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Abstract
The effects of inclined magnetic field on entropy generation in nanofluid over a stretching sheet were investigated in the

presence of partial slip and nonlinear thermal radiation. Applying a similarity variable, the governing equations are reduced

to a set of nonlinear ODEs. These equations are solved both analytically and numerically by hypergeometric function and

Runge–Kutta Gill method with shooting technique, respectively. For Ag–water, magnetic, aligned angle, nanosolid volume

fraction and slip parameters on velocity, temperature, skin friction coefficient and reduced Nusselt number were analyzed.

The entropy generation for the influence of the same parameters, radiation parameter and the Reynolds number is discussed

for Ag nanoparticles. It is observed that the nanosolid volume fraction and slip parameter reduce the entropy generation.

But aligned magnetic field enhances the entropy generation.
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1 Introduction

The study of magnetohydrodynamic incompressible nano-

fluid flow has important applications in industrial fields,

viz., flow meters, pumps, bearings, the design of heat

exchangers and MHD accelerators. The effect of magne-

tohydrodynamic incompressible nanofluid flow over a

semi-infinite vertical plate was numerically investigated

by Hamad et al. (2011). MHD three-dimensional flow of

an Oldroyd-B nanofluid over a stretching surface, with and

without radiation effects was investigated by Shehzad et al.

(2016) and Hayat et al. (2015c), respectively. Magnetic

field effects in three-dimensional flow of Sisko nanofluid

were studied by Hayat et al. (2013, 2016g). Magnetic field

effects on viscoelastic nanofluid flow were analyzed by

Hayat et al. (2015d) and Farooq et al. (2016). Magnetic

field effects on peristaltic copper–water nanofluids were

analyzed by Hayat et al. (2016h) and Abbasi et al. (2015).

Many of the recent articles are focused on magnetic field

effect on the nanofluid flow problems (Hayat et al.

2015a, b, 2016a; Farooq et al. 2015; Hamad 2011; Rahman

and Eltayeb 2013; Nadeem et al. 2015).

The presence of entropy generation is used to evaluate

loss of energy due to heat transfer and fluid friction irre-

versibilities. The entropy generation analysis of steady

two-dimensional boundary layer nanofluid flow over a flat

plate was studied by Malvandi et al. (2013). The numerical

solutions of entropy generation analysis for nanofluid flow

over a stretching sheet in the presence of partial slip and

heat source/sink were presented by Noghrehabadi et al.

(2013). The effects of entropy analysis for magnetohy-

drodynamic nanofluid flow over a permeable stretching

surface were reported by Abolbashari et al. (2014).

Govindaraju et al. (2015) studied the effect of entropy

generation on MHD nanofluid flow over a stretching sheet.

Many researchers have discussed the effect of entropy

generation on MHD flow with various boundary slip con-

ditions are considered (Das and Jana 2014; Butt et al.

2014; Rashidi et al. 2013).
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Rashidi et al. (2014) investigated the radiation effect of

water-based nanofluid over a stretching sheet in the pres-

ence of magnetic field. The effect of thermal radiation and

partial slip on MHD flow in porous medium over a

stretching surface were considered by Abdul Hakeem et al.

(2014). Hayat et al. (2016b) studied the MHD flow and

heat transfer of nanofluids in the presence of nonlinear

thermal radiation effects. Shehzad et al. (2014) analyzed

the effect of nonlinear thermal radiation in three-dimen-

sional flow of Jeffrey nanofluid. Mushtaq et al. (2014)

investigated the nonlinear thermal radiation effects in the

laminar two-dimensional flow of nanofluid over a stretch-

ing sheet.

The role of the slip boundary condition is vital in some

practical situations involving polymer industry, paints,

suspensions, foams, polishing of artificial heart valves and

circulation of blood. No-slip condition is deficient in such

cases. The slip effects of second-grade fluid through a

stretching sheet with MHD flow were analyzed by Hayat

et al. (2008). The partial slip effects of third-grade fluid

through a porous plate were considered by Sajid et al.

(2008). The partial slip effects of Oldroyd 8-constant MHD

fluid flow over a coaxial cylinders numerically investigated

by Khan et al. (2007). The partial slip effects of MHD

convective flow due to a rotating disk were examined

by Rashidi et al. (2011). Hayat and Mehmood (2011)

studied the influence of slip on MHD third order fluid flow

in a planar channel. Some recent attempts were described;

the slip effects on different fluid flow are presented

in Javed et al. (2016), Hayat et al. (2016c, d).

