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Abstract
This paper suggests a novel nonlinear state-feedback stabilization control law using linear matrix inequalities for a class of

time-delayed nonlinear dynamic systems with Lipschitz nonlinearity conditions. Based on the Lyapunov–Krasovskii

stability theory, the asymptotic stabilization criterion is derived in the linear matrix inequality form and the coefficients of

the nonlinear state-feedback controller are determined. Meanwhile, an appropriate criterion to find the proper feedback

gain matrix F is also provided. The robustness purpose against nonlinear functions and time delays is guaranteed in this

scheme. Moreover, the problem of robust H! performance analysis for a class of nonlinear time-delayed systems with

external disturbance is studied in this paper. Simulations are presented to demonstrate the proficiency of the offered

technique. For this purpose, an unstable nonlinear numerical system and a rotary inverted pendulum system have been

studied in the simulation section. Moreover, an experimental study of the practical rotary inverted pendulum system is

provided. These results confirm the expected satisfactory performance of the suggested method.

Keywords Nonlinear feedback stabilization � Linear matrix inequalities � Lipschitz nonlinearity � Lyapunov–Krasovskii

functional � Time-delay

1 Introduction

Time delays are often sources of instability and degrada-

tion of system efficiency in many control systems and are

frequently encountered in a wide range of nonlinear

dynamical systems, such as pneumatic systems (Hong et al.

2009), chemical engineering (Pellegrini et al. 2000),

hydraulic systems (Chae et al. 2013), biological systems

(Wan et al. 2014), nuclear reactors (Park et al. 2009) and

population dynamics models (Li 2012). The problem of

stabilization of the time-delayed dynamical systems and

synthesis of controllers for them has received significant

attention over the past few years, and different approaches

have been proposed. Nevertheless, the offered method-

ologies remain restrictive to the specific classes of non-

linear systems, and there is not any general technique to

analyze and synthesize the general class of nonlinear sys-

tems (Wu and Liu 2015; Liu et al. 2014; Gao and Wu

2015). This is the purpose of the current investigation on

the analysis and control of the time-delayed nonlinear

systems. For this purpose, selection of the predefined

variables using a powerful computational design tool such

as linear matrix inequality (LMI) technique is required.

LMIs have developed as an influential structure and

design procedure for various control problems (Seuret and

Gouaisbaut 2015). In the past, this method has been applied

to find solutions of minimization convex problems, for

instance, H2 control (Haddad et al. 2011), H! control

(Hilhorst et al. 2015) and guaranteed cost control (Yang

and Cai 2010). Even though LMI is a convex optimization

problem, such structure offers a numerically tractable mean

for hard problems in the absence of analytical solutions.

Moreover, some effective interior-point algorithms are now

available to solve LMI problems. In (Zong et al. 2008), an
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Catalunya, Terrassa, Spain

123

Iran J Sci Technol Trans Mech Eng (2019) 43:549–558
https://doi.org/10.1007/s40997-018-0223-4(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-5676-1875
http://crossmark.crossref.org/dialog/?doi=10.1007/s40997-018-0223-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40997-018-0223-4&amp;domain=pdf
https://doi.org/10.1007/s40997-018-0223-4


LMI-based H! state-feedback stabilization problem for

the uncertain switched impulsive linear systems with state-

delays and nonlinear parametric uncertainties is proposed.

In (Tsai et al. 2009), a robust H! fuzzy control method for

TS-fuzzy time-delayed discrete-time bilinear systems with

disturbances is proposed where the conditions of the sys-

tem stability are formulated in the form of LMIs. In (Kim

et al. 2016), the problem of stabilization analysis using

LMIs and robust H! controller design for time-delayed

systems with stochastic disturbances and parametric

uncertainties is investigated. In (Leite et al. 2009), an LMI-

based Robust H! state-feedback controller for the uncer-

tain discrete-time systems with state-delays is proposed. In

(Li et al. 2009), using a quadratic Lyapunov functional and

variation of parameters method, the problem of LMI-based

delay-dependent BIBO stabilization control for the uncer-

tain time-delayed systems is investigated. In (Dey et al.

