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Abstract
This study presents a new regularized penalty form to carry out material topology optimization of structures. In general, the

regularization form of typical SIMP has been used to reduce material discontinuity of densities which describe boundaries

of finite elements and finally provide numerical stability in sensitivity analysis of optimization procedures and the problem

of 0–1 formulation. However, optimal solutions of the regularized SIMP depend on penalty parameters such as typical

SIMP, since penalty relation of Young’s modulus and density of regularized SIMP is similar to that of typical SIMP in spite

of regularization. In this paper, the penalty relationship between Young’s modulus and material density of typical SIMP

becomes extended by multiplying it with a moved and regularized form of a material indication function, i.e., Heaviside

function. The new penalization method does not depend on filter methods for free-checkerboards; therefore, computational

savings can be obtained. Numerical examples demonstrate that the incorporation of moved and regularized Heaviside

function in the SIMP leads to convergent solutions with clear boundaries between materials and no materials and without

checkerboard patterns.

Keywords Structural topology optimization � SIMP � 0–1 formulation � Material indication function � Moved and

regularized Heaviside function

1 Introduction

Topology optimization for continuum structures has

reached a level of maturity whereby it is being imple-

mented in many industrial problems such as civil and

architectural structures as well as airplanes, ships, and

autos. Topology optimization is a rapidly expanding field

of structural mechanics and can yield much greater savings

than mere size or shape optimization. Numerical process of

topology optimization is usually done by meshing deign

domains and determining material contents, i.e., densities,

of each finite element. Design variables are connected one-

to-one to the finite elements and thus the number of design

variables is proportional to that of finite elements and

consequently leads to many design variables for the opti-

mization. Note that the number of elements must be rela-

tively high due to the fact that grids should be sufficiently

refined to represent appropriate geometrical features and

proper response fields. However, refined meshes give rise

to many computation burdens.

Using topology optimization, limited problems of shape

optimization (Zienkiewicz and Campbell 1973; Pahlevani

and Ebrahimi 2013) depending on initial topology of

structure are avoided. Topology optimization is itself dif-

ferent from shape optimization based on boundary varia-

tions in the fact that no pre-information of initial topology

and shape of designs is supplied to the optimization pro-

cesses and both optimal shape and topology can be yielded

as optimal solutions.

Topology optimization problem can be regarded as a

material distribution problem. It is well known that it may

be a generally ill-posed problem, i.e., no solutions exist.

Cheng and Olhoff (1981) suggested that the main difficulty

in topology optimization is an ill-posed problem so that its

0–1 formulation is mesh dependent; therefore, this design
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is not optimal since it can be improved by further mesh-

refinement. In this context, Sigmund and Petersson (1998)

and Diaz and Sigmund (1995) demonstrated that numerical

instabilities, i.e., singularities of solutions related with

mesh-dependence, checkerboards and local minima occur

in topology optimization problem.

In order to overcome the above problems, an important

development in topology optimization is a homogenization

method to constitute well-posed problem as devised by

Bendsøe and Kikuchi, in which a material model with

micro-scale voids is introduced and the topology opti-

mization problem is defined by searching the optimal

porosity as introduced by Bendsøe (1989), Bendsøe and

Haber (1993), Fujii et al. (2001). However, the homoge-

nization method may not yield manufacturable optimal

structures, since it often produces designs with infinitesi-

mal pores in the materials.

Additionally, many attempts of the homogenization

method have been investigated, for example, the method

for continuous variables to be replaced by integers and to

be forced into discrete values of penalization, i.e., ‘‘Solid

Isotropic Material with Penalization’’ (SIMP) approach

(Diaz and Bendsøe 1992; Bendsøe and Sigmund 1999;

Sigmund 2001; Bourdin 2001). In practical engineering’s

point of views, SIMP approach comes over the manufac-

ture problem of solutions which occurs in typical homog-

enization method and it has been very often utilized in

ranges of topology optimization problem due to numerical

simplicity of the application. However, weakness of

physical description about the penalization relation of

design variables and Young’s modulus remain as the major

difficulties for realistic requirements.

