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Abstract
This paper studies the control of a brachiating robot imitating the locomotion of a long armed ape. The robot has two

revolute joints, but only one of them is actuated. In this paper, after deriving dynamic model of the robot, the Controlled

Lagrangians (CL) method is used to design a controller for point to point locomotion. The CL method involves satisfying a

number of equations called matching conditions. The matching conditions are derived using the extended k-method in the

form of a set of partial differential equations (PDEs). Solving the PDEs, a class of controllers is found that satisfies the

matching conditions. The fittest controller in the class of controllers is then chosen by particle swarm optimization

algorithm. Performance of the developed controller is investigated by numerical simulations. Finally, experiments are

performed to validate theoretical results.

Keywords Brachiation robot � Underactuated system � Controlled Lagrangians method � PSO algorithm

1 Introduction

In recent years, various types of mechanisms have been

developed to make a robot move naturally like animals do.

During the late 1990s, a new type of robotic mechanism

was introduced by Fukuda et al. (1991) that imitated the

movement of an ape swinging from one branch to another.

The swinging motion of an ape is shown in Fig. 1.

The brachiation control problem was introduced to the

robotics literature in Saito et al. (1994), where a simple two-

link brachiation robot was presented and a heuristic learning

method for generating feasible trajectory for the robot was

proposed. Fukuda, Hasegawa, Shimojima and Saito devel-

oped a self-scaling reinforcement learning algorithm. Later,

Saito added a feedback controller to improve the robustness

of the method (Hasegawa et al. 1999). The main short-

coming of their method is the long training time required for

a successful movement. Nakanishi et al. (2000) took

another approach, using target dynamics to control brachi-

ation underactuated systems. Kajima et al. (2003) used a

local behavior control to control the multi-locomotion robot

to perform brachiation. An energy-based control to the

swing phase of brachiation is presented in Kajima et al.

(2006) with the purpose of minimizing the amount of input

energy in the swing phases. In Zhao et al. (2008) an energy-

based control combined with Lyapunov stability theory is

proposed. In Fukuda et al. (2007) a control strategy for

brachiation motion considering irregular ladder is proposed

based on passive dynamic autonomous control (PDAC).

The method of CL has been developed to stabilize

Lagrangian systems by shaping the mechanical energy. The

basic idea in this method is to transform, by appropriate

feedback, a given Lagrangian system to another Lagran-

gian system with positive definite energy function. A dis-

sipative part can also be introduced in this method to

enforce the decrease in energy, making it a good candidate

for Lyapunov function.

The method of CL is also called the energy shaping

method. The work in (Arimoto 1984), where potential
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energy was shaped to stabilize a fully actuated robot

manipulator, was a pioneer in energy shaping methods. A

kinetic shaping technique was later introduced in Bloch et al.

(2001) to stabilize the unstable rotational motion of an

underactuated satellite. Total energy shapingwas introduced

through a series of papers (Bloch et al.

1992, 1997, 2000, 2001a, b). Force shaping was first inves-

tigated in Gómez-Estern et al. (2004) and Woolsey et al

(2004), and a more formal form of energy shaping was pre-

sented in Auckly andKapitanski (2002), Auckly et al. (2000)

and Hamberg (1999). More recently, in Tavallaeinejad

(2016) the CL method has been employed to design tracking

controller for a micro-cantilever beam with rotating joint.

In this paper, a brachiation robot is controlled using the

Controlled Lagrangians (CL) method. The extended k-
method (Chang 2005) is used to formulate PDEs involved

in the method of Controlled Lagrangians. The PDEs are

then solved to derive the control law. Because of the

complex controller synthesis algorithm of the Controlled

Lagrangians method, often the insight into the physical

meaning of various terms in the control law will be lost.

This results in a cumbersome tuning process for the con-

troller parameters. To overcome this drawback and to find

satisfactory controller parameters, this paper proposes a

PSO algorithm. Feasibility of the developed controller is

further investigated by numerical simulations and experi-

mental observations.

Theoretical parts of this paper were presented in

Tashakori et al. (2014). The current manuscript integrates

these results with new simulation results, experimental

validations and improved readability.

The paper is organized as follows. In Sect. 2 the gov-

erning equations of motion of the brachiation robot are

derived. Section 3 briefly reviews the CL method. In

Sect. 4 the extended k-equations that formulate the

matching conditions involved in the method of CL are

discussed. In Sect. 5 the k-equations are solved to design a

controller. Section 6 reviews the PSO algorithm, and

Sect. 7 presents the simulation and experiment results.