Sulochana et al. (2015) studied the numerical solution

of aligned magnetic field and cross-diffusion effects of a

nanofluid past an exponentially stretching sheet in porous

medium. An analysis has been made both analytically and

numerically by Abdul Hakeem et al. (2016) to study the

inclined magnetic field effect on the boundary layer flow of

a Casson fluid over a stretching sheet. Many of the

researchers inclined magnetic field effects on various types

of fluid flow were investigated by the followers (Raju et al.

2015; Hayat et al. 2016e).

To the best of author’s knowledge so for no one has

considered the effects of inclined magnetic field on entropy

generation in nanofluid over a stretching sheet. Keeping

this in mind, in the present study we have analyzed the

effects of inclined magnetic field on entropy generation in

nanofluid over a stretching sheet in the presence of radia-

tion and partial slip on both numerically and analytically.

The momentum and energy equations are solved; the

velocity, temperature, skin friction and the Nusselt number

are determined and used to compute the entropy genera-

tion. The results are discussed with the help of graphical

illustrations and tables.

2 Formulation of the Problem

Consider a steady, laminar, two-dimensional radiative slip

flow of an incompressible viscous nanofluid over a

stretching sheet in the presence of aligned magnetic field.

The velocity of the stretching sheet is �uw ¼ a�x. The tem-

perature at the stretching sheet is deemed to have the

constant value Tw, while the ambient value, attained as �y

tends to infinity, takes the constant value T1.

Also consider the aligned magnetic field of uniform

strength B0 which is applied normal to the sheet. It is

further assumed that the induced magnetic field is negli-

gible in comparison with the applied magnetic field. The

fluid is a water-based nanofluid containing different types

of nanoparticles: copper (Cu), silver (Ag), alumina ðAl2O3Þ
and titanium oxide ðTiO2Þ. It is assumed that the base fluid

water and the nanoparticles are in thermal equilibrium and

no slip occurs between them. The thermo-physical prop-

erties of the nanofluid and the boundary layer equations

governing the flow and thermal fields can be written as

given by Hamad (2011)

o�u

o�x
þ o�v

o�y
¼ 0 ð1Þ

qnf �u
o�u

o�x
þ �v

o�u

o�y

� �
¼ lnf

o2�u

o�y2
� rB2

0�usin
2c ð2Þ

qcp
� �

nf
�u
oT

o�x
þ �v

oT

o�y

� �
¼ knf

o2T

o�y2
� oqr

o�y
ð3Þ

where �x is the coordinate along the sheet, �u is the velocity

components in the �x direction, �y is coordinate perpendic-

ular to the sheet, �v is the velocity component in the �y
direction, T is the local temperature of the fluid, r is the

electric conductivity and qr is the radiative heat flux.

Using Rosseland approximation for radiation (see Hayat

et al. 2016f) we have

qr ¼ � 4r�

3k�nf

oT4

o�y
ð4Þ

Here, r� is the Stefan–Boltzmann constant and k�nf is the
absorption coefficient of the nanofluid. Further, we assume

that the temperature difference within the flow is such that

T4 may be expanded in a Taylor series. Hence, expanding

T4 about T1 and neglecting higher-order terms we get,

T4 ffi 4T1
3T � 3T1

4 ð5Þ

Substituting Eq. (5) in Eq. (4), (see Hayat et al. 2013) we

get

qr ¼ � 16r�T13

3k�nf

oT

o�y
ð6Þ

Using Eq. (6) in Eq. (3), one obtains
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qcp
� �

nf
�u
oT

o�x
þ �v

oT

o�y

� �
¼ knf

o2T

o�y2
þ 16r�T3

1
3k�nf

o2T

o�y2

� �
ð7Þ

The effective density of the nanofluid qnf , the effective

dynamic viscosity of the nanofluid lnf , the heat capacitance
ðqCpÞnf and the thermal conductivity knf of the nanofluid

are given as

qnf ¼ ð1� /Þqf þ /qs; lnf ¼
lf

ð1� /Þ2:5

qCpÞnf ¼ ð1� /ÞðqCpÞf þ /ðqCpÞs; knf ¼ kf
ks þ 2kf � 2/ðkf � ksÞ
ks þ 2kf þ /ðkf � ksÞ

� �

ð8Þ

Here, / is the solid volume fraction. The boundary con-

ditions of Eqs. (1)–(3) are

�u ¼ a�xþ l
o�u

o�y
; �v ¼ �vw; T ¼ Tw at �y ¼ 0

�u ! 0; T ! T1 as �y ! 1
ð9Þ

where lf is the dynamic viscosity of the basic fluid, qf and
qs are the densities of the base fluid and nanoparticle,

respectively, ðqCpÞf and ðqCpÞs are the specific heat

parameters of the base fluid and nanoparticle, respectively,

kf and ks are the thermal conductivities of the base fluid and

nanoparticle, respectively, and a is constant.