2011), a nonlinear matrix inequality is employed as a sta-

bilization condition for uncertain time-delayed linear sys-

tems. In (Amri et al. 2011), the robust exponential

stabilization problem based on the Lyapunov parameter-

dependent function and LMIs for a class of uncertain

systems with time-varying delays is investigated. In

(Thevenet et al. 2010), the stabilization problem of a two-

dimensional Burgers equation around a stationary solution

using nonlinear feedback boundary controller is investi-

gated. In (Yan et al. 2011), the stabilization problem of

uniform Euler–Bernoulli beam via nonlinear locally dis-

tributed feedback controller is studied where the energy of

the beam decays exponentially. In (Zhang et al. 2012),

chaotification technique based on the nonlinear time-de-

layed feedback control method for a two-dimensional

vibration isolation floating raft structure is presented. In

(Louodop et al. 2014), the synchronization problem of the

uncertain time-delay chaotic systems with the unknown

inputs in a drive-response framework using robust adaptive

observer-based controller is investigated. In (Lei et al.

2014), the nonlinear vibration control problem of the active

vehicle suspension systems with the actuator delays using

feedback linearization technique is studied. In (Chatterjee

2011), the impact of delays on the self-excited oscillations

of single and two degrees of freedom systems via nonlinear

feedback is considered and a bounded saturated feedback

control technique with controllable time delays is sug-

gested to induce the self-excited oscillations. To the best of

the author’s information, very little attention has been paid

for the nonlinear state-feedback stabilization problem of

time-delayed nonlinear systems with Lipschitz nonlineari-

ties using LMIs, which is still an open problem. This

stimulates the present research.

Motivated by the above discussion, the problem of

robust H! performance analysis for a class of nonlinear

systems with state-delay and external disturbance is

investigated in this paper. This work presents a state-

feedback control law for the stability problem of Lipschitz

nonlinear time-delayed systems. By constructing a Lya-

punov–Krasovskii functional, asymptotical stabilization

conditions are prepared in LMI form and the coefficients of

the nonlinear state-feedback control law are determined via

LMIs. The proposed controller guarantees asymptotical

stability of these systems even if the nonlinear part is

nonzero. Unlike the former researches, the resultant LMI

conditions have fewer pre-assumed design parameters, and

consequently, the planned technique can yield less con-

servative conditions.

The presentation of this article is listed as follows:

Sect. 2 develops the problem description and some

required preliminaries. Section 3 proposes the analysis of

the stability and design process of nonlinear state-feedback

controller based on LMIs for the nonlinear time-delayed

systems. In Sect. 4, simulation results on two dynamical

systems are illustrated. Moreover, experimental results on a

rotary inverted pendulum (RIP) system are shown in

Sect. 4. Finally, some concluding remarks are given in

Sect. 5.

2 Problem Description and Required
Preliminaries

The nonlinear time-delayed system is considered as:

_xðtÞ ¼ f ðxÞ þ AxðtÞ þ A1xðt � sÞ þ BuðtÞ;
yðtÞ ¼ CxðtÞ;

ð1Þ

where uðtÞ 2 Rn, xðtÞ 2 Rn and yðtÞ 2 Rn represent the

input to system, the state variables and the output of the

system, respectively. The parameter s is the time-delay,

and the nonlinear function f ðxÞ 2 Rn is a time-varying

vector. Moreover, matrices A, A1, B and C are some con-

stant matrices with appropriate dimensions.