The penalization is controlled by penalty parameter and

its value must be appropriately determined by structural

problem, since it decides the quality of optimal solution. It

is commonly known that the value over 3.0 is proper. In

this study, note that the penalized form of typical SIMP

approach originally includes a material indication concept:

i.e., Heaviside function, which defines the signals of 0–1

formulation. For the purpose of numerical stability to cal-

culate sensitivity analysis and produce non-singular solu-

tions, Heaviside function must be regularized in topology

optimization problem. Here, it is assumed that both penalty

form and regularization form of Heaviside function exist in

optimization problem. In addition, because of restriction of

design variable values [0, 1], the regularized Heaviside

function is moved toward x axial coordinate and becomes a

new function which has domain [0, 1]. The function is

named as ‘‘Moved and Regularized Heaviside Function’’,

i.e., MRHF.

The penalization form which is multiplied with MRHF

makes more improved artificial materials with small pen-

alty parameter value compared with typical SIMP, since a

generally too large value of the parameter may give rise to

numerical singularity. This coupled value of element den-

sity and regularization is then constantly assigned onto

each finite element, and the element-based topology opti-

mization produces the final distribution contour of element

density without mesh-dependence and checkerboard pat-

terns. These benefits are realized without any additional

filter method in typical SIMP approach.

Regularization of the discontinuity function of material

indicator in topology optimization is not a new idea.

Belytschko et al. (2003) and Guest et al. (2004) reported

success using the regularized Heaviside function to

implicitly describe the topology and archive numerical

stability of optimization. The approach presented here

differs in the fact that the moved and regularized Heaviside

function is additionally used as a partial term of total

penalization in the SIMP approach and the penalization

including MRMF is regarded as an artificial and new

material model.

The layout of the present study is as follows. In Sect. 2,

the goal and intuitive idea of this present method is dis-

cussed and thus the typical SIMP approach and the moved

and regularized Heaviside function are introduced. The

well-known material topology optimization problem in

which the proposed penalization becomes implemented is

formulated in Sect. 3. In Sect. 4, an analytical sensitivity

method with a variational approach is described to utilize

an adjoint method of Lagrangian multiplier as introduced

by Haug et al. (1986) and Haftka and Guerdal (1992). In

Sect. 5, the numerical efficiency of the proposed SIMP

approach using MRHF is verified through numerical

examples and compared with that of typical SIMP and filter

method. Finally, conclusions are given in Sect. 6.

2 Goal and Intuitive Idea

2.1 SIMP Approach

In continuous formulations of topology optimization

problem, the design is given by a continuous scalar func-

tion U from the fixed design domain Xx � <n(n = 2 or 3)

to the allowed material density 0�U� 1. After dis-

cretization process of the continuous design domain, the

material density Ui is constantly assigned onto each finite

element and is defined by applying a penalty contour to the

design variable field, i.e., as in the so-called ‘‘power law

approach’’ or SIMP approach (Bendsøe and Kikuchi 1988).

According to the approach, the material density distri-

bution has an effect on the element stiffness. Thus, the

element stiffness–density relationship may be expressed in

terms related to Young’s modulus E, i.e., Ei is assigned by

the updated element density Ui and is defined as
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EiðUiÞ ¼ E0

Ui

U0

� �k

; i ¼ 1. . .n; n

¼ total number of element ð1Þ

where E0 and U0 are, respectively, nominal values of

Young’s modulus and material density. The penalty

parameter k� 1 penalizes intermediate material densities

as shown in Fig. 1 and is incremented throughout the

optimization process.

For example, and without loss of generality, an isotropic

material model with a plane stress (such as a wall structure)

is used here, so that

Ci ¼
EiðUiÞ
1� m2

1 m 0

m 1 0

0 0
1� m
2

2
64

3
75 ð2Þ

where Ci is a material tensor of each finite element i and

includes the updated term of Young’s modulus Ei defined

by the updated element density Ui. m is Poisson’s ratio.

Here, the minimal strain energy on a linear elastic structure

is utilized as an objective function of topology optimization

problem and is defined as

Minimize f ¼ 1

2

Z
Xx

eTCie dXx ð3Þ

where, the material tensor Ci depending on updated element

densities automatically includes an indication function as

signals of void phase (0)—solid phase (1) in SIMP approach.