By introducing the following non-dimensional variables

x ¼ �xffiffiffiffiffiffiffiffiffi
mf=a

p ; y ¼ �yffiffiffiffiffiffiffiffiffi
mf=a

p ; u ¼ �uffiffiffiffiffiffiffi
amf

p ;

v ¼ �vffiffiffiffiffiffiffi
amf

p ; h ¼ T � T1
Tw � T1

ð10Þ

After the non-dimensional form, using the stream function

w, which is defined as u ¼ ow=oy and v ¼ �ow=ox, then
system (2) and (7) become

ow
oy

o2w
oxoy

� ow
ox

o2w
oy2

¼ 1

1� /þ / qs
qf

� � 1

ð1� /Þ2:5
o3w
oy3

�Mnsin
2c

ow
oy

( )

ð11Þ
ow
oy

oh
ox

� ow
ox

oh
oy

¼ 1

ð1� /þ /ðqCpÞs=ðqCpÞfÞ
1þ 4Rd

3

� �
1

Pr

knf

kf

� �
o2h
oy2

ð12Þ

with the boundary conditions

ow
oy

¼ xþ L
o2w
oy2

;
ow
ox

¼ S; h ¼ 1 at y ¼ 0

ow
oy

! 0; h ! 0 as y ! 1
ð13Þ

where Pr ¼ mf
af

is the Prandtl number, Mn ¼ rB2
0

aqf
is the

magnetic parameter and Rd ¼ 4r�T3
1

knfk
�
nf

is the Radiation

parameter.

Now by using the simplified form of Lie-group trans-

formations, namely the scaling group G of transformations

(see Hamad 2011), we get the similarity transformations as,

g ¼ y; w ¼ xFðgÞ; h ¼ hðgÞ: ð14Þ

3 Flow and Thermal Analysis

Now using the similarity transformations (11) and (12), we

get

F000 þ ð1� /Þ2:5 ½1� /þ /ðqs=qfÞ�f
ðFF00 � F02Þ �MnF

0sin2cg ¼ 0
ð15Þ

h
00 þ 3

3þ 4Rd

� �
Prkf ½1� /þ /ðqCpÞs=ðqCpÞf �

knf
Fh

0 ¼ 0

ð16Þ

where primes denote the differentiation with respect to g.
The corresponding boundary conditions become

Fð0Þ ¼ S; F0ð0Þ ¼ 1þ LF00ð0Þ; hð0Þ ¼ 1 at g ¼ 0;

F0ð1Þ ¼ 0; F00ð1Þ ¼ 0; hð1Þ ¼ 0 as g ! 1
ð17Þ

The exact solution to differential equation (15) satisfying

the boundary condition (17) is obtained as (see Abdul

Hakeem et al. 2014)

FðgÞ ¼ Sþ X
1� e�mg

m

� �
ð18Þ

where m is the parameter associated with the nanoparticle

volume fraction, the magnetic field parameter, slip

parameter, suction parameter, the fluid density and the

nanoparticle density as follow,Thus, the non-dimensional

velocity components are
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u ¼ xXe�mg; v ¼ � Sþ X
1� e�mg

m

� �� �
ð20Þ

The dimensional velocity components are

�u ¼ Xa�xe�m
ffiffiffiffiffiffi
a=mf

p
�y; �v ¼ � Sþ X

1� e�m
ffiffiffiffiffiffi
a=mf

p
�y

m

 ! ! ffiffiffiffiffiffiffi
avf

p

ð21Þ

The shear stress at the stretching sheet characterized by the

skin friction coefficient Cf , is given by

Cf ¼
�2lnf

qf uw xð Þð Þ2
ou

oy

� �
�y¼0

ð22Þ

Using Eqs. (10), (14), (18), (19) and (21), the skin friction

can be written as

Re1=2x Cf ¼ � 2

1� /ð Þ2:5
F

00
0ð Þ ð23Þ

where Rex ¼ �x�uwð�xÞ=mf is the local Reynolds number based

on the stretching velocity �uwð�xÞ. Re1=2x Cf is the local skin

friction coefficient.

