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Abstract
The formation of slug in the horizontal pipes due to the hydrodynamic instabilities has always been of great interest to

many researchers. In this research, the effect of various numerical methods on the simulation of slug flow initiation using

pressure-free two-fluid model has been investigated. The two-fluid model has been solved by conservative shock-capturing

method. When the slug is formed, a strong discontinuity will be developed in the flow stream. Therefore, a numerical

method should have the capability to predict this discontinuity with high accuracy and should not have oscillation near the

discontinuity. There are three different models to simulate two-phase flow systems: homogeneous equilibrium model, drift-

flux model, and two-fluid model. This research used two-fluid model for predicting the slug flow initiation through a pipe.

Four different numerical two-fluid methods, namely Lax-Friedrichs, Rusanov, Richtmyer and flux-corrected transport

(FCT) have been used in this research. Results show that FCT is the most accurate method for the prediction of the slug

flow initiation among other methods where Rusanov and Lax-Friedrichs numerical methods were in the next steps,

respectively. Due to the oscillatory nature near the discontinuity caused by formation of slug regime, the Richtmyer

numerical method is not an appropriate method for modeling slug flow regime. Results also show that as the numerical

diffusion of these methods reduces in the flow field, the slug flow initiation will be predicted with higher accuracy.

Keywords Slug flow � Two-fluid model � Two-phase transient flow � Numerical simulation

1 Introduction

Accurate prediction of fluid dynamics associated with two-

phase flow has always been of utmost importance, for

example, in the oil industry, through the transportation of

crude oil from offshore rigs to the beach equipment such as

cleaners and separators, where there might be a possible

mixture of crude oil, gas, water and dispersed sand parti-

cles. Besides, there is also a two-phase flow of steam and

water flowing inside the pipes in the steam power plants

and cooling nuclear power plants. In general, there are

three different models to simulate two-phase flow systems:

homogeneous equilibrium model (Omgba-Essama 2004),

drift-flux model (Ishii 1975) and two-fluid model (Ishii

1975; Ishii and Mishima 1984). This research focuses on

the two-fluid model. In the two-fluid model formulation,

the conservation equations (mass, momentum and energy)

have been considered for each phase separately. More

precise details of each phase are provided by this model,

and this model is the best model among the two-phase flow

models (Issa and Kempf 2003). Averaged form of the two-

fluid model is based on surface averaging of the three-

dimensional equations so that all the flow quantities on the

pipe surface are integrated and subsequently are replaced

using appropriate average (Wallis 1969). Interactions

between the liquid and gas phases are presented by closure

relations that have a significant effect on the flow field. For

slug flow modeling, a model that can have the ability to

predict the transition from the stratified regime to wave and

then to slug is the slug capturing model (Issa and Kempf

2003).

The method described in the current paper is a slug

capturing technique in which the slug flow regime is
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predicted as a mechanistic and automatic outcome of the

growth of hydrodynamic instabilities (Woodburn and Issa

1998).

Issa and Kempf (2003) simulated the slug flow in hor-

izontal and inclined pipes using slug capturing model.

However, the two-fluid model was in ill-posed condition

and their outputs were limited to the flow conditions under

which the roots of the characteristic equation were real.

While the two-fluid model is mathematically well posed,

the growing instability of the stratified flow leading to slug

flow is obtained.

Bonizzi and Issa (2003a) modeled the gas bubbles

entrainment into the slug body and improved the closure

relations for modeling of the bubble entrainment into the

liquid slug body and interfacial shear stresses. Later on

(2003), they studied the three-phase slug modeling

(Bonizzi and Issa 2003b).

Omgba-Essama (2004) solved two-fluid four equations

using central numerical methods. They evaluated the slug

growth and development by employing these methods and

used an adaptive network to improve the efficiency of the

methods.

Carneiro et al. (2005) and Hanyang and Ligjin (2005)

investigated the interfacial instabilities and slug initiation

regime in the gas–liquid flow in horizontal pipes using

transient two-fluid model.

Ujang et al (2006) experimentally studied the effects of

pressure and superficial velocity of gas and liquid on the

slug flow initiation as well as on the hydrodynamic slugs

formed in the downstream of the pipe. They concluded that

the maximum number of slugs occurs in the first 3 m of the

pipe. Also, the frequency of slug formation is a weak

function of pressure. Although the higher pressure delays

the slug flow initiation.