Therefore, the signals need not be defined in typical SIMP

approach.However, note that it is assumed in this study that an

explicit indication function, i.e.,Heaviside function, is applied

to design domain. The objective function with Heaviside

function is again defined as:

Minimize f ¼ 1

2

Z
Xx

HðUiÞeTCie dXx ð4Þ

According to fixed ranges of element material density

0�Ui � 1, Heaviside function is defined as

HðUiÞ ¼
0 if Ui\0

1=2 if Ui ¼ 0

1 if Ui [ 0

8<
: ð5Þ

and Heaviside function with 0–1 formulation and its

expression in the design domain are shown in Fig. 2.

2.2 Moved and Regularized Heaviside Function

When executing topology optimization process, large

jumps in density Ui across the interface (for example, at the

boundary) may cause numerical instabilities such as sin-

gularities of solutions. Moreover, the objective function

with discontinuous Heaviside function would make it

unworkable to obtain its sensitivity, since the derivative of

Heaviside function is Dirac delta function. Special care

must therefore be taken here. In order to prevent these

numerical difficulties, it is common to introduce regular-

ization of discontinuous Heaviside function introduced by

Belytschko et al. (2003). As shown in Fig. 3, since domains

of the regularized Heaviside function do not identify with

ranges of design variable [0, 1], the continuous function

must be transferred toward x axial coordinate with the

magnitude of 0.5. The moved and regularized Heaviside

function (Lee and Shin 2015) is illustrated in Fig. 3. Here,

v is an interface thickness and generally is 0.5.

Fig. 1 Penalty relationship

between Young’s modulus and

element density with various

penalty parameter k
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Various types of MRHF can be applied to regularize

Heaviside function and they are formulated as follows and

shown in Fig. 4.

MRHF1 Uð Þ ¼ 3

4

U� 0:5

v
� 1

3

U� 0:5

v

� �3
" #

þ 1

2
ð6Þ

MRHF2 Uð Þ ¼ 1

2
þ 2

p
arctan

U� 0:5

v

� �
ð7Þ

MRHF3 Uð Þ ¼ 1

2
1þ U� 0:5

v
þ 1

p
sin

p U� 0:5ð Þ
v

� �� �

ð8Þ

Φ

( )ΦH

1

0 α+α−

(a) 

(b) 

Solid

Void

Solid
Void

1

0

(c) 

Fig. 2 Heaviside function with

0–1 formulation and its

expression in design domain

a Heaviside function b 2-D

design domain with solids and

voids c 3-D design domain with

solids and voids

-1 10 0.5-0.5

0.5

1

0.=χ

5.=χ

Heaviside function       
(HF)

Regularized Heaviside function 
(RHF)

Moved and Regularized Heaviside function 
(MRHF)

Moved Heaviside function 
(MHF)

Moved and Regularized Heaviside function 
(MRHF)

( )ΦH

Φ

Fig. 3 Moved and regularized

heaviside function (MRHF)

Fig. 4 Moved and regularized

Heaviside function of four types

in v = 0.5
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MRHF4 Uð Þ ¼ 1

2
1þ sin

p U� 0:5ð Þ
2v

� �� �
ð9Þ

Equation (4) can be expressed as a new objective

function including MRHF and it is rewritten as

Minimize f ¼ 1

2

Z
Xx

MRHFðUiÞeTCie dXx ð10Þ

2.3 Penalization Effect of Moved
and Regularized Heaviside Function

From Eq. (10), it can be seen that the penalty form of

typical SIMP is multiplied with a moved regularization of

Heaviside function. Applying the same penalty parameter

k = 3.0, gradient of penalty function (PF) with MRHF is

greater than that of original penalty function as shown in

Fig. 5a. It seems that the gradient effect is MRHF3[
MRHF4[MRHF1[MRHF2 from Fig. 4. Gradient of

Heaviside function is defined as Dirac delta function and

Fig. 5b illustrates RDDF and MRDDF, i.e., Dirac delta

functions of RHF and MRHF, respectively.

The key effect of SIMP approach using MRHF is that it

can be produced due to the great gradient of penalization

relation as follows: (1) Obvious material distribution con-

tours without gray scales (2) Free-checkerboard patterns.