4 Analytical Method for Solution

Introducing the new variable,

n ¼ �Prkf ½1� /þ /ðqCpÞs=ðqCpÞf �
m2knf

3

3þ 4Rd

� �
Xe�mg

ð24Þ

and inserting (24) in (16), we obtain

nhnn þ 1� a0 � nð Þhn ¼ 0 ð25Þ

and (17) transforms to

h � Pr

am2

� �
¼ 1 and hð0Þ ¼ 0 ð26Þ

The solution of Eq. (25) with the corresponding boundary

conditions (26), in terms of g is written as

hðgÞ ¼ e�ma0g M a0; a0 þ 1;�b0e
�mg½ �

M a0; a0 þ 1;�b0½ � ð27Þ

where M a0; a0 þ 1;�b0e
�mg½ � is the Kummer’s function,

which is given as in Rashidi et al. (2014).

Where

a ¼ knf

kfð1� /þ / ðqCpÞs
ðqCpÞf

Þ
; a0 ¼

Pr

a
3

3þ 4Rd

� �

S

m
þ X

m2

� �
and b0 ¼

Pr

am2

3

3þ 4Rd

� �
X

The quantity of practical interest, in this section the

Nusselt number Nux which is defined as

Nux ¼
x qw

kf Tw � T1ð Þ

where qw ¼ � knf þ 16rT3
1

3k�
nf

� �
oT
oy

� �
y¼0

is the local surface

heat flux.

We obtain the following Nusselt number

Re�1=2
x Nux ¼

knf

kf
1þ 4Rd

3

� �
½�h0 0ð Þ�:

The non-dimensional wall temperature gradient derived

from Eq. (27) reads as

m ¼
� 1

Lqf
0:3333A5 � 0:4199A7 � 1

q2
f

A2
5

� �

L A6 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
6 þ 4 A7 � 1

q2
f

A2
5

� �3r !1=3

þ 1
L

0:2646 A6 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
6 þ 4 A7 � 1

q2
f

A2
5

� �3r !1=3
0
@

1
A

A1 ¼ LSð1� /Þ2:5; A2 ¼ LMsin2ðcÞ; A3 ¼ Lð1� /Þ2:5;

A4 ¼
qs
qf

; A5 ¼ qf � A1qf þ A1/qf � A1/qs;

A6 ¼ � 2þ 27LA3 � 3A1 þ 3A2
1 þ 2A3

1 � 27LA3 þ 3A1/� 6A2
1/� 6A3

1/þ 3A2
1/

2

þ 6A3
1/

2 � 2A3
1/

3 þ 18A2A3 þ 9A1A2A3 � 9A1A2A3/þ 27LA3A4/� 3A1A4/

þ 6A2
1A4/þ 6A3

1A4/� 6A2
1A4/

2 � 12A3
1A4/

2 þ 6A3
1A4/

3 þ 9A1A2A3A4/

þ 3A2
1A

2
4/

2 þ 6A3
1A

2
4/

2 � 6A3
1A

2
4/

3 þ 2A3
1A

3
4/

3

A7 ¼
1

qf
ð3A3ð�Sqf þ S/qf � A3qf � S/qsÞÞ; and X ¼ 1

Lmþ 1
:

ð19Þ
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h0ð0Þ ¼ �ma0 þ
ma0b0

1þ a0

M a0 þ 1; a0 þ 2;�b0½ �
M a0; a0 þ 1;�b0½ � ð28Þ

5 Numerical Method for Solution

The set of nonlinear ordinary differential equations (15)

and (16) with the boundary condition (17) are solved

numerically, using Runge–Kutta–Gill method with shoot-

ing technique with a systematic guessing of Fggð0Þ and

hgð0Þ. This procedure is repeated until we get the results up

to the desired degree of accuracy, namely 10�4 with

Mn;/; S; L; c and Rd as prescribed parameters. The code is

C?? package, and the numerical solutions are presented in

tabular form (Table 1).