Issa et al. (2006) presented a more detailed closure

model for the simulation of bubble entrainment into the

liquid slug body and interfacial shear stresses. Closure

models are important because specific equations have not

been provided for them yet (Issa et al. 2006).

Wang et al. (2007) reported that due to the limitations of

the operational space, the experimental slug flow studies

are performed in short pipes and in the low rate flows of

gas and liquid. They investigated the slug flow initiation in

the two-phase gas–liquid flow in a horizontal pipe with the

diameter of 0.095 m. They concluded that the formation of

slug depends on the superficial velocity of gas as well as

the local height of liquid in the channel.

Ansari and Shokri (2011) presented a technique for the

prediction of the initiation and growth of liquid clots in the

horizontal container. They solved the governing equations

of the transient compressible two-fluid model, using groups

of high-resolution shock-capturing methods. They consid-

ered the direct calculation of clot formation and growth in

the stratified flow by solving flow field equations. In

addition, since high-order methods do not have dispersion

properties, precise modeling of the existing discontinuity in

the flow field due to the presence of clots has been done

with high accuracy (Ansari and Shokri 2011).

Issa et al. (2011) carried out the accurate simulation of

the continuous slug flow using two-fluid model in oil and

gas pipelines. They assumed a hydrostatic pressure for gas

and liquid phases in their model (Issa et al. 2011).

Cazarez-Candia et al. (2011) simulated the isotherm

slug flow without phase change via two-fluid model using

single-cell model with finite-difference numerical method.

Simoes et al. (2014) simulated the prediction of slug

frequency without mass transfer in a horizontal pipe using

two-fluid model via a finite-volume numerical method.

Zeng et al. (2015), using two-fluid model, performed

comparison of implicit and explicit AUSM-family numer-

ical schemes for compressible multi-phase flows.

Bonzanini et al. (2017) proposed a numerical resolution

of a one-dimensional (1D), transient, simplified two-fluid

model regularized with an artificial diffusion term for

modeling stratified, wavy and slug flow in horizontal and

nearly horizontal pipes. They concluded that the artificial

diffusion can prevent the unbounded growth of instabilities

where the one-dimensional two-fluid model is ill-posed

(Bonzanini et al. 2017).

Shokri and Esmaeili (2017) presented a numerical study

using the two-fluid model in order to compare the effect of

hydrodynamic and hydrostatic models for pressure cor-

rection term in the two-fluid model in gas–liquid two-phase

flow modeling to provide a more accurate model. They

concluded that the hydrodynamic pressure correction term

in two-fluid equations system is hyperbolic in a broader

range than hydrostatic pressure correction term.

This study is about the modeling of the two-phase slug

flow initiation and based on the numerical solution of the

transient two-fluid model equations. The advantage of this

method is that the flow field is allowed to develop naturally

from initial conditions and the slug evolves automatically

as a product of the computed flow. The need for the many

empirical models for flow regime transition can thus be

minimized. As a consequence of the literature survey, the

capability of the numerical methods for the prediction of

the slug flow initiation has not been investigated so far. In

the present research, using the Riemann solver, it is aimed

to show the capability of the numerical methods to predict

the isothermal slug flow initiation and its growth via the

two-fluid model.
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2 The Two-Fluid Model

2.1 Governing Equations

The two-fluid model consists of two conservation equations

of mass, momentum and energy for each phase. One-di-

mensional form of this model is obtained from the surface

integration of flow properties on a cross section of the

stream (Ishii 1975). The momentum transfer between each

phase and wall and also the dynamic interaction between

phases at the interface appear as source terms in the model,

for which the empirical formula should be applied for

calculation (Ishii and Mishima 1984). In the present study,

the flow has been assumed as isotherm. One-dimensional

equations for two-fluid model are obtained as follows.