Therefore, numerical computation of optimization can be

saved because it is not necessary to use filter method

(Sigmund 2001) to remove checkerboard pattern. The

origin of this pattern is unclear, but it will be shown in

Sect. 5.4 that it is a purely numerical phenomenon and

does not have any physical importance.

3 Topology Optimization Problem:
Displacement Approach as a Minimization
of Total Potential Energy

In this paper, a linear elastostatic problem is considered to

describe the problem of the structural topology optimization.

Let Xx � <n(n = 2 or 3) be a design domain occupied by a

linear isotropic elastic structure. The boundary condition of

Xx is composed of three parts, i.e., C ¼ oXx ¼ Cx [ Ct [ Cu

with the Neumann boundary condition on Ct; the Dirichlet

condition on Cu; and the traction free, boundary segment on

Cx. Respectively, they are written as:

t ¼ t0 on Ct ð11Þ
u ¼ u0 on Cu ð12Þ

where t0 and u0 are given traction forces (or surface loads)

and displacement fields. The field condition of Xx consists

of a balanced, constitutive and kinematic condition, and

they are expressed as:

div rþ b ¼ 0 ð13Þ
r ¼ Ce ð14Þ
e ¼ Lu ð15Þ

where b is a body force and it is assumed that the stress r
depends on only actual deformation. In linear elastic iso-

tropic structures, the material tensor C is symmetric after a

discrete process; therefore, the continuous displacement

field u in Xx is a unique solution. The schematic of

topology optimization of a solid structure with specified

field and boundary conditions is shown in Fig. 6. The

principle of virtual displacements uses ensured satisfaction

of equilibrium conditions within the weak form. The virtual

work principle can be written as follows if virtual

Fig. 5 Penalization relationships of SIMP: a penalization effect of MRHF b penalization effect of Dirac delta function
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quantities du and de are considered as variations (or dif-

ferential) of the real quantities.

dxðdu; u;UÞ ¼ dxiðdu; u;UÞ þ dxaðdu; uÞ ¼ 0; du; u;

U 2 VuðXxÞ � HlðXxÞ
ð16Þ

where dxi and dxa denote a virtual internal work and

virtual external work, respectively. U is a property of

material densities. The virtual internal work dxi is

expressed by virtual strain de, stress r and a free-selec-

tively moved and regularized Heaviside function MRHF

depending on the material density as follows:

dxi ¼
Z
Xx

deTrMRHFðUÞdXx ð17Þ

where it is assumed that the material density is independent

of external forces, i.e., body and traction forces. The

traction forces are conservative (or independent of dis-

placement fields). Therefore, without the expression of a

free-selected Heaviside function, the virtual external work

dxa is given by body force b, traction force t and virtual

displacement field du as follows:

dxa ¼ �
Z
Xx

duTbdXx �
Z
Ct

duT tdCt ð18Þ

Using Eq. (17) and (18), the equilibrium conditions of

Eq. (16) are rewritten as:Z
Xx

deTrMRHFðUÞdXx ¼
Z
Xx

duTbdXx þ
Z
Ct

duT tdCt

ð19Þ

Equation (16) means that for equilibrium to be ensured

the total potential energy must be stationary for variations

of admissible displacements. It can be shown that in

stable elastic situations the total potential energy is not

only stationary but is a minimum. The weak form of the

equilibrium can be differentiated by the principle of min-

imum potential energy.

Minimize
Y

ðu;UÞ ! d
Y

ðu;UÞ ¼ 0; du; u;U 2 VuðXxÞ
� HlðXxÞ

ð20Þ

We note that by the principle of minimum potential

energy, the objective function can be written as:

Y
ðu;UÞ ¼

Yi
ðu;UÞ þ

Ya
ðu;UÞ

¼ 1

2

Z
Xx

deTCeMRHFðUÞdXx �
Z
Xx

duTbdXx

�
Z
Ct

duT tdCt

¼ � 1

2

Z
Xx

deTCeMRHFðUÞdXx ð21Þ

Here, according to discretization, the continuous mate-

rial tensor C becomes dependent on the density–stiffness

relationship of typical SIMP approach. The discontinuous

Heaviside function is regularized as a smoothed and con-

tinuous form. For this purpose, the continuous objective

function of Eq. (21) can be defined as Eq. (10) by discrete

form. The inequality optimization condition is 0�U� 1

and an equality constraint describes the limit on the

required amount of materials in terms of the constant

volume V0 of design domain as follows:Z
Xx

dXx � V0 ¼ 0 ð22Þ

xΩ

utxx ΓΓΓ=Ω∂=Γ UU

Non-material (Void)