6 Entropy Generation Analysis

According to Woods (1975), the local volumetric rate of

entropy generation in the presence of magnetic field can be

expressed as Woods (1975) and Arpaci (1987)

SG ¼ knf

T2
1

oT

o�x

� �2

þ 1þ 16r�T3
1

3k�nfknf

� �
oT

o�y

� �2
" #

þ lnf
T1

o�u

o�y

� �2

þ rB2
0

T1
�u2sin2c

ð29Þ

The right hand side of the above equation consists of

three parts. The entropy generation due to heat transfer

across a finite temperature difference is denoted by the first

part, the local entropy generation due to viscous dissipation

is denoted by the second part, and the local entropy gen-

eration due to the effect of the magnetic field is represented

by the third part. The entropy generation number, dimen-

sionless form of entropy generation rate NS is defined as

the ratio of the local volumetric entropy generation rate

ðSGÞ to a characteristic entropy generation rate ðSGÞ0. For a
prescribed boundary condition, the characteristic entropy

generation rate is

ðSGÞ0 ¼
knfðDTÞ2

�x2T2
1

; ð30Þ

therefore, the entropy generation number is

Ns ¼
SG

ðSGÞ0
ð31Þ

Using Eqs. (27), (29), (30) and (31), the entropy generation

number is given by

Ns ¼
3þ 4Rd

3

� �
h02ðgÞRex þ

Br

X
F002ðgÞRex

þ BrHa2

X
F02ðgÞsin2c

ð32Þ

where Br is the Brinkman number. X and Ha are, respec-

tively, the dimensionless temperature difference and the

Hartmann number. These numbers are given by the fol-

lowing relationships

Br ¼ lnf �u
2
w

knfDT
; X ¼ DT

T1
; Ha ¼ B0�x

ffiffiffiffiffiffi
r
lnf

r
ð33Þ

7 Discussion of Results

The velocity, temperature, skin friction, Nusselt number

and entropy generation are discussed for inclined magnetic

field and other relevant physical parameters graphically for

Ag–water. For base fluid water, the Prandtl number is fixed

as 6.2. The values of local skin friction coefficient

Table 1 Thermo-physical

properties of water and

nanoparticles. Reproduced with

permission from Hamad (2011)

q ðkg/m3Þ Cp ðJ/kg kÞ k ðw/mkÞ b� 105 ðk�1Þ

Pure water 997.1 4179 0.613 21

Copper (Cu) 8933 385 401 1.67

Silver (Ag) 10,500 235 429 1.89

Alumina ðAl2O3Þ 3970 765 40 0.85

Titanium oxide ðTiO2Þ 4250 686.2 8.9538 0.9

Table 2 Comparison of results for the reduced Nusselt number

�h0ð0Þ

Pr Present results Wang (1989)

Analytical Numerical

0.7 0.4539 0.4539 0.4539

2.0 0.9114 0.9114 0.9114

7.0 1.8954 1.8954 1.8954

20.0 3.3539 3.3539 3.3539

When u ¼ Mn ¼ Rd ¼ L ¼ S ¼ 0; c ¼ 0�
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Re�1=2
x Cf and reduced Nusselt number NuxRe

�1=2
x are tab-

ulated for different nanoparticles like Cu;Ag;Al2O3 and

TiO2. The present results are compared with those of Wang

(1989), and an excellent agreement is observed for a spe-

cial case which is shown in Table 2.

Figures 1 and 2 depict the behavior of the velocity and

temperature profiles for various values of magnetic

parameter and aligned angle, respectively. It is evident

from the figures that an increase in the magnetic parameter

and aligned angle cases decreases the momentum boundary

layer and increases the thermal boundary layer. The mag-

netic field effect is negligible in the case of c ¼ 0�, and
transverse magnetic field effect is presented in the case of

c ¼ 90�. The enhanced aligned angle (0��90�) strengthens
the applied magnetic field; strengthening the magnetic field

causes to develop the force opposite to the flow which is

0.5 1 1.5 2 2.5 3 3.5 4

1 

     Velocity Profiles 

       Temperature Profiles 

Mn=0.0, 2.0, 4.0, 6.0

Mn=0.0, 2.0, 4.0, 6.0

F’(η) 
& 

θ(η)

Ag-water  

0.8

0.6

0.4

0.2

η

Fig. 1 Effect of magnetic parameter on velocity and temperature

distributions with Pr ¼ 6:2;/ ¼ 0:1;Rd ¼ 0:5; L ¼ 1:0; c ¼ 45�;
S ¼ 0:5

0.5 1 1.5 2 2.5 3 3.5 4

1
Ag-water  

     Velocity Profiles 

       Temperature Profiles 

γ=00,  450,  900

γ=00,  450,  900

η

F’(η) 
& 

θ(η)

0.8

0.6

0.4

0.2

Fig. 2 Effect of angle parameter on velocity and temperature

distributions with Pr ¼ 6:2;Mn ¼ 1:0;/ ¼ 0:1;Rd ¼ 0:5;
S ¼ 0:5;L ¼ 1:0.