Gas mass conservation equation:

o

ot
qGAGð Þ þ o

ox
qGAGVGð Þ ¼ 0 ð1Þ

Liquid mass conservation equation:

o

ot
qLALð Þ þ o

ox
qLALVLð Þ ¼ 0 ð2Þ

Gas momentum conservation equation:

o

ot
qGAGVGð Þ þ o

ox
qGAGV

2
G

� �
¼ � AG

oPI

ox

� AGqGg cos b
ohL

ox
� AGqGg sin b� sGSG
� sISI

ð3Þ

Liquid momentum conservation equation:

o

ot
qLALVLð Þ þ o

ox
qLALV

2
L

� �
¼ � AL

oPI

ox

� ALqLg cos b
ohL

ox
� ALqLg sin b� sLSL
þ sISI ð4Þ

In the above equations for kth phase (k = G is the gas phase

and k = L is the liquid phase), qk is the density of kth phase,
Vk is the velocity of kth phase, Ak is the flow cross section

of kth phase, PI is the interface pressure. g is the acceler-

ation of gravity, b is pipe inclination angle, hL height of the

liquid level from the bottom of the pipe and sG, sL and sI
represent gas wall shear stress, liquid wall shear stress and

interface shear stress, respectively. SG, SL and SI also

represent the wet gas environment, liquid and interface,

respectively.

The two-fluid model that includes Eqs. (1)–(4) is called

single-pressure four-equation model. In many numerical

methods which are used to solve hyperbolic equations, the

given equations should be written in conservative form.

Watson (1990) has done this as follows.

Total mass conservation equation is obtained from the

summation of Eqs. (1) and (2).

Mass conservation equation:

o

ot
qLAL þ qGAGð Þ þ o

ox
qLALVL þ qGAGVGð Þ ¼ 0 ð5Þ

The momentum conservation equation is obtained from the

combination of Eqs. (3) and (4) and eliminating interface

pressure, PI, from two equations. The interface pressure PI

is never employed while utilizing this model. During the

liquid height changes, PI is derived from the overall

momentum equation robustly.

Momentum conservation equation:

o

ot
qLVL þ qGVGð Þ

þ o

ox

1

2
qLV

2
L �

1

2
qGV

2
G þ qL � qGð Þg cos bhL

� �
¼ H

ð6-aÞ

H ¼ � qL � qGð Þg sinbþ 1

AL

þ 1

AG

� �
sISI þ

sGSG
AG

� sLSL
AL

ð6-bÞ

Variables in this system of equations are AG, AL, VG and VL

terms, where only two equations are available for this

system. Therefore, two other equations are needed. The

first equation is the geometric restriction for two phases

that can be expressed as follows:

AL þ AG ¼ A; ð7Þ

where A is the total pipe cross-sectional area. The second

equation can be obtained from mass Eqs. (1) and (2). If the

two phases are incompressible, we can write:

o

ox
ALVL þ AGVGð Þ ¼ 0 ð8-aÞ

The terms ALVL þ AGVG are independent of the pipe axis.

It can be written as a function of time as C(t), which is a

known function but is dependent on the flow at the inlet

boundary condition:

ALVL þ AGVG ¼ C tð Þ ¼ ALVL þ AGVGð Þinlet ð8-bÞ

Inlet means the condition at the entrance of the pipe. The

resulting two-fluid model that includes Eqs. (5), (6-a), (7)

and (8-b) is called free pressure model. The form of free

pressure model is conservative. Thus, using suitable nu-

merical methods for hyperbolic differential equations is

easier.Rk is the volume fraction of phase kth which can be

calculated as follows:

RK ¼ AK

A
ð9Þ
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According to Eq. (9) for calculating the volume fraction,

the geometrical constraint relation in Eq. (7) can be

rewritten as the following form:

RL þ RG ¼ 1 ð10Þ

2.2 Closure Equations

Closure equations that are required to the two-fluid model

are comprised of wall-gas phase shear stress, wall-liquid

phase shear stress and shear stress at the interface of two

phases. The distribution of the shear stress on the pipe wall

is very important in determining the turbulence structure

inside the pipe as well as the flow resistance (Hua et al.

2012). The following equations are used to calculate wall-

gas phase stress, wall-liquid phase stress and interfacial

shear stress, respectively (Montini 2011):

sG ¼ 1

2
fGqGVG VGj j ð11Þ

sL ¼ 1

2
fLqLVL VLj j ð12Þ

sI ¼
1

2
fIqG VG � VLð Þ VG � VLj j ð13Þ

In order to obtain the shear stresses, fanning friction factors

(fG, fL and fI) should be calculated. fG, fL and fI represent

gas friction factors, liquid friction factors and interface

friction factors, respectively. To calculate the friction fac-

tors of gas and liquid phases, the existing equations for

single-phase flows are usually used, in which a suit-

able hydraulic diameter is applied for each fluid instead of

inner diameter.