Material (Solid)

xΓ

b

ttt Γ= :0

uuu Γ= :0

Fig. 6 The schematic for

topology optimization of

structure with specified field and

boundary conditions
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The general problem of structural topology optimization

is specified as the objective function and constraints. The

objective function is expressed as Eq. (21), and constraint

conditions are the linear elastic equilibrium of Eq. (22)

written in a weak form satisfying field and boundary con-

ditions and volume constraint.

4 Analytical Sensitivity Method
of Variational Approach

In general, the sensitivity of optimization problems such as

objective functions or constraints can be calculated by

analytical or numerical method (Lee et al. 2007). Since

sensitivity errors of numerical sensitivity method may

become great, the method is often used for verification of

solutions. Analytical method is usually proper for the

sensitivity of optimization problem due to small error of

solution. The analytical sensitivity method is distributed as

a discrete and a variational approach. In the discrete

approach, optimization problems are at first discretized and

then derivative is carried out. However, the variational

approach firstly differentiates continuous optimization

problems and secondly the derivative is discretized. Both

approaches of analytical method can be solved by direct or

adjoint method. Direct derivative of displacement field rsu

is executed in the direct method; however, in the adjoint

method using Lagrangian multiplier, the calculation of rsu

it is not needed. The various methods for sensitivity anal-

yses are shown in Fig. 7. The analytical sensitivity method

of variational approach is utilized here, since the varia-

tional method is numerically more efficient than discrete

method in certain optimization problems.

Since continuous displacement fields depend on design

variables s (for instance, material densities), the total dif-

ferential form of the objective function consists of parts of

an explicit partial derivative and an implicit partial

derivative, and it is defined as being introduced by Haug

et al. (1986).

rsf ¼ rex
s f þruf

Trsu ð23Þ

The total partial derivative is written as

rsf ¼
1

2

Z
Xx

eTrsCðUÞeMRHFðUÞdXx þ
1

2

Z
Xx

eTCðUÞeMRDDFðUÞdXx : explicit derivative

þ 1

2

Z
Xx

eTCðUÞrueMRHFðUÞrsudXx : implicit derivative

ð24Þ

where MRDDF is a moved and regularized Dirac delta

function and denotes derivative of MRHF. Through

derivative of Eq. (19) satisfying field and boundary con-

ditions, the terms of derivative of continuous displacement

fields rsu by design variables can be written asZ
Xx

duTLTCðUÞLMRHFðUÞrsudXx

¼
Z
Xx

duTrsbdXxþ
Z
Ct

duTrstdCt

�
Z
Xx

duTrsL
TCðUÞLuMRHFðUÞdXx

�
Z
Xx

duTLTrsCðUÞLuMRHFðUÞdXx

�
Z
Xx

duTLTCðUÞrsLuMRHFðUÞdXx

�
Z
Xx

duTLTCðUÞLuMRDDFðUÞdXx ð25Þ

In order to calculate derivative of continuous displace-

ment fields rsu, an adjoint method is used here. The

adjoint method does not have to directly calculate contin-

uous displacement fields with great numerical consump-

tion. It is defined as

f ¼ f � k
Z
Xx

deTrMRHFðUÞdXx �
Z
Xx

duTbdXx �
Z
Ct

duT tdCt

2
64

3
75

ð26Þ

where the renewed objective function f has an additional 0-

term of static equilibrium, which is multiplied with a

Lagrangian multiplier k. The derivative of the Lagrangian

multiplier k disappears because of the 0-term. Therefore,

the derivative of Eq. (26) is written as:

Lagrangian multipliers k have arbitrary values. A specific

Lagrangianmultiplier value can be determined in Eq. (27) in

order to remove the derivative of continuous displacement

Discrete 
Method

Sensitivity 
Analysis

Analytical 
Method

Numerical 
Method

Variational
Method

Direct 
Method

Adjoint
Method

Forward finite difference Method

Backward finite difference Method

Central finite difference Method

h
s

h uuu ∇→=

h
ss uuu ∇=∇→

SAus ⇒∇

SA⇒λ
us∇

Discrete 
Method

Sensitivity 
Analysis

Analytical 
Method

Numerical 
Method

Variational
Method

Direct 
Method

Adjoint
Method

Forward finite difference Method

Backward finite difference Method

Central finite difference Method

h
s

h uuu ∇→=

h
ss uuu ∇=∇→

SAus ⇒∇

SA⇒λ
us∇

Fig. 7 Method of sensitivity analysis
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fields which is numerically very expensive. Therefore, a

specific equation (a) = 0 in Eq. (27) is made to include the

specific Lagrangian multiplier value. After discretization of

continuous design domain, the specific equation with a sat-

isfied Lagrangian multiplier is expressed as

ûT
Z
Xn

BTCB Jj jMRHFðUÞdXnrsû

� kdûT
Z
Xn

BTCB Jj jMRHFðUÞdXnrsû

¼ 0 ð28Þ

Through Eq. (28), the required Lagrangian multiplier

value is written as follows:

k ¼ ûT dûT
� ��1 ð29Þ

Through Eqs. (28) and (29), a total partial derivative of

the objective function in terms of design variable is finally

expressed in discrete design domain as follows:

Under the assumptions that body force b, traction force

t, differential matrix L and Jacobi matrix J are independent

of design variables, the total partial derivative of the

objective function can be simply rewritten as follows:

rsf ¼ � 1

2
ûT

Z
Xn

BTrsCðUÞB Jj jMRHFðUÞdXnû

� 1

2
ûT

Z
Xn

BTCB Jj jMRDDFðUÞdXnû ð31Þ

5 Numerical Examples and Discussions

5.1 Topology Optimization of 2D Cantilever
Beam Structures

As the first numerical examples, elastostatic cantilever

beams as shown in Fig. 8 are considered to evaluate the

proposed method. Figure 8a, b are structures of length of

4.8 m and height of 4.0 m and are discretized as design

domain of 48 9 40 finite elements with 4-node. Suppose

the design domain is made of regular square grid.

rsf ¼ rex
s f þruf

Trsu� k
Z
Xx

duTLTCðUÞLMRHFðUÞrsudXx

ðaÞ¼0

� k
Z
Xx

duTrsL
TCðUÞLuMRHFðUÞdXx � k

Z
Xx

duTLTrsCðUÞLuMRHFðUÞdXx

� k
Z
Xx

duTLTCðUÞrsLuMRHFðUÞdXx � k
Z
Xx

duTLTCðUÞLuMRDDFðUÞdXx

þ k
Z
Xx

duTrsbdXxþk
Z
Ct

duTrstdCt

ð27Þ

rsf ¼
1

2
ûT

Z
Xn

BTrsCðUÞB Jj jMRHFðUÞdXnûþ
1

2
ûT

Z
Xn

BTCðUÞB Jj jMRDDFðUÞdXnû

� ûT
Z
Xn

rsB
TCðUÞB Jj jMRHFðUÞdXnûþ

Z
Xn

BTrsCðUÞB Jj jMRHFðUÞdXnûþ
Z
Xn

BTCðUÞrsB Jj jMRHFðUÞdXnû

2
64

þ
Z
Xn

BTCðUÞB Jj jdðUÞdXnû�
Z
Xn

NTrsb Jj jdXn �
Z
Xg

NTrst
ffiffiffiffiffiffiffiffi
Gej j

p
dXg

3
75

ð30Þ
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A concentrated load P ¼ �360N at the right side of

structure is applied. The material parameters are Young’s

module E ¼ 2:1� 106 kg=cm2 and Poisson’s ratio m ¼ 0:3.

Plane stress is assumed in 2D. The penalty parameter k ¼
3:0 and updated material density 0�Ui � 1 are chosen for

SIMP method. The initial values of density variables are

set to be U0 ¼ 0:3 onto all finite elements. For filter

method, the filter exponent b ¼ 3:0 and the radius r ¼ 1:5.