2 System Dynamics

The simplified model for a brachiating robot is a planar

double pendulum which is actuated at the elbow joint. The

parameters and the generalized coordinate of the system

are shown in Fig. 2.

The Euler–Lagrange equation is used to obtain the

equation of motion of the system. The Lagrangian of the

system is defined by

L ¼ K � U ¼ 1

2
_qTM qð Þ _q� U qð Þ; ð1Þ

where K is the kinetic energy and U is the potential energy

of the system. M(q) is the inertia matrix which is a sym-

metric positive-definite matrix, and q ¼ h1; h2½ �T is the

generalized coordinate vector and represents the joint

position. The Euler–Lagrange equation states that

EL Lð Þ ¼ F þ u; ð2Þ

where eL is the Euler–Lagrange operator defined by

EL Lð Þ ¼ d

dt

oL

o _qi

� �
� oL

oqi
; ð3Þ

and u is the vector of joint torques and F is the external

force. Using above formulas, the equation of motion of the

system is obtained as

M qð Þ€qþ C q; _qð Þ _qþ G qð Þ ¼ F þ u; ð4Þ

where C q; _qð Þ is the matrix of the centrifugal and Coriolis

terms and G(q) represents the vector of gravitational forces.

The brachiating robot is underactuated, because the

Fig. 1 Brachiation of the long-armed ape on uneven supports

Fig. 2 Kinematic and dynamic parameters and generalized coordi-

nates of the simplified brachiating robot
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actuation torque is only applied on the middle joint and no

torque is exerted between the gripper and the supporting

bar. Hence, the vector of the applied joint torque has the

form:

u ¼ 0

s

� �
; ð5Þ

where s is the torque exerted on the joint between links 1

and 2.

The inertia matrix, the matrix of centrifugal and Coriolis

terms and the vector of gravitational effect are given by:

M ¼
m1;1 m1;2

m2;1 m2;2

� �

m1;1 ¼ a1 þ 2a2cos h2ð Þ
m2;2 ¼ a3

C ¼
c1;1 c1;2

c2;1 c2;2

� �

c1;1 ¼ �a2 sin h2ð Þ _h2
c1;2 ¼ �a2 sin h2ð Þ _h1 þ _h2

� �

c2;1 ¼ a2 sin h2ð Þ _h1
c2;2 ¼ 0

G ¼
b1 sin h1ð Þ þ b2 sin h1 þ h2ð Þ

b2 sin h1 þ h2ð Þ

� �
;

ð6Þ

where

a1 ¼ m2l
2
1 þ m1l

2
c1 þ m2l

2
c2 þ I1 þ I2

a2 ¼ m2l1lc2

a3 ¼ m2l
2
c2 þ I2

b1 ¼ m1lc1 þ m2l1ð Þg
b2 ¼ m2lc2g;

ð7Þ

and mi, li and lci are the mass, length and center of mass of

link i; i ¼ 1; 2ð Þ, respectively. Ii is the moment of inertia of

the link i about an axis perpendicular to the plane of motion

at the center of mass, and g is the gravitational accelera-

tion. Kinematic and dynamic parameters of the brachiating

robot for the first swing are shown in Table 1.

3 CL Systems

Definition 1 A (simple) Controlled Lagrangians system is

a triple, L;F;Wð Þ where L is Lagrangian of the system, F is

external force exerted on the system, and W is called

control subbundle that is a subspace of the generalized

coordinates in which the control force can be applied.

Definition 2 Given two systems L;F;Wð Þ and ðL̂; F̂; ŴÞ),
the Euler–Lagrange matching conditions are

ELM-1 : W ¼ MM̂�1 Ŵ
� 	

ELM-2 : Im eL Lð Þ � Fð Þ �MM̂�1 eL L̂
� 	

� F̂
� 	
 �

� W ;

ð8Þ

where Im means the pointwise image of the linear map in

brackets. We say that the two simple Lagrangian systems

L;F;Wð Þ and ðL̂; F̂; ŴÞ are equivalent if ELM-1 and ELM-

2 hold (Chang 2005).

Proposition 3 Suppose two simple Controlled Lagran-

gians systems L;F;Wð Þ and ðL̂; F̂; ŴÞ are equivalent.