DhG ¼ 4AG

SG þ SL
ð14Þ

DhL ¼ 4AL

SL
ð15Þ

ReG ¼ qGDhG VGj j
lG

ð16Þ

ReL ¼ qLDhL VLj j
lL

ð17Þ

In the above equations, Dhk and Rek represent the hydraulic

diameter and Reynolds number of kth phase, respectively.

lk is dynamic viscosity of kth phase. The properties of the

fluids are shown below:

• Liquid phase dynamic viscosity: 1:003� 10�3 kg/m � s
• Gas phase dynamic viscosity: 1:7894� 10�5 kg/m � s

Required equations to calculate the wet environment of

phases (Conte et al. 2014) in Fig. 1 are:

SL ¼ D
;
2

� �
ð18Þ

SG ¼ D p� ;
2

� �
ð19Þ

SI ¼ D � sin ;
2

� �
ð20Þ

dAL

dhL
¼ D sin

;
2

� �
ð21Þ

AL ¼ D2

8
ð; � sin ;Þ ð22Þ

hL ¼ D

2
1� cos

;
2

� �
ð23Þ

; ¼ pRL þ
3p
2

� �1
3

1� 2RL þ R
1
3

L � R
1
3

G

� �
ð24Þ

where ; is the stratification angle (Fig. 1).

The pipe surface is considered rough and average surface

roughness is assumed equal to e ¼ 4:61� 10�5 (Ansari and

Shokri 2011). Friction factor of gas-phase wall is calculated

using the following equation (Omgba-Essama 2004):

fG ¼ max
16

ReG
; 0:001375 1þ 2� 104

e
DhG

� �
þ 106

ReG

� 	1
3

" #" #

ð25Þ

Friction factor of liquid-phase wall is obtained as follows,

using the max method (Omgba-Essama 2004):

fL ¼ max
24

ReL
;
0:263

RL

ffiffiffiffiffiffiffiffiffiffiffi
DhL

ReLD

r� 	
if jG[ 5 m=s

fL ¼ max
16

ReL
; 0:001375 1þ 2� 104

e
DhL

� �
þ 106

ReL

� 	1
3

" #" #

otherwise

8
>>><

>>>:

ð26Þ

Finally, the friction factor at the interface of two phases is

expressed as follows, using the max method (Omgba-Es-

sama 2004):

Fig. 1 Pipe cross-sectional area
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fI ¼ fG for jG\5 m=s

fI ¼ fG 1þmax 0; 15
jG

5
� 1

� � ffiffiffiffiffi
hL

D

r" #( )

for jG � 5 m=s

8
><

>:

ð27Þ

In Eq. (27), D represents the pipe diameter and jG is

superficial velocity of the gas phase.

2.3 Analysis of Hyperbolic Free-Pressure Two-
Fluid Model

Two-phase flow models are very susceptible depending on

whether the characteristic values of differential equations

are real or complex. If the values are characterized as

complex, the model will be an ill-posed condition. The

result of such equations is an unlimited instability and will

not converge to a unit value. If the characteristic values of

differential equations are real, the model is in the well-

posed condition and the problem of unlimited instability

will be resolved (Ransom and Hicks 1984). The charac-

teristic value of a set of differential equations can be

obtained from the hyperbolic analysis.

Hyperbolic analysis of governing equations for the two-

fluid model has been proposed by Omgba-Essama (2004)

for obtaining the roots of the pressure-free two-fluid model.