Assumption 1 The nonlinear function f ðxÞ is Lipschitz for

all x 2 Rn and �x 2 Rn which satisfies (Zemouche and

Boutayeb 2013; Shen et al. 2011):

f ðxÞ � f ð�xÞk k� Lðx� �xÞk k; ð2Þ

where L 2 Rn�n is a Lipschitz constant matrix. Equiva-

lently, the Lipschitz inequality (2) is rewritten as follows:

f ðxÞ � f ð0Þð ÞT I f ðxÞ � f ð0Þð Þ� xTLTLx: ð3Þ

The nonlinear state-feedback control input is specified by:

uðtÞ ¼ FxðtÞ � B�1f ð0Þ; ð4Þ

where F is the state-feedback gain which will be calculated

later using LMIs. The additional term B�1f ð0Þ in (4) is

necessary to deal with systems possessing f ð0Þ 6¼ 0.
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Remark 1 The matrix B in (4) is assumed to be square and

of full row rank. When the matrix B is non-square and has

full rank, the nonlinear state-feedback control law can be

expressed using the right inverse of B as:

uðtÞ ¼ FxðtÞ � BT BBT
� ��1

f ð0Þ: ð5Þ

Therefore, this approach can also be applied on the situa-

tions in which the matrix B is non-square.

Lemma 1 (Schur complement) (Scherer and Weiland
2000) If there exist matrices S1, S2 and S3 where S1 ¼ ST1
and S3 ¼ ST3 , then the inequality

S1 � S2S
�1
3 ST2\0 ð6Þ

is equivalent to:

S1 S2

ST2 S3

� �
\0 ð7Þ

Lemma 2 (S-procedure) (Boyd et al. 1994) Let

T0; . . .; TpT0; . . .; Tp be symmetric matrices. Consider the

following condition on T0; . . .;Tp:

fTT0f[ 0 for all f 6¼ 0 f 6¼ 0 such that fTTif� 0;
i ¼ 1; . . .; p:

ð8Þ

If there exist nonnegative scalars si for i ¼ 1; . . .; p, such

that T0 �
Pp

i¼1

siTi [ 0 T0 �
Pp

i¼1 siTi [ 0 is satisfied,

then (8) holds.

3 Main Results

Theorem 1 Consider the nonlinear system (1) and the

control input (4) with f ð0Þ ¼ 0. Given a positive scalar s1,

if there exist matrices M, Q ¼ QT [ 0 and H ¼ HT [ 0

with appropriate dimensions such that the following LMI

condition is satisfied:

QAT þMTBT þ AQþ BM þ H A1 b1I QLT

� � P1 0 0

� � � b1I 0

� � � � b1I

2

664

3

775\0;

ð9Þ

then the asymptotical stability of the state trajectories is

fulfilled and one can obtain the gain matrix F as

F ¼ MQ�1.

Proof If Eq. (4) (without �B�1f ð0Þ) is substituted into

(1), we obtain:

_xðtÞ ¼ f ðxÞ þ ðAþ BFÞxðtÞ þ A1xðt � sÞ: ð10Þ

We construct the Lyapunov–Krasovsky function candidate

as follows:

VðtÞ ¼ xðtÞTPxðtÞ þ
Z t

t�s

xðsÞTP1xðsÞds; ð11Þ

with real symmetric matrices P[ 0 and P1 [ 0 which are

determined using the LMI. The derivative of (11) with

respect to time is derived as:

_VðtÞ ¼ _xðtÞTPxðtÞ þ xðtÞTP _xðtÞ þ xðtÞTP1xðtÞ � xðt
� sÞTP1xðt � sÞ; ð12Þ

Substituting (10) in (12) obtains:

_VðtÞ ¼ f ðxÞTPxðtÞ þ xðtÞTðAT þ FTBTÞPxðtÞ
þ xðt � sÞTAT

1PxðtÞ þ xðtÞTPf ðxÞ
þ xðtÞTPðAþ BFÞxðtÞ þ xðtÞTPA1xðt � sÞ
þ xðtÞTP1xðtÞ � xðt � sÞTP1xðt � sÞ;

ð13Þ

which can be rewritten by:

_VðtÞ ¼
xðtÞ

xðt � sÞ
f ðxÞ

0

B@

1

CA

T

PðAþ BFÞ þ ðAT þ FTBTÞPþ P1 PA1 P

� �P1 0

� � 0

2

64

3

75

xðtÞ
xðt � sÞ
f ðxÞ

0

B@

1

CA\0:

ð14Þ

Note that condition (3) can be restated as:

xðtÞ
xðt � sÞ
f ðxÞ

0

@

1

A

T
LTL 0 0

0 0 0

0 0 �I

2

4

3

5
xðtÞ

xðt � sÞ
f ðxÞ

0

@

1

A� 0: ð15Þ

By combining (14) and (15) with S-procedure (Lemma 1),

the condition _VðtÞ\0 is satisfied if there exist a scalar s1

such that:

PðAþ BFÞ þ ðAT þ FTBTÞPþ P1 þ s1L
TL PA1 P

� �P1 0

� � �s1I

2

4

3

5\0:

ð16Þ

Since inequality (16) is not in the form of LMIs, assuming

Q ¼ P�1, M ¼ FQ, P1 ¼ PHP, and pre- and post-multi-

plying (16) by diagðQ; I; s�1IÞ yields:

QAT þMTBT þ AQþ BM þ H þ s1QL
TLQ A1 s�1

1 I

� �P1 0

� � �s�1
1 I

2

4

3

5\0:

ð17Þ

Inequality (17) can be rewritten in the form of (6) as
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QAT þMTBT þ AQþ BM þ H A1 s�1
1 I

� �P1 0

� � �s�1
1 I

2

4

3

5

�
QLT

0

0

2

4

3

5 �s1Ið Þ LQ 0 0½ �\0: ð18Þ

By applying Schur complement on (18), the following

inequality is obtained:

QAT þMTBT þ AQþ BM þ H A1 s�1
1 I QLT

� �P1 0 0

� � �s�1
1 I 0

� � � �s�1
1 I

2

664

3

775\0;

ð19Þ

where defining b1 ¼ s�1
1 , LMI (9) is attained. This com-

pletes the proof. h

Theorem 2 Let us consider the nonlinear time-delayed

system (1) and the proposed control input (4). Assume that

Assumption 1 is fulfilled. If there exist matrices M, Q ¼
QT [ 0 and H ¼ QP1Q with appropriate dimensions such

that:

P ¼
QAT þMTBT þ AQþ BM þ H A1Q I QLT

� �H 0 0

� � �I 0

� � � �I

0

BB@

1

CCA\0;

ð20Þ

is fulfilled, then the control signal (4) confirms the

asymptotical stability of states of the considered system

and we can obtain F in (4) as F ¼ MQ�1.

Proof If (4) is substituted into (1), one can achieve:

_xðtÞ ¼ f ðxÞ � f ð0Þ þ ðAþ BFÞxðtÞ þ A1xðt � sÞ: ð21Þ

The Lyapunov–Krasovsky functional candidate is con-

structed as (11). The derivative of (11) with respect to time

is derived as (12). Substituting (21) into (12) gives:

_VðtÞ ¼ ðf ðxÞ � f ð0ÞÞT P xðtÞ þ xðtÞTðAT þ FTBTÞPxðtÞ
þ xðt � sÞTAT

1 PxðtÞ þ xðtÞT Pðf ðxÞ � f ð0ÞÞ þ xðtÞTP1xðtÞ
� xðt � sÞTP1xðt � sÞ þ xðtÞTPðAþ BFÞxðtÞ þ xðtÞTPA1xðt � sÞ;

ð22Þ

where considering (3) and (22), one can obtain:

_V �ðf ðxÞ � f ð0ÞÞTPxðtÞ þ xðtÞTðAT þ FTBTÞPxðtÞ þ xðt � sÞTAT
1PxðtÞ

þ xðtÞTPðf ðxÞ � f ð0ÞÞ þ xðtÞTPðAþ BFÞxðtÞ þ xðtÞTPA1xðt � sÞ
þ xðtÞTP1xðtÞ � xðt � sÞTP1xðt � sÞ � ðf ðxÞ � f ð0ÞÞTIðf ðxÞ � f ð0ÞÞ
þ xðtÞTLTLxðtÞ;