Then, for any controller û there exists a controller u such

that the two closed-loop system L;F;Wð Þ and ðL̂; F̂; ŴÞ
produce the same equations of motion, and vice versa. The

explicit relation between u and û is given by

u ¼ EL Lð Þ � Fð Þ �MM̂�1 EL L̂
� 	

� F̂
� 	

þMM̂�1û; ð9Þ

where M is the mass matrix of the Lagrangian L and M̂ is

the mass matrix of L̂.

4 Extended Lambda Method

In Chang ( 2005), Chang makes a complete development of

the extended k-method in a coordinate-free way exclu-

sively on the Lagrangian side to solve PDEs involved in the

Controlled Lagrangians systems. Before describing the

extended k-method, let us define the Christoffel symbol.

Definition 3 Given a local coordinate system xi; i ¼
1; 2; . . .n on a n-manifold M with metric tensor g, the

Christoffel symbol of the first kind is defined as

ab; c½ � ¼ 1

2

ogca

oxb
þ ogcb

oxa
� ogab

oxc

� �
ð10Þ

Considering above definition, the k-equations in general-

ized coordinates are

o maik
i
b

� �
oqk

� ak; i½ �kib � bk; i½ �kia ¼
1

2
Ĝijk þ Ĝjik

� 	
kiak

i
b

ð11Þ

Table 1 Kinematic and dynamic parameters of the brachiation robot

Symbols (unit) i = 1 i = 2

mi kgð Þ 0.545 1.270

li mð Þ 0.262 0.262

lci mð Þ 0.123 0.067

Ii kgm
2ð Þ 3.6e–3 9.6e–3
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kka
om̂ij

oqk
þ okka

oqi
m̂kj þ

okka
oq j

m̂ki ¼
omij

oqa
� Ĝijk þ Ĝjik

� 	
kka ð12Þ

kka
oÛ

oqk
¼ oU

oqa
; ð13Þ

where i; j; k ¼ 1; . . .; s and a; b ¼ 1; . . .; r (s is the degrees

of freedom and r is the number of control inputs), Ĝ is a (0,

3)-tensor satisfying Ĝijk ¼ Ĝjik; Ĝijk þ Ĝjki þ Ĝkij ¼ 0 and

k ¼ M̂�1M ð14Þ

5 Design of the Controller

We apply the extended k-method to design a feedback

control law for the brachiating robot shown in Fig. 2. This

system can be described as a CL system (L, 0, W) where

L ¼ 1

2
a1 þ 2a2 cos h2ð Þ _h21 þ a3 þ a2 cos h2ð Þ _h1 _h2 þ

1

2
a3 _h

2
2

þ b1 cos h1 þ b2 cos h1 þ h2ð Þ
ð15Þ

and ai and bi were introduced in (7) and

W ¼ 0

1

� �
ð16Þ

Then, the nonzero Christoffel symbols of the first kind,

seen in (11), are given by

h ¼ �a2 sinðh2Þ ð17Þ

By choosing Ĝ211 ¼ Ĝ121 ¼ G1; Ĝ212 ¼ Ĝ122 ¼
G2,Ĝ111 ¼ Ĝ222 ¼ 0, Ĝ112 ¼ �2G1 and Ĝ221 ¼ �2G2; the

k-equations in (11) are given by:

m1;1
ok11
oh1

þ m1;2
ok21
oh1

� 2a2sinh2k
2
1 � 2G1k

1
1k

2
1 þ 2G2k

1
1k

2
1 ¼ 0

ð18Þ

oðm1;1k
1
1Þ

oh2
þ oðm1;2k

2
1Þ

oh2
þ 2a2sinh2k

2
1 þ 2G1k

1
1k

1
1 � 2G2k

1
1k

2
1 ¼ 0

ð19Þ

Since we have more unknowns than equations in (18)

and (19), we choose:

k11 ¼
�1

C1

; k21 ¼
2

C1

;G1 ¼ 0;G2 ¼
1

2
C1a2sinh2; ð20Þ

where C1 is a constant. Therefore, (12) becomes:

�1

C1

om̂11

oh1
þ 2

C1

om̂11

oh2
¼ 0

�1

C1

om̂12

oh1
þ 2

C1

om̂12

oh2
¼ �2a2sinh2

�1

C1

om̂22

oh1
þ 2

C1

om̂22

oh2
¼ �2a2sinh2

8>>>>><
>>>>>:

ð21Þ

One can solve the first equation in (21) by choosing m̂11

to be a constant:

m̂11 ¼ C2 ð22Þ

Note that there is no need to solve the other two equa-

tions in (21) for m̂12 and m̂22. Instead, using (14), we

obtain:

m̂12 ¼
1

2
C1 a1 þ 2a2cosh2ð Þ þ 1

2
C2 ð23Þ

m̂22 ¼
1

4
C1 a1 þ 4a2cosh2 þ 2a3ð Þ þ 1

4
C2; ð24Þ

and Ĉ is given by

Ĉ ¼ C1a2sinh2 _h2
0 �1

0 � 1

2

" #
ð25Þ

Hence, (13) can be rewritten as

�1

C1

oÛ

oh1
þ 2

C1

oÛ

oh2
¼ b1sinh1 þ b2sinðh1 þ h2Þ; ð26Þ

which leads to

Û ¼ b1C1cosh1 � b2C1 cos h1 þ h2ð Þ þ F1 2h1 þ h2ð Þ;
ð27Þ

where

F1 2h1 þ h2ð Þ ¼ 1

2
C3 2h1 þ h2ð Þ2; ð28Þ

and Ĝ is given by

Ĝ ¼

oÛ

oh1
oÛ

oh2

2
664

3
775 ð29Þ

Since by definition F̂ ¼ ĜijkX
iX jdqk, we have

F̂ ¼ C1a2sinh2
� _h22
_h1 _h2

� �
ð30Þ

And Ŵ is given by

Ŵ ¼ M̂M�1W ¼ ŵ1

ŵ2

� �
ð31Þ

In order to add dissipation to the system, we can choose

û ¼ �C4 ŵ1
_h1 þ ŵ2

_h2
� �

ð32Þ

Then, the control law can be obtained from (9). Note

that C4 should be positive.

Since Ê ¼ T̂ þ Û is the total energy of the equivalent

system, we have
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dÊ

dt
¼ _q � F̂ þ _q � û ¼ �C4 ŵ1

_h1 þ ŵ2
_h2

� �2

� 0 ð33Þ

Because _q � F̂ ¼ 0 (see Eq. 30). Equation (33) shows

that the closed-loop system energy decreases with time,

and it will result in the system stability.

6 PSO Algorithm

In the previous section, the control law was obtained.

Controller parameters C1, C2, C3 and C4 are constants that

affect the closed-loop performance. Since we lose the

physical insight to the controller parameters in the Con-

trolled Lagrangians method, selection of these parameters

is often a complex and time consuming process.

In this section, the controller parameters (C1, C2, C3 and

C4) are chosen using particle swarm optimization (PSO)

algorithm which was first introduced by Kennedy and

Eberhart in 1995.

PSO is one of the evolutionary optimization techniques.

The method is developed from research on swarms such as

fish schooling and bird flocking (Eberhart and Shi 1998).

The method has been found to be robust in solving prob-

lems featuring nonlinearity and non-differentiability, mul-

tiple optima and high dimensionality through adaptation

which is derived from the social-psychological theory.

Moreover, the method can be easily implemented and has

stable convergence characteristic with good computational

efficiency.

Each particle (individual) in PSO moves in the search

space with velocity which is dynamically adjusted

according to its own and its companions’ history. This is in

contrast with other evolutionary optimization algorithms

which often use evolutionary operators to manipulate the

particle movement.

In PSO, each particle is treated as a volume-less particle

in g-dimensional search space (here the four-dimensional

controller parameters space C1, C2, C3 and C4). Each

particle keeps track of its coordinates in the problem space,

which are associated with the best solution it has achieved

so far. This value is called pbest. Another best value that is

tracked by the particle swarm optimizer is the overall best

value, and its value, obtained so far by any particle in the

group, and is called gbest.

The PSO concept consists of, at each time step, chang-

ing the velocity of each particle toward its pbest and gbest

values. Acceleration is weighted by a random term, with

separate random numbers being generated for acceleration

toward pbest and gbest locations.

For example, the jth particle is represented as xj = (xj,1,

xj,2, …, xj,g) in the g-dimensional space. The best previous

position of the jth particle is recorded and represented as

pbestj = (pbestj,1, pbestj,2, …, pbestj,g). The index of best

particle among all of the particles in the group is repre-

sented by the gbestg. The rate of the position change (ve-

locity) for particle j is represented as vj = (vj,1, vj,2,…, vj,g).