The two real roots of characteristic equation are as follows:

k1;2 ¼
k1 ¼

ðVL þ vVGÞ �
ffiffiffiffiffiffi
DS

p

1þ v

k2 ¼
ðVL þ vVGÞ þ

ffiffiffiffiffiffi
DS

p

1þ v

8
>>><

>>>:

ð28Þ

In the above equation:

DS ¼ �vðVG � VLÞ2 þ ð1þ vÞDqg cos bAL

qLA
0
L

ð29Þ

v ¼ qGRL

qLRG

ð30Þ

where

A
0

L ¼ dAL

dhL
ð31Þ

It is clear that the eigenvalues are only real when DS � 0. In

fact, the range in which the roots of the characteristic

equation are real is the well-posedness range of the model

(Omgba-Essama 2004). For pressure-free models, this

range can be obtained from the following equation:

VG � VLð Þ2 � Dq qLRG þ qGRLð Þ
qGRLqL

g cos b
AL

A
0
L

ð32Þ

Equation (32) is known as the principle of inviscid Kelvin–

Helmholtz (IKH). If the velocity difference between the

two phases exceeds this value, the pressure-free model

becomes ill-posed (Ansari and Shokri 2011). This is a

major limitation of pressure-free model.

3 Numerical Solution of Equations

3.1 Numerical Methods

Equations (5) and (6-a) can be written in compact con-

servative which makes them suitable for numerical solution

as:

oQ

ot
þ oF

ox
¼ H ð33Þ

The above equation is an overview of a conservative

hyperbolic system of partial differential equations, where Q

is the representative vector of conservative variables (e.g.,

mass or momentum). Vectors F and H are the algebraic

functions of conservative variables and are known as flux

and source terms, respectively.

In the present research, the solution method is a clear

finite-difference method where its discretized form is as

follows:

Qnþ1
i ¼ Qn

i þ
Dt
Dx

F̂i�1=2 � F̂iþ1=2

� �
þ DtHi ð34Þ

In Eq. (34), Dt represents time step, Dx represents spatial

step size, superscript n and n ? 1 represent the current and

the previous time step, respectively. Q is the representative

of solver vector; F̂ and H indicate numerical flux and the

source term.

Selection of the appropriate numerical solution method

for the chosen mathematical model is very important. Four

following numerical methods will be studied in this

research.

3.1.1 Lax–Friedrichs Numerical Method

This method is an explicit first-order approach in terms of

space and time (Hirsch 1990). Flux term is calculated as

follows:

F̂LF
iþ1=2 ¼

1

2
Fn
iþ1 þ Fn

i

� �
� Dx
2Dt

Qn
iþ1 � Qn

i

� �
; ð35Þ

where the numerical flux value at mesh point i is defined by

Fn
i ¼ F Qn

i

� �
with the function F representing the physical

expression of the flux terms described by the mathematical

model under investigation.

3.1.2 Rusanov Numerical Method

This method is an explicit first-order approach which uses

the maximum value of characteristic model by hyperbolic
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analysis (Omgba-Essama 2004). Flux term here is calcu-

lated as follows:

F̂Rus
iþ1=2 ¼

1

2
F Qn

i

� �
þ F Qn

iþ1

� �
� kiþ1=2 Qn

iþ1 � Qn
i

� �� �

ð36Þ

kiþ1=2 ¼ max max kki
�� ��; max kkiþ1

�� ��� �
k ¼ 1;Neq ð37Þ

where Neq is the number of equations of system and kiþ1=2

is the average wave velocity.

3.1.3 Richtmyer Numerical Method

The method is an explicit numerical model. From the time

and space viewpoint, it is a second-order method consisting

of two steps (Hirsch 1990). Flux expression can be calcu-

lated as the following form:

Qn
iþ1=2 ¼

1

2
Qn

i þ Qn
iþ1

� �
ð38Þ

Q
nþ1=2
iþ1=2 ¼ Qn

iþ1=2 �
Dt
2Dx

Fn
i � Fn

iþ1

� �
þ Dt

2
H Qn

iþ1=2

� �

ð39Þ

F̂RI
iþ1=2 ¼ F Q

nþ1=2
iþ1=2

� �
ð40Þ

3.1.4 FCT Numerical Method

FCT is the first high-precision method by Boric and Book

(1973). This method is a predictor/corrector approach in

which a part of diffusion enters the system in the prediction

stage where the other parts leave the system in anti-diffu-

sion stage in order to eliminate the extreme points in the

flow field. FCT is composed of five stages and explained in

the following form (Boris and Book 1973). Qn is the

solution at the previous time step, and ~Q is the new answer

which has been obtained via Richtmyer second-order

scheme.

