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Abstract
At the nanoscale, shear and surface energy play important roles in mechanical behavior of nanostructures, and therefore,

such effects should be appropriately considered in the corresponding structural modeling. Herein, surface energy-based

Euler–Bernoulli, Timoshenko, and higher-order beam theories are implemented to study buckling of thermally affected

tapered nanowires with axial variation of materials. The governing equations associated with thermo-elastic buckling of

nanowires are derived for an arbitrary variation of material properties of both bulk and surface layer across the length of

nanostructure. In the lack of analytical solution, reproducing kernel particle method is adopted and the critical buckling

load is evaluated. The effects of temperature gradient, slenderness ratio, power-law index of the material and geometry of

the nanowire, radius, as well as transverse and rotational stiffness of the surrounding elastic medium on the buckling

behavior of the nanowire are investigated. The importance of consideration of both surface energy and shear deformation

effects on the obtained results is also highlighted. This work could be taken into account as a preliminary research in

examining buckling of more complex nanosystems such as vertically aligned nanowires with arbitrary material’s distri-

bution and cross section.

Keywords Thermo-elastic buckling � Tapered nanowires � Elasticity theory of Gurtin–Murdoch � Shear deformable beam

theories � Numerical modeling

1 Introduction

A nanowire is a nanostructure of thickness or diameter

about tens of nanometers or less and of large amount of the

length-to-width ratio. To date, various types of nanowires

have been synthesized, including metallic (e.g., Au, Cu,

Ag, Ni, Pt, Al) (Kwak et al. 2016; Nunes et al. 2016),

semiconducting (e.g., Si, GaN, ZnO, InP) (Ruffino et al.

2015; Tao et al. 2015; Srivastava et al. 2016), supercon-

ducting (e.g., NbN, BSCCO, YBCO) (Korneev et al. 2012;

Duarte et al. 2013), molecular nanowires with organic or

inorganic molecules [e.g., DNA or ðC6H14NÞ2] (Mousavi

et al. 2015; Lin et al. 2014), and insulating (e.g., TiO2 or

SiO2) (Ahn et al. 2015; Tang et al. 2015). These nanowires

would have great applications in energy harvesting, dye-

sensitized solar cells, mechanical sensing, photon detec-

tion, electronics, and as resonators. Nowadays, scientists

are thinking to exploit arrays of nanowires as building

blocks of the upcoming advanced technologies of nano-

generators (Wang et al. 2007; Zhu et al. 2010; Xu et al.

2010) as well as micro-/nanoelectromechanical systems

(MEMS/NEMS) (Shi et al. 2005; Hochbaum et al. 2005;

Patton and Zabinski 2005). Nanowires are also of particular

interest to be exploited for enhancing flow boiling heat

transfer (Chen et al. 2009; Li et al. 2012a; Lu et al. 2011),

carrying safe heat flux in transistors (Pop et al. 2006), and

managing heat in electronic nanodevices (Schelling et al.

2005). In most of these potential applications, the axial

load-bearing capacity of heated nanowires should be

carefully investigated.
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As the dimensions of a structure decrease, the ratio of

the surface strain energy to that of the bulk would grow.

Thereby, at the nanoscale, the effect of the surface energy

on the overall mechanical behavior of the nanostructure

becomes important. In macrostructures, the surface effect

is negligible and the classical elasticity theory (CET) could

be rationally employed for predicting their statics,

dynamical, and buckling behaviors. However, there exist

evidences that this theory fails in capturing the near to

exact mechanical behavior of nanowires (Cuenot et al.

2004; Jing et al. 2006; Gordon et al. 2009). As an approach

to conquer this deficiency of the CET, Gurtin and Mur-

doch (Gurtin and Murdoch 1975, 1976) proposed a novel

theory of elasticity to appropriately include energy of

surface atoms. Based on this elegantly developed model,

the surface is a very thin layer which has been perfectly

attached to the bulk. It is indicated that the displacements

and strains of the surface layer are identical to those of the

neighboring bulk. However, the mechanical behavior of the

surface layer is entirely different from that of the bulk. The

strain–stress relations of the surface layer of isotropic

structures are commonly characterized by three constants

(i.e., residual surface stress as well as two Lame’s con-

stants), whereas those of the isotropic bulk are governed by

only two Lame’s constants associated with the bulk. Such a

fact does not make the resulting governing equations more

complex than those obtained via the CET. Factually,

including the surface layer only leads to insertion of extra

terms to the inertia and stiffness terms of the bulk. Con-

cerning mechanical behavior of beam-like nanostructures,

transverse vibrations (Hasheminejad et al. 2011; Kiani

2016a), elastic buckling (Wang and Feng 2009, 2010; Xiao

et al. 2010; Park 2012; Kiani 2015a, b, 2016b, c; Chiu and

Chen 2012; Ansari et al. 2011), and postbuckling (Li et al.

2011; Wang and Yang 2011; Li et al. 2012b; Ansari et al.

2013; Kiani 2017a) of nanowires and nanobeams have been