0.5 1 1.5 2 2.5 3 3.5 4

1 Ag-water  

     Velocity Profiles 

       Temperature Profiles 

ϕ=0.0, 0.03, 0.06, 0.1 

ϕ=0.0, 0.03, 0.06, 0.1 

η

F’(η) 
& 

θ(η)

0.8

0.6

0.4

0.2

Fig. 3 Effect of nanosolid volume fraction parameter on velocity and

temperature distributions with Pr ¼ 6:2;Mn ¼ 1:0;Rd ¼ 0:5; L ¼
1:0; c ¼ 45�; S ¼ 0:5

0.5 1 1.5 2 2.5 3 3.5 4

1 Ag-water  
     Velocity Profiles 

       Temperature Profiles 

L=0.5, 0.6, 0.7 1.0

L=0.5, 0.6, 0.7 1.0

η

F’(η) 
& 

θ(η)

0.8

0.6

0.4

0.2

Fig. 4 Effect of the slip parameter on velocity and temperature

distribution with Pr ¼ 6:2;Mn ¼ 1:0;/ ¼ 0:1;Rd ¼ 1:0; c ¼ 45�;
S ¼ 0:5
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called Lorentz force. This can be concluded by the fact that

the increase in the aligned magnetic field reduces the

motion of the nanofluid velocity and enhances the tem-

perature of the nanofluid.

Effects of nanosolid volume fraction parameter on

velocity and temperature profiles are presented in Fig. 3. It

can be seen that nanosolid volume fraction parameter

increases as the velocity of the nanofluid motion is slowed

down. Further, the presence of silver nanoparticle enhances

with the temperature profile. This is because silver particles

have high thermal conductivity, so the thermal boundary

layer thickness increases.

Figure 4 illustrates the effect of slip parameter on

velocity and temperature profiles. This reveals that, the

velocity increases, as the slip parameter decreases. Because

in this case slip occurs, the flow velocity near the sheet will

not be equal to the stretching velocity of the sheet. With the

increase in slip parameter, the slip velocity increases and

consequently nanofluid velocity decreases. Also, this is due

to the fact that the temperature increases as increasing the

slip parameter.

The effects of magnetic parameter and aligned angle on

entropy generation profiles are shown in Figs. 5 and 6,

respectively. These figures reveal that an increase in both

magnetic parameter and aligned angle enhances the

entropy generation. The influence of aligned magnetic field

creates more entropy in nanofluid flow, indicating that the

surface acts as the strong source of irreversibility and

randomness generation.

Figure 7 exhibits the effect of nanosolid volume fraction

on entropy generation. As the volume of silver nanoparticle

increases, the entropy generation decreases. It is found that
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Fig. 5 Effect of magnetic parameter on entropy generation with Pr ¼
6:2;/ ¼ 0:1;Rd ¼ 0:5; L ¼ 0:01; c ¼ 45�; S ¼ 0:5; BrX�1 ¼ 1:0;
zRex ¼ 1:0;Ha ¼ 1:0
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Fig. 6 Effect of angle parameter on entropy generation with Pr ¼
6:2;Mn ¼ 1:0;/ ¼ 0:1;Rd ¼ 0:5; L ¼ 0:01; S ¼ 0:5; BrX�1 ¼ 1:0;
Rex ¼ 1:0;Ha ¼ 1:0
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Fig. 7 Effect of nanosolid volume fraction parameter on entropy

generation with Pr ¼ 6:2;Mn ¼ 1:0;Rd ¼ 0:7;L ¼ 0:01; c ¼ 45�;

S ¼ 0:5; BrX�1 ¼ 1:0;Rex ¼ 1:0;Ha ¼ 1:0
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the entropy generation decreases with the increasing values

of nanosolid volume fraction due to the higher dissipation

energy resulted from the sharper velocity gradient near the

wall and opposite behavior is observed far away from the

wall.