The filter method was utilized for all numerical examples.

P

(a) P(b)

Fig. 8 Problem statements of 2D cantilever beams
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Fig. 9 History of optimization convergence a iteration (large scale) b iteration (small scale)

Fig. 10 Material density distribution in optimization iterations

Fig. 11 3D density function in optimization iterations
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Here, objective function is defined as a minimal strain

energy (N�m) or a maximal stiffness and 30% constraint

volume of total volumes is used as optimization constraint.

In this example, MRHF of Eq. (6) is implemented for the

penalization of SIMP approach.

Figure 9 shows histories of convergence in both cases of

original SIMP and extended SIMP with MRHF in Fig. 8a.

The histories start with great differences at initial

optimization stage, and then, these take similar conver-

gences at final stage. The iteration results of Fig. 9 are

visually described as changing material density distribu-

tions as shown in Fig. 10. Figure 11 shows visual changes

of 3D density functions of optimization iterations. It can be

found that although both methods take similar convergence

behaviors, different optimal topologies are obtained.
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Fig. 12 History of optimization convergence a iteration (large scale) b iteration (small scale)

Fig. 13 Material density distribution in optimization iterations

Fig. 14 3D density function in optimization iterations
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The histories of convergence of SIMP and SIMP using

MRHF about the cantilever beam of Fig. 8b is shown in

Fig. 12.

The material density distribution and 3D density func-

tion of their visual iterations are, respectively, illustrated in

Figs. 13 and 14. It can be seen from the results that the

convergences of objective function and optimal solutions

of shapes and topologies are different in SIMP and SIMP

using MRHF and these situations are similar to those of

Fig. 8a.

5.2 Topology Optimization of 2D Michell Beam
Structure

The second example is a 2D Michell beam structure as

shown in Fig. 15. All applied design conditions are iden-

tified with those of example 5.1. The roller and hinge are

supported at the bottom corner of right and left sides,

respectively. At the bottom center, a concentrated load is

applied. Here, 60 9 30 square finite elements with 4-node

are used for discretization of design domain 6 m 9 3 m.

Figure 16 is shown in convergent histories of objective

function in cases of original SIMP and SIMP using MRHF,

and their iteration results are illustrated in Figs. 17 and 18.

The convergent value of SIMP using MRHF is a little

worse than that of original SIMP and convergent values

almost identify each other. Nevertheless, both methods are

considerably different with respect to optimal topologies.

5.3 Topology Optimization of 2D Double-
Clamped Beam Structure

The third example is a double-clamped beam with a ver-

tically concentrated load at the center of structure as shown

P

Fig. 15 Problem statements of 2D Michell beam structure
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Fig. 16 History of optimization convergence a iteration a (large scale) b iteration (small scale)

Fig. 17 Material density distribution in optimization iterations
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in Fig. 19. All design conditions for topology optimization

and discretization of 60 9 30 are equal to example 5.2.

The convergent histories of objective function in origi-

nal SIMP and SIMP using MRHF are described in Fig. 20.

During iterations, weak oscillations of convergent curves

occur at convergent curves in both methods.

Their visual results are shown in Figs. 21 and 22. It can

be found that optimal topologies of both methods almost

match and the result is different compared with those of

example 5.1 and 5.2.

5.4 Penalization Effects of MRHF: Clear Contours
of Density Distribution and Free-
Checkerboards

The checkerboard-like pattern of original SIMP approach

observed previously in the Sect. 3 can be removed or

reduced by various methods, for example the work by

Bendsøe and Soares (1993), Kumar and Gossard (1996),

Byun et al. (2004) in structural engineering. However, in

this study, we consider a penalization by MRHF in addition

to the original penalty function in typical SIMP. Therefore,

in order to remove the checkerboard pattern, a penalization

process is followed with MRHF term which is multiplied

with penalty function of typical SIMP.

When all examples are considered, Fig. 23 shows opti-

mal material density distributions of original SIMP and

SIMP with MRHF without the use of filter method, which

has been implemented for the removal of checkerboard

phenomena. It can be seen from Fig. 23 that the penal-

ization of SIMP using MRHF reduces checkerboards. It

seems that the effect is similar to the results of filter

method in Sects. 5.1–5.3. Note that clear boundaries of 0–1

without gray scales in material density distributions can be

obtained through this penalization of SIMP using MRHF,

Fig. 18 3D density function in optimization iterations
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Fig. 19 Problem statements of 2D double-clamped beam structure
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while optimal solutions by the penalization of SIMP with

filter method are smoothed but unclear as shown in

Figs. 10, 13, 17 and 21.

Table 1 illustrates 2–3 times savings of computational

time in case of SIMP using MRHF without the filter

method, compared with the use of filter method of typical

SIMP. Table 2 shows optimal results of original SIMP and

SIMP using MRHF and filter method. It can be even seen

that computational time of the proposed SIMP using

MRHF is similar to that of original SIMP.

The proposed approach has one similarity compared

with a method presented in Belytschko et al. (2003). It uses

implicit functions as design variables to describe topology

of structures. The similarity is that both methods regularize

Heaviside function to archive 0–1 solutions with numerical

stability. However, the method employed by Belytschko

et al. uses implicit function to describe topology of struc-

tures and is implemented by nodal values of design vari-

able to project those values onto the element domain. It

requires many numbers of design variables and its con-

vergence rate may be very slow. Here, the proposed

method seeks improved solutions in the range of the con-

ventional SIMP formulation as an element density-based

design.

6 Conclusions

In this paper, an improved SIMP approach based on the

regularization was proposed for material topology opti-

mization of linear elastostatic structures. The key point of

this study is to utilize a moved and regularized Heaviside

function into the penalty formulation of SIMP approach.

The proposed penalization saves computational times for

free-checkerboard patterns, since no filter method is needed

in optimization procedures. Moreover, clear boundaries

between material and no material phases are yielded as

optimal solutions in design domain. Various regularization

processes of Heaviside function which have been intro-

duced in other research literature can be implemented in

MRHF as mentioned in Eqs. (6)–(9) and are also suit-

able for the present approach.

Their application to numerical examples successfully

reduced checkerboard patterns without the use of filter

method, and, in addition, even produced obvious bound-

aries of optimal solution under appropriate convergences of

optimization. Although this method of representing the

new penalization relations of Young’s modulus and density

was stimulated by the devised MRHF and original SIMP

approach for topology optimization design, it is expected

Fig. 21 Material density distribution in optimization iterations

Fig. 22 3D density function in optimization iterations
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Fig. 23 Comparisons of optimal solutions: a, c, e, g original SIMP without filter method b, d, f, h SIMP with MRHF and without filter method

Table 1 Optimal results by original SIMP with filter method (FM) and SIMP using MRHF without filter method (FM)

Type of problem Cantilever of Fig. 8a Cantilever of Fig. 8b Michell beam Double-clamped beam

Number of FE 1920 1920 1800 1800

Design method Original

SIMP ? FM

SIMP ?

MRHF

Original

SIMP ? FM

SIMP ?

RHF

Original

SIMP ? FM

SIMP ?

MRHF

Original

SIMP ? FM

SIMP ?

MRHF

Objective function

(N�m)

2.3644 3.1149 2.7252 3.2446 1.6142 1.6743 0.6120 0.5475

Computational time

(s)

801.1090 342.9540 866.2180 334.5000 776.7660 279.4060 480.7660 265.9530

Table 2 Optimal results by original SIMP and SIMP using MRHF and filter method (FM)

Type of problem Cantilever of Fig. 8a Cantilever of Fig. 8b Michell beam Double-clamped beam

Number of FE 1920 1920 1800 1800

Design method Original

SIMP

SIMP ?

MRHF ? FM

Original

SIMP

SIMP ?

MRHF ? FM

Original

SIMP

SIMP ?

MRHF ? FM

Original

SIMP

SIMP ?

MRHF ? FM

Objective

function (N�m)

2.4262 2.4021 2.7487 2.9602 1.4873 1.6785 0.5752 0.6372

Computational

time (s)

348.9690 672.1570 328.4220 850.5780 329.4060 804.7500 270.9220 913.9850

116 Iran J Sci Technol Trans Mech Eng (2020) 44:103–117

123



that there will be other applications for this effect in var-

ious analyses and design problems.
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