The modified velocity and position of each particle can

be calculated using the current velocity and the distance

from pbestj,g to gbestg, as shown in the following formulas:

v
tþ1ð Þ
j;g ¼ w:v

tð Þ
j;g þ d1R1 pbestj;g � x

tð Þ
j;g

� �
þ d2R2 gbestg � x

tð Þ
j;g

� �
ð34Þ

x
tþ1ð Þ
j;g ¼ x

tð Þ
j;g þ v

tþ1ð Þ
j;g ð35Þ

where ¼ 1; 2; . . .; n; g ¼ 1; 2; . . .;m; and other parameters

can be found in Table 2.

The constants d1 and d2 represent the weighting of the

stochastic acceleration terms that pull each particle toward

pbest and gbest positions. Low values allow particles to

roam far from the target regions before being tugged back.

On the other hand, high values result in abrupt movement

toward, or past, target regions. Hence, the acceleration

constants are often set to be 2.0 (Gaing 2004).

The PSO parameters used in this paper are shown in

Table 3.

Flow diagram illustrating the particle swarm optimiza-

tion algorithm is presented in Fig. 3.

7 Simulation Results

To verify the performance of the controller, let us first

simulate the closed-loop response for a brachiation task in

which the robot gripper releases an initial bar and swings

toward a target bar. The positions of the initial and target

bars are [ - 0.3, 0] and þ 0:21; 0:07½ �(m), respectively,

and the support arm rotates around origin as shown in

Fig. 4. Furthermore, velocity of the gripper should be close

to zero just as it reaches the target bar to avoid impact

Table 2 Introduction of the PSO parameters

n Number of particles in a group

m Number of members in a particle

t Pointer of iterations (generations)

vtj;g Velocity of particle j at iteration t

w Inertia weight factor

d1; d2 Acceleration constant

R1;R2 Random number between 0 and 1

xtj;g Current position of particle j at iteration t

pbestj pbest of particle j

gbestj gbest of the group

Iran J Sci Technol Trans Mech Eng (2020) 44:11–21 15
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between them. Consequently, possible harmful effects of

the impact on the robot can be prevented. Therefore, the

cost function in the PSO algorithm has been chosen as

soln ¼ 1

2
V2 þ 1

2
S2;

where V is the gripper’s velocity and S is the distance

between gripper and target point. We would like to find

controller parameters C1, C2, C3 and C4 that minimize soln.

It is essential to mention that V and S are representatives of

errors of generalized coordinates. In other words, con-

troller’s gains depend on the position of target bar and

desired velocity of the gripper at the moment that the target

bar is achieved which is equal to zero in the present

problem. In fact, the controller parameters are functions of

desired generalized coordinates, indirectly.

The controller’s gains, obtained by PSO algorithm, are:

C1 = 170.001, C2 = 20.1375, C3 = 76.0234, C4 = 3.9801

The simulation results are shown in Fig. 5, with

parameters mentioned in Table 1. Figure 5a, b, g indicates

that the robot can catch the target point, and Fig. 5c–e

illustrates that the robot touches the target bar without

impact (i.e., the velocity of the end effector is almost zero

as it reaches the target bar). The input u(t), the torque

exerted by the motor on link 2 from link 1, is shown in

Fig. 5f.

7.1 Comparison of the Trajectory
of the Proposed Controller, with the Optimal
Trajectory

In Meghdari et al. (2013), Pontryagin’s minimum principle

was used to obtain the optimal trajectories that minimize

the actuator work. It is shown that this trajectory also

minimizes the brachiation time.

In order to compare the trajectory of the proposed

Controlled Lagrangians method with the optimal trajectory

(Meghdari et al. 2013), the same location for the initial and

target bars as in Meghdari et al. (2013) was used to obtain

the trajectory. The results of both the proposed method and

the optimal method of Meghdari et al (2013) are illustrated

in Fig. 6.

Interestingly, this comparison shows that proposed

controller selected an almost optimal trajectory and the

brachiation time is approximately equal to the minimum

possible time. However, as it is shown in Fig. 6f the

actuation torque is not equal to its optimal value but its

maximum magnitude is about 1.5 N m that is an accept-

able value from the practical point of view.

