k
g
ww

h i�1

k
g
rw

h iT
:

ð41Þ
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