1–Generation of diffusive fluxes

Fd
iþ1=2 ¼ tiþ1=2 Qn

iþ1 � Qn
i

� �
ð41Þ

2–Diffusion of the solution

Qd
i ¼ ~Qi þ Fd

iþ1=2 � Fd
i�1=2

� �
ð42Þ

3–Generation of anti-diffusive fluxes

Fad
iþ1=2 ¼ ciþ1=2

~Qiþ1 � ~Qi

� �
ð43Þ

4–Limitation of the anti-diffusive fluxes

Fcad
iþ1=2 ¼ s �max 0; max s � ~Qiþ1 � Qd

i

� �
; Fad

iþ1
2

���
���;

��

s � ~Qiþ2 � Qd
iþ1

� ���

ð44Þ

s ¼ sign Fad
iþ1=2

� �
ð45Þ

5–Generation of inter-cell flux

F̂FCT
iþ1=2 ¼ Fcad

iþ1=2 � Fd
iþ1=2 ð46Þ

For the present numerical scheme, the diffusion and

anti-diffusion coefficients, i.e., t and c are obtained as

follows (Hoffmann and Chiang 2000):

t ¼ 1

6
1þ 2ðCFLÞ2

� �
ð47Þ

c ¼ 1

2
1þ ðCFLÞ2

� �
ð48Þ

CFL is the Courant Friedrichs Levy Number.

3.2 Determination of Time Step

In the present research, for the numerical solution of the

governing equations, spatial step size, i.e., Dx, will be

determined first. Since the employed numerical methods

are categorized as explicit approaches, they have stability

condition. The stability of this approach is Courant Frie-

drichs Levy Number (CFL) B 1. Given Dx and CFL val-

ues, time step is calculated as follows:

Dt ¼ CFL
Dx
knmax

ð49Þ

knmax is the maximum value of wave velocity in the flow

field at the previous time step. knmax is selected at each time

step, and concerning the variability of knmax, the solution

method has a variable time step.

knmax ¼ max
j

max
k

kkj

���
���

� 
for j ¼ 1; . . .;M k ¼ 1;Neq;

ð50Þ

where Neq is the number of equations of the system and

also kkj is wave velocity in each computational cell.

3.3 Boundary Conditions

For a computing domain (0, L) discretized into M computing

cells of length Dx, we require special conditions at the

boundary positions x = 0 and x = L as illustrated in Fig. 2.

These boundary conditions are expected to provide for test
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case the numerical fluxes F̂1=2 and F̂Mþ1=2, which are

required by finite-difference discretization such as Eq. (34) in

order to advance the extreme cells 1 and M to the next time

level. For this, in the input and output, virtual grid will be

considered and zeroth-order extrapolation for the virtual

points will be used for the flux in entry and outlet.

4 Slug Flow Modeling

4.1 Simulation of Slug Flow Initiation

Gas and liquid phases are considered air with a density of

1.14 kg/m3 and water with a density of 1000 kg/m3,

respectively. A horizontal pipe with the length of 5 m and

the diameter of 0.078 m is selected, in which two phases

flow in stratified and stable types initially. The inlet

superficial gas velocity is equal to 6.532 m/s, and inlet

superficial liquid velocity is equal to 0.532 m/s. When the

slug is formed, the volume fraction of the liquid phase has

reached one where the volume fraction of gas phase has

tended to zero. Since the volume fraction of the gas phase

is multiplied on both sides of the gas momentum equation,

this equation becomes singular. In order to avoid wrong

value velocities for the gas phase resulting from solving

singular gas momentum equation in an area which only

includes liquid phase, the gas phase equation is eliminated

in this area and gas velocity is considered zero. In other

areas, the two-fluid model equation is solved completely.

After the unknown variables are obtained, they should

satisfy Eq. (32) in order to ensure the reality of the roots of

the trail equation. Otherwise, the roots of the trail equation

are imaginary and the calculation will be stopped.

As seen from Fig. 3, the initial condition considered in

slug flow regime is movable. In other words, the initial

conditions are located on the unstable inviscid Kelvin–

Helmholtz line and are in transition from stratified pattern

to slug pattern.

The inviscid Kelvin–Helmholtz instability line is known

as the well-posed region of two-fluid model (Louaked et al.

2003).