ð23Þ

which, further, can be written as:

_V �WTCW; ð24Þ

where

W ¼ xðtÞT xðt � sÞT ðf ðxÞ � f ð0ÞÞT
� �T

; ð25Þ

C ¼
ðAT þ FTBTÞPþ PðAþ BFÞ þ LTLþ P1 PA1 P

� �P1 0

� � �I

0

@

1

A\0:

ð26Þ

Inequality (26) can be written in the form of (6) as

ðAT þ FTBTÞPþ PðAþ BFÞ þ P1 PA1 P

� �P1 0

� � �I

0

@

1

A

�
LT

0

0

0

@

1

A �Ið Þ L 0 0ð Þ\0: ð27Þ

Now, applying the Schur complement on (27) yields:

ðAT þ FTBTÞPþ PðAþ BFÞ þ P1 PA1 P LT

� �P1 0 0

� � �I 0

� � � �I

0

BB@

1

CCA\0:

ð28Þ

Since inequality (28) is non-LMI, assuming Q ¼ P�1,

M ¼ FQ, H ¼ QP1Q and pre- and post-multiplying (28) by

diagðQ;Q; I; IÞ, LMI (20) is obtained. h

In what follows, the asymptotic stability and H! per-

formance analysis of system (1) with external disturbance

are considered. Then, considering uðtÞ ¼ 0, we have:

_xðtÞ ¼ f ðxÞ þ AxðtÞ þ A1xðt � sÞ þ ExxðtÞ;
yðtÞ ¼ CxðtÞ;

ð29Þ

where xðtÞ denotes the external disturbance and Ex rep-

resents the constant matrix with suitable dimension.

Definition 1 The perturbed time-delayed system (29) is

said to be robustly asymptotically stable with an H! dis-

turbance attenuation c[ 0 if system (29) with xðtÞ ¼ 0 is

robustly stable and under zero initial condition, there

exists:

Z1

0

yðtÞk k2
dt� c2

Z1

0

xðtÞk k2
dt: ð30Þ

Theorem 3 Consider the nonlinear perturbed time-de-

layed system (29). Suppose that Assumption 1 is guaran-

teed. If there exist matrices Q ¼ QT [ 0, and H ¼ QP1Q

with suitable dimensions such that the LMI condition:
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QAT þ AQþ H A1Q I Ex QLT QCT

� �H 0 0 0 0

� � �I 0 0 0

� � � �c2I 0 0

� � � � �I 0

� � � � � �I

0

BBBBBB@

1

CCCCCCA

\0

ð31Þ

is satisfied, then the perturbed time-delayed system (29) is

asymptotically stable and fulfills the H! performance

condition (30).

Proof The Lyapunov–Krasovsky candidate function is

defined as (11). Substituting (29) into the time derivative of

the Lyapunov–Krasovsky function gives:

_VðtÞ ¼ f ðxÞTPxðtÞ þ xðtÞTPf ðxÞ þ xðtÞT ATPþ PAþ P1

� �
xðtÞ

þ xðt � sÞTAT
1PxðtÞ þ xðtÞTPA1xðt � sÞ � xðt � sÞTP1xðt � sÞ

þ xðtÞTPExxðtÞ þ xðtÞTET
xPxðtÞ:

ð32Þ

Now, considering (3) and (32), we have:

_V � f ðxÞTPxðtÞ þ xðtÞTPf ðxÞ þ xðtÞT ATPþ PAþ P1

� �
xðtÞ

þ xðt � sÞTAT
1PxðtÞ þ xðtÞTPA1xðt � sÞ � xðt � sÞTP1xðt � sÞ

þ xðtÞTPExxðtÞ þ xðtÞTET
xPxðtÞ � f ðxÞT

If ðxÞ þ xðtÞTLTLxðtÞ:
ð33Þ

The H! disturbance attenuation in (30) can be written as:

xðtÞTCTCxðtÞ� c2xðtÞTxðtÞ: ð34Þ

From (33) and (34), one can obtain:

_V þ xðtÞTCTCxðtÞ � c2xðtÞTxðtÞ�XTHX ð35Þ

where using (33)–(35) gives:

xðtÞT ATPþ PAþ P1 þ CTC þ LTL
� �

xðtÞ þ f ðxÞTPxðtÞ þ xðtÞTPf ðxÞ
þ xðt � sÞTAT

1PxðtÞ þ xðtÞTPA1xðt � sÞ � xðt � sÞTP1xðt � sÞ
þ xðtÞTPExxðtÞ þ xðtÞTET

xPxðtÞ � f ðxÞT

If ðxÞ � c2xðtÞTxðtÞ�XTHX:

ð36Þ

where

X ¼ xðtÞT xðt � sÞT f ðxÞT xðtÞT
� �T

; ð37Þ

H ¼
ATPþ PAþ CTC þ P1 þ LTL PA1 P PEx

� �P1 0 0

� � �I 0

� � � �c2I

0

BB@

1

CCA\0

ð38Þ

Inequality (38) can be written in the form of (6) as

ATPþ PAþ CTC þ P1 þ LTL PA1 P PEx

� �P1 0 0

� � �I 0

� � � �c2I

0

BB@

1

CCA

�
LT

0

0

0

0

BB@

1

CCA �Ið Þ L 0 0 0ð Þ\0:

ð39Þ

Applying the Schur complement on (39) gives:

ATPþ PAþ CTC þ P1 PA1 P PEw LT

� �P1 0 0 0

� � �I 0 0

� � � �c2I 0

� � � � �I

0

BBBB@

1

CCCCA
\0:

ð40Þ

Similarly, if the Schur complement is applied on (40), one

obtains:

ATPþ PAþ P1 PA1 P PEx LT CT

� �PI 0 0 0 0

� � �I 0 0 0

� � � �c2I 0 0

� � � � �I 0

� � � � � �I

0

BBBBBB@

1

CCCCCCA

\0:

ð41Þ

Since Eq. (40) is non-LMI, assuming Q ¼ P�1,

H ¼ QP1Q, and pre- and post-multiplying (40) by

diagðQ;Q; I; I; I; IÞ, LMI (31) is achieved. h

4 Simulation Results

To illustrate the usefulness of the planned method, two

simulation examples are considered. In Example A, an

unstable nonlinear numerical system with state-delays is

proposed. In Example B, the proposed control technique is

applied on a practical RIP system with state-delays and

nonlinearities.

4.1 Example A: Unstable Nonlinear Numerical
System

The differential equations of this system are considered as:
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_x ¼
0:2 cos x1

0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2 þ 5
p

0:4 sin x3

0

B@

1

CAþ
0:1 0:2 0:3

0:1 0:1 �0:5

0:3 �0:4 �0:3

0

B@

1

CAx

þ
0 0:01 �0:01

0:05 �0:04 0

0:01 0:02 �0:03

0

B@

1

CAxðt � sÞ

þ
0:012 0:013 0:014 0:016

0:01 0:014 0:01 0

0:013 0:017 0:018 0:011

0

B@

1

CAu;

y ¼
1:5 2 1:25

0:84 0:5 0:2

	 

x:

ð42Þ

For simulation, the initial states and time-delay value are

initialized as: xð0Þ ¼ 1 0 4 � 6½ �T , s ¼ 2. The Lips-

chitzian matrix is specified by:

L ¼
0:2 0 0

0 0:3 0

0 0 0:4

2

4

3

5:

The solutions of LMI (20) are attained using LMI� tool-

box in MATLAB� software and YALMIP� solver as:

H ¼
0:0141 0:0316 0:0262

0:0316 0:1419 0:0649

0:0262 0:0649 0:1196

2

4

3

5;

P ¼
17:238 �4:7564 �10:5622

�4:7564 27:9164 �20:9467

�10:5622 �20:9467 39:3667

2

4

3

5:

P1 ¼
12:5486 1:6137 �25:1278

1:6137 84:36 �86:4733

�25:1278 �86:4733 134:515

2

4

3

5;

F ¼

�90:2711 �93:498 189:909

�74:8967 �56:8381 75:6911

100:6461 107:5033 �216:382

�3:705 46:7269 �7:824

2

664

3

775

Figure 1 displays the states of the differential equations

of system (42) by using the nonlinear state-feedback con-

troller (4). All of the state trajectories are appropriately

convergent to the origin. The output responses of the sys-

tem are demonstrated in Fig. 2. Therefore, the simulations

are robust in the presence of time delays and indicate sat-

isfactory and reasonable performance as well.

4.2 Example B: A Practical RIP System

RIP is a well-known test platform for evaluating control

strategies. The control objective is to balance the pendulum in

upright unstable equilibrium position. RIP system involves a

rotational servo-motor which drives the output gear, rotational

arm and an inverted pendulum. This system as an underac-

tuated mechanical system has significant application in

robotics, aerospace, marine vehicles and pointing control. In

Fig. 3, the schematic diagram of the RIP system is shown. Let

ap, ha,mp, lp, ra, u, sa and Jb be the pendulum angle, drive disk

angle (or arm angle), pendulum mass, pendulum length, arm

length, control signal, motor torque and moment of inertia of

the effective mass, correspondingly.

The dynamical equations of RIP with constant time

delays, friction and backlash effects are given by:
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Fig. 1 The trajectories of the system states
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Fig. 2 The output responses

pl
pm

pα

ar

aθ

x

y

z

u

Fig. 3 Schematic diagram of RIP system
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Ap
€ha � ðCp sin apÞ _a2

p þ ðBp sin 2apÞ _ap _ha þ Fp
_ha

þ Gpsgnð _haÞ þ Hpha ¼ Ipuþ
ApBp � C2

p

Bp

apðt � sÞ
_apðt � sÞ
haðt � sÞ
_haðt � sÞ

2

6664

3

7775
;

ð43Þ

Bp€ap � ðBp sin ap cos apÞ _h2
a � Dp sin ap þ Ep _ap ¼ 0 ð44Þ

where Ep, Fp, Ip, Hp and Gp are damping constant of the

pendulum, damping constant of the arm, control input

coefficient, elasticity coefficients and arm Coulomb fric-

tion, respectively. The parameters Ap, Bp, Cp and Dp are

considered as (Hassanzadeh and Mobayen 2011):

Ap ¼ mpr
2
a þ Jb;

Bp ¼
1

3
mpl

2
p;

Cp ¼
1

2
mpralp;

Dp ¼
1

2
mpglp:

ð45Þ

The constant parameters of the nonlinear dynamical

model (43), (44) are set as:

Ap ¼ 3:291; Dp ¼ 6:052; Gp ¼ 1:428;
Bp ¼ 0:237; Ep ¼ 0:0132; Hp ¼ 1:72;
Cp ¼ 0:237; Fp ¼ 14:283; Ip ¼ 6:38:

The nonlinear time-delayed model (43), (44) with some

reformations can be illustrated in the form of (1) as fol-

lows:

where x ¼ ap _ap ha _ha
� �T

. For the simulation usage,

the initial states are specified as:

xð0Þ ¼ p �1 �4 2½ �T , and the time-delay is chosen

as s ¼ 2. The Lipschitzian matrix is specified by:

L ¼

0:2 0 0 0

0 0:3 0 0

0 0 0:4 0

0 0 0 0:8

2

664

3

775:

The solutions of matrices H, P, P1, F are calculated using

MATLAB� LMI� toolbox and YALMIP� routine as a

solver as:

H ¼

00:7213�00:148400:176510:7343

�00:148400:750300:191610:9435

00:176500:191600:585320:2188

10:734310:943520:2188120:6601

2

6664

3

7775
;

P ¼

1:11070:49340:41320:4817

0:49341:78640:1968 � 0:1674

0:41320:19681:35760:6499

0:4817 � 0:16740:64992:2046

2

6664

3

7775
:

P1 ¼

7:85121:64639:524523:4526

1:64631:25982:07905:7018

9:52452:079012:197329:2457

23:45265:701829:245770:6682

2

6664

3

7775
;

F ¼ �3:5140 � 3:2700 � 3:3280 � 2:0280½ �:

The time trajectories of states of the RIP system by using

the suggested control law are presented in Fig. 4. The

initial position is xð0Þ ¼ �3 0 0 0½ �T , related to the

experimental part. It is observed from Fig. 4 that the states

of the RIP system can be regulated to the origin, irre-

spective of the time delays and nonlinearities. The time

response of the control signal is depicted in Fig. 5, which

displays the respectable efficiency of the suggested

scheme. These simulations prove the robustness

_x ¼

0

ðsin x1 cos x1 Þx2
4 þ 25:54 sin x1

0

ð0:072 sin x1 Þx2
2 � ð0:072 sin 2x1Þx2x4 � 0:43sgnðx4Þ

0

BBB@

1

CCCA

þ

0 1 0 0

0 �0:056 0 0

0 0 0 1

0 0 �0:52 �4:34

0

BBB@

1

CCCA
xþ 0:93

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0

BBB@

1

CCCA
xðt � sÞ þ

0:2

0:1

0:1

1:94

0

BBB@

1

CCCA
u;

y ¼ 1 0 0 0ð Þx;

ð46Þ
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performance of the offered controller and show reasonable

efficiency as well.

In what follows, an experimental assessment of the

proposed controller on the practical RIP system (from

CoDAlab at Universitat Politècnica de Catalunya) is pre-

sented. The experiment is performed on an ECP Model 220

industrial emulator with inverted pendulum that includes a

PC-based platform and DC brushless servo system (Model

2003). The mechatronic system includes a motor used as

servo actuator, a power amplifier and two encoders which

provide accurate position measurements; i.e., 4000 lines

per revolution with 4X hardware interpolation giving

16,000 counts per revolution to each encoder; 1 count

(equivalent to 0.000,392 radians or 0.0225 degrees) is the

lowest angular measurable (Model 2003). The pendulum is

fixed on the load disk (see Fig. 6). Experimental results for

the pendulum angle, load disk angle and time response of

the applied control signal are demonstrated in Figs. 7 and

8, revealing that the suggested control method is indeed

effective in practice. The video of this experiment can be

seen at https://youtu.be/CepUg2CjPu4.

5 Conclusions

In this paper, the scheme of nonlinear feedback stabiliza-

tion procedure is provided for the stabilization control of a

class of nonlinear systems with time delays and Lipschitz

Fig. 4 The trajectories of the

RIP system states

Fig. 5 The control input
Fig. 6 Practical RIP system, from CoDAlab laboratory (UPC) (see

video https://youtu.be/CepUg2CjPu4)
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nonlinearities. Based on the Lyapunov–Krasovskii stability

theory, the stability performance of the system is verified in

the form of LMIs and the states are convergent uniformly

asymptotically to the origin. The controller gains are

specified by the sufficient conditions using LMIs.

Furthermore, the problem of robust H! performance

analysis for a class of nonlinear perturbed time-delayed

systems is investigated in this paper. The obvious simula-

tion and experimental results are displayed to confirm the

effectiveness of the presented technique, and finally, some

acceptable results are realized. The recommended control

technique can attain favorable tracking performance for the

higher-order nonlinear dynamical systems.
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