The effect of radiation parameter on entropy generation

is shown in Fig. 8. It is observed that radiation parameter

increases when entropy generation decreases. This is

because, the transfer of heat energy is observed the entropy

production.

Figure 9 displays the distinction of entropy generation

for different values of slip parameter. As the value of slip

parameter increases, the entropy generation decreases. The

entropy generation profiles for various values of Reynolds

number are shown in Fig. 10. It is observed that the

entropy generation increases with the increasing values of

Reynolds number.

The skin friction coefficient �f
00 ð0Þ against magnetic

parameter for various values of slip parameter, aligned

angle parameter, nanosolid volume fraction parameter and

suction parameters is shown in Fig. 11a, b, respectively.

Figure 11a shows that �f
00 ð0Þ increases with aligned angle

parameter, while it decreases with an increase in slip

parameter. Figure 11b reveals that �f
00 ð0Þ increases with

increasing nanosolid volume fraction parameter and suc-

tion parameter. The variation of reduced Nusselt number

�h
0 ð0Þ against magnetic parameter for various values of

slip parameter, aligned angle parameter, nanosolid volume

fraction parameter, suction parameter and radiation

parameter is shown in Fig. 12a, b. Figure 12a illustrates,

�h
0 ð0Þ increases with decreasing value of slip parameter
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Fig. 8 Effect of Radiation parameter on entropy generation with Pr ¼
6:2;Mn ¼ 1:0;/ ¼ 0:1;L ¼ 0:01; c ¼ 45�; S ¼ 0:5;Rex ¼ 1:0;Ha ¼
1:0
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Fig. 10 Effect of Reynolds number on entropy generation with Pr ¼
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and aligned angle parameter. Figure 12b reveals that

�h
0 ð0Þ increases with increasing value of suction param-

eter and it decreases with increasing value of nanosolid

volume fraction.

Tables 3 and 4 reveal the values of local skin friction

coefficient and the reduced Nusselt number for different

nanoparticles such as Cu;Ag;Al2O3 and TiO2. From these

tables, it shows that the skin friction increases with Mn; c
and S and decreases with L. It is also observed that the

increasing values of / increase the skin friction coefficient

of metallic nanofluids (Ag–water and Cu–water) and it has

an opposite effect on nonmetallic nanofluids (Al2O3–water

and TiO2–water). The reduced Nusselt number increases

with Rd and S and decreases with Mn; c;/ and L. This

result shows that the reduced Nusselt number of metallic

nanofluids is lower than nonmetallic nanofluids.
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Fig. 11 a Variation of the skin friction coefficient with respect to

magnetic parameter for slip parameter and angle parameter when

Pr ¼ 6:2;/ ¼ 0:1; S ¼ 0:5. b Variation of the skin friction coefficient

with respect to magnetic parameter for nanosolid volume fraction

parameter and suction parameter when Pr ¼ 6:2;L ¼ 1:0; c ¼ 45�
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Fig. 12 a Variation of the Nusselt number with respect to magnetic

parameter for slip parameter and angle parameter when

Pr ¼ 6:2;Rd ¼ 0:5; S ¼ 0:5;/ ¼ 0:1. b Variation of the Nusselt

number with respect to magnetic parameter for nanosolid volume

fraction parameter and suction parameter when

Pr ¼ 6:2;L ¼ 1:0;Rd ¼ 0:5; c ¼ 45�
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Table 3 Values of �F00ð0Þ for various of the parameter