Table 3 Parameters of the PSO

algorithm
Number of iteration 100

Number of particles 40

w 1

d1 2

d2 2

Fig. 3 Schematic explanation of PSO algorithm

Fig. 4 The initial and final conditions

16 Iran J Sci Technol Trans Mech Eng (2020) 44:11–21
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7.2 Experimental Testbed and Results

This section describes the experimental setup of the

brachiation robot which is used to validate the proposed

control strategy. The configuration of the CEDRA brachi-

ation robot is illustrated in Fig. 7. The CEDRA brachiation

robot has two links and two grippers at the end of each link.

In order to grab the bars, each gripper is equipped with two

radio-controlled (RC) servo motors. A direct current (DC)

coreless motor is placed at the central joint as the only

Fig. 5 Simulation results. The positions of the initial and target bars

are [- 0.3,0] and [? 0.21,0.07] (m), respectively. a Angle of first

link; b angle of second link; c angular velocity of first link; d angular

velocity of second link; e velocity of the gripper; f control input;

g movement of the brachiating robot

Iran J Sci Technol Trans Mech Eng (2020) 44:11–21 17
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actuator of the robot. The DC motor (3868A024C), gear-

box (38/2S14:1), encoder (HEDS5500C12) and motion

controller (MCDC3006S) are manufactured by the ‘‘Faul-

haber’’ group.

Two gyroscope sensors are attached to the links to

measure the angular velocity. The movement of the robot is

captured by a GoPro camera with 240 fps (frames per

second) which consequently has been splat to pictures by a

video to picture converter software. Finally, the angle of

each link is determined by the ImageJ software. The

position of the initial and target bars is set exactly equal to

the values considered in the simulation section. The motion

of the CEDRA brachiation robot, equipped with the pro-

posed Controlled Lagrangians controller through a

brachiation task, is shown in Fig. 8. (Frames are captured

every 0.065 s.)

Fig. 6 Comparison of the selected trajectory by the proposed method

in this paper with the optimal trajectory. The positions of the initial

and target bars are [- 0.3,0] and [? 0.21,0.07] (m), respectively.

a Angle of first link; b angle of second link; c angular velocity of first

link; d angular velocity of second link; e velocity of the gripper;

f control input

Fig. 7 The CEDRA two-link brachiation robot. (Reproduced with

permission from Meghdari et al. 2013)

18 Iran J Sci Technol Trans Mech Eng (2020) 44:11–21
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The comparison between the simulation and experiment

results is shown in Fig. 9. As can be seen, simulations

nearly match experimental results. It is also worthy to

mention that the erratic variation of the joint velocity in

Fig. 9 might be caused due to Coulomb friction and fric-

tional torques at gripper’s contact with the initial bar as

well as somewhat out-of-plane motion of the robot during

the swinging motion.

8 Conclusions

This paper investigates the control problem of a brachiation

robot. Controlled Lagrangians method was used to design a

controller. The controller parameters are then computed

using a PSO optimization. Numerical simulations illustrate

the effectiveness of the proposed method. Comparison of

the trajectory of the proposed controller with the optimal

trajectory illustrates the intrinsic ability of the Controlled

Lagrangians method in control of underactuated mechani-

cal systems. Interestingly, this comparison shows that

proposed controller selected an almost optimal trajectory

and the brachiation time is approximately equal to the

minimum possible time. Experimental observations con-

firm theoretical results and illustrate the effectiveness of

the proposed method. Authors would like to clarify that

simpler methods can also be used to control this robot to

avoid complexity of Controlled Lagrangians method,

especially in tuning process. Previous works in the field of

Controlled Lagrangians used trial and error to tune the

controller and find appropriate controller gain. However,

the trial and error method is cumbersome for controllers

with higher degrees of freedom. In this paper, an opti-

mization technique is proposed to overcome this difficulty,

but the determination of controller’s gains is considerably

time-consuming and might be practically impossible in

some cases.

Even though it was thought that the method of Con-

trolled Lagrangians is more practical in stabilizing a

2-DOF system around its equilibrium point, in this paper,

by combining the CL method and PSO algorithm it is

indicated that this method can be used for conducting a

system to a point that is not an equilibrium point while it is

not easy without the help of PSO algorithm. Also, in this

Fig. 8 The movement of CEDRA brachiation robot for almost every 0.065 s
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way, we remove any trial and error for finding controller’s

gains.
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