4.2 Boundary Conditions and Initial Conditions

The value of volume fraction of the liquid phase at the

initial moment is 0.526. The values of initial velocity of

each phase through the pipe are obtained using volume

fraction and superficial velocity of each phase at inlet pipe.

The boundary conditions are considered equal to the initial

conditions at entrance. Also, for outlet pipe boundary

conditions, a fully developed condition is considered.

5 Result and Discussion

Figures 4, 5, 6 and 7 show the initiation point of the slug

flow map for different computational cells, using four

different numerical methods, Lax-Friedrichs, Rusanov,

Fig. 2 Computing field and virtual cells

Fig. 3 Inviscid Kelvin–

Helmholtz (IKH) transition

lines from stratified flow
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Richtmyer, and FCT, respectively. Computational time and

Courant–Friedrichs–Lewy number (CFL) are considered

3 s and 0.3, respectively.

Figures 4, 5 and 7 show the slug flow initiation point for

different computational cells 100, 700, 1400, 2800 and

5600 using Lax-Friedrichs method, Rusanov method and

FCT method. Results indicated that with 2800 computa-

tional cells, solutions are independent of the computational

cell for those three methods. Thus, this computational cell

is used for the analysis of the following results. Figure 6

shows the slug flow initiation point for 100, 700, 1400 and

2800 computational cells based on the Richtmyer numeri-

cal method. Results show that the Richtmyer numerical

method has an oscillatory nature where, reducing the size

of the computational cell the oscillations become greater.

As a result, the Richtmyer numerical method is not suit-

able for modeling the slug flow regime. Richtmyer

numerical method is a second-order method which has

third-order error. This type of error leads to numerical

dispersion for solutions near the discontinuity due to the

formation of slug flow regime.

Figure 8 shows the accuracy of different methods for

predicting the slug flow initiation point. The calculations

are based on 2800 computational cells. Time of calculation

and Courant–Friedrichs–Lewy number are 3 s and 0.3,

respectively. The results are compared with those achieved

by Ansari (1998) experimentally to validate the computer

program in Fig. 9.

In Fig. 9 it is indicated that no considerable difference

exists between the points of slug flow initiation for 2800

and 5600 computational cells for Lax-Friedrichs, Rusanov

and FCT numerical methods. Therefore, in the 2800 cells,

we have gird independence results.

In Figs. 4 and 5, the slug flow regime initiation for the

various computational cells is indicated for Lax-Friedrichs

Fig. 4 Initiation point of the slug flow map for different computa-

tional cells using Lax–Friedrichs numerical method

Fig. 5 Initiation point of the slug flow map for different computa-

tional cells using Rusanov numerical method

Fig. 6 Initiation point of the slug flow map for different computa-

tional cells using Richtmyer numerical method

Fig. 7 Initiation point of the slug flow map for different computa-

tional cells using FCT numerical method
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numerical method and Rusanov numerical method. The

results also show that for 100 computational cells for Lax-

Friedrichs numerical method and Rusanov numerical

method, the slug flow regime is not formed. Therefore, for

the validation of numerical results, the 100 computational

cells are not used for these two methods.

Figure 9 shows that the Lax-Friedrichs numerical

method has the lowest accuracy in prediction of the slug

flow regime initiation when compared to the experimental

results, whereas the FCT method is the most accurate

method for the prediction of slug flow regime initiation.

Also, it can be seen that the prediction of slug flow regime

initiation by Lax-Friedrichs numerical method has a large

deviation compared to the experimental results. The first-

order Lax-Friedrichs predicts the discontinuities resulted

from the formation of the slug flow which are with

numerical dispersion in the flow field. Lax-Friedrichs

method is a first-order method with the second-order error.

The second-order error causes a numerical diffusion which

leads to a discontinuity dispersion in the solution field.

Thus, Lax-Friedrichs numerical method cannot predict the

slug flow initiation with high accuracy.

It also can be seen that the Rusanov numerical method

predicts the slug flow initiation more accurately compared

to the Lax-Friedrichs numerical method (Fig. 9). Rusanov

numerical method also is a first-order method having sec-

ond-order error. Second-order error is a numerical diffu-

sion leading to the dispersion of discontinuity in the flow

field. As far as Rusanov numerical method is a character-

istics-based method which owns more accurate information

about the flow characteristics, thus, Rusanov numerical

method generates less numerical diffusion in comparison

with the Lax-Friedrichs and therefore can predict the slug

flow initiation with high accuracy.