Parameters Values Cu Ag Al2O3 TiO2

Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical

Mn 0.0 0.547029 0.547029 0.559587 0.559587 0.499649 0.499649 0.502710 0.502710

2.0 0.606464 0.606464 0.614623 0.614623 0.577746 0.577746 0.579500 0.579500

4.0 0.644161 0.644161 0.650263 0.650263 0.623306 0.623306 0.624550 0.624550

c 0� 0.547029 0.547029 0.559587 0.559587 0.499649 0.499649 0.502710 0.502710

45� 0.580735 0.580735 0.590605 0.590605 0.545079 0.545079 0.547301 0.547301

90� 0.606464 0.606464 0.614623 0.614623 0.577746 0.577746 0.579500 0.579500

u 0.0 0.556178 0.556178 0.556178 0.556178 0.556178 0.556178 0.556178 0.556178

0.05 0.572141 0.572141 0.578109 0.578109 0.551739 0.551739 0.552957 0.552957

0.1 0.580735 0.580735 0.590605 0.590605 0.545079 0.545079 0.547301 0.547301

L 0.7 0.716262 0.716262 0.730935 0.730935 0.663695 0.663695 0.666952 0.666952

0.8 0.664217 0.664217 0.676937 0.676937 0.618497 0.618497 0.621337 0.621337

1.0 0.580735 0.580735 0.590605 0.590605 0.545079 0.545079 0.547301 0.547301

S 0.6 0.595087 0.595087 0.605668 0.605668 0.556794 0.556794 0.559183 0.559183

0.7 0.609161 0.609161 0.620387 0.620387 0.568398 0.568398 0.570946 0.570946

0.8 0.622886 0.622886 0.634684 0.634684 0.579852 0.579852 0.582549 0.582549

While studying the effect of individual parameters, the following values are assumed Pr ¼ 6:2;Mn ¼ 1:0;u ¼ 0:1; c ¼ 45�;L ¼ 1:0 and S ¼ 0:5

Table 4 Values of �h0ð0Þ for various of the parameter

Parameters Values Cu Ag Al2O3 TiO2

Analytical Numerical Analytical Numerical Analytical Numerical Analytical Numerical

Mn 0.0 0.798052 0.798052 0.769466 0.769466 0.847814 0.847814 0.884295 0.884295

2.0 0.742994 0.742994 0.719442 0.719442 0.773999 0.773999 0.810400 0.810400

4.0 0.709948 0.709948 0.688936 0.688936 0.732587 0.732587 0.768540 0.768540

c 0� 0.798052 0.798052 0.769466 0.769466 0.847814 0.847814 0.884295 0.884295

45� 0.766508 0.766508 0.740935 0.740935 0.804695 0.804695 0.841239 0.841239

90� 0.742994 0.742994 0.719442 0.719442 0.773999 0.773999 0.810400 0.810400

u 0.0 1.146350 1.146350 1.146350 1.146350 1.146350 1.146350 1.146350 1.146350

0.05 0.937285 0.937285 0.921373 0.921373 0.960650 0.960650 0.981660 0.981660

0.1 0.766508 0.766508 0.740935 0.740935 0.804695 0.804695 0.841239 0.841239

L 0.7 0.796823 0.796823 0.770173 0.770173 0.837120 0.837120 0.874635 0.874635

0.8 0.785588 0.785588 0.759318 0.759318 0.825183 0.825183 0.862335 0.862335

1.0 0.766508 0.766508 0.740935 0.740935 0.804695 0.804695 0.841239 0.841239

S 0.6 0.855535 0.855535 0.827775 0.827775 0.894402 0.894402 0.936114 0.936114

0.7 0.947154 0.947154 0.917231 0.917231 0.986443 0.986443 1.033470 1.033470

0.8 1.041060 1.041060 1.009000 1.009000 1.080550 1.080550 1.133020 1.133020

Rd 0.5 0.766508 0.766508 0.740935 0.740935 0.804695 0.804695 0.841239 0.841239

0.6 0.861394 0.861394 0.833344 0.833344 0.901787 0.901787 0.942764 0.942764

1.0 1.151110 1.151110 1.115800 1.115800 1.197120 1.197120 1.251770 1.251770

While studying the effect of individual parameters, the following values are assumed Pr ¼ 6:2;Mn ¼ 1:0;u ¼ 0:1;Rd ¼ 0:5; c ¼ 45�;L ¼ 1:0,
and S ¼ 0:5
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8 Conclusion

This article gives the analytical and numerical solutions of

inclined magnetic field on entropy generation in nanofluid

flow over a stretching sheet in the presence of partial slip

and nonlinear thermal radiation. The velocity and temper-

ature profiles are obtained and used to compute the entropy

generation. The main conclusions derived from this study

are as follows.

• The velocity of the nanofluid decreases with the

increasing magnetic parameter, aligned angle, nanoso-

lid volume fraction parameter and slip parameter.

• The temperature of the nanofluid increases with the

increasing values of magnetic parameter, aligned angle,

nanosolid volume fraction parameter, slip parameters.

• The increasing values of magnetic parameter, aligned

angle and Reynolds number increase the generation of

entropy in the nanofluid flow field. The entropy

generation increases with decrease in nanosolid volume

fraction parameter, radiation parameter and slip

parameter.
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