Richtmyer numerical method is a second-order method

having third-order error. This type of error causes the

solutions to be dispersed in the flow field. Thus, this

method cannot be an appropriate method for prediction of

the slug flow initiation. As it is observed in the accuracy

verification diagram of the numerical methods for the

prediction of the slug flow initiation, the Richtmyer

numerical scheme is not utilized.

From the slug flow initiation point obtained via FCT

method which is shown in Fig. 9, it is indicated that FCT

method predicts the slug flow initiation point more accu-

rately compared to the Lax-Friedrichs and Rusanov

numerical methods.

In FCT method, the output of numerical solution is

obtained via Richtmyer numerical method which is a sec-

ond-order method and for the flux correction, artificial

diffusion is incorporated. The artificial diffusion is incor-

porated into the FCT method for flux correction because of

the numerical dispersion that exists in the second-order

methods, and according to the FCT method, this numerical

dispersion has disappeared. FCT method is the most

accurate scheme in the prediction of the slug flow initiation

among the methods introduced in this paper.

In Figs. 10 and 11, the time history of interfacial waves

that is converted to slug flow is given. The growth of

interfacial waves in 0.3 and 0.4 s for all Lax-Friedrichs,

Rusanov, and FCT numerical methods is indicated. The

computational cell and Courant–Friedrichs–Lewy number

are considered as 2800 and 0.3, respectively.

As it is indicated in Figs. 10 and 11, the prediction of

volume fraction of liquid-phase FCT method in various

time histories is greater than Rusanov and Lax-Friedrichs

numerical methods. In fact, the interfacial waves grow with

the time. In Lax-Friedrichs numerical method, great

numerical diffusion exists in the flow field compared to

Rusanov numerical method. In 0.3 s, the waves have not

grown and in 0.4 s the waves start to grow, regarding the

Fig. 8 Comparison of various numerical accuracies in predicting the

beginnings of slug flow regime

Fig. 9 Comparison of obtained initiation point of slug flow with

experimental results
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Lax-Friedrichs method. As a result, the amount of wave

growth in Lax-Friedrich numerical method is obviously

lower than the two other numerical schemes.

Figures 12 and 13 present the variation of the liquid-

and gas-phase velocity profile for different numerical

methods. The number of computational cells and Courant–

Friedrichs–Lewy number are 2800 and 0.4 s, respectively.

As the growth of volume fraction of liquid phase

increases, the gas flow cross section decreases and the

liquid flow cross section increases. Therefore, the velocity

of the liquid and the gas phase decreases and increases,

respectively. According to Fig. 11, the volume fraction of

the liquid phase of FCT method is the highest compared to

the other methods. As a result, the liquid phase velocity

reduces sharply as shown in Fig. 12, and the gas velocity

increases remarkably as plotted in Fig. 13.

6 Conclusion

This paper employed Rusanov, Richeymer and FCT

numerical methods to model the slug flow initiation point

and its growth in horizontal pipes. Among these three

methods, FCT method is the most accurate scheme in

predicting the slug flow initiation point. Lax-Friedrichs

numerical method due to the high numerical dispersion in

the flow field has the least accuracy in the prediction of

slug flow initiation. Rusanov numerical method such as

Lax-Friedrichs numerical method is classified as a first-

order method having a second-order error. Concerning that

Rusanov numerical method is a flow characteristic-based

method, more accurate information can be obtained from

flow characteristics. So, this method has lower numerical

dispersion compared to the Lax-Friedrichs scheme, and

hence it can predict the slug flow initiation point with

higher accuracy in comparison with the Lax-Friedrichs

scheme. Due to the oscillatory nature of the Richtmyer

numerical method in the discontinuity region caused by the

Fig. 10 Time history of the growth of interfacial waves in 0.3 s

Fig. 11 Time history of the growth of interfacial waves in 0.4 s

Fig. 12 Comparison of the liquid phase velocity profile changes for

different numerical schemes in 0.4 s

Fig. 13 Comparison of the gas phase velocity profile changes for

different numerical schemes in 0.4 s
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slug flow formation, it is not an appropriate method for

modeling the slug flow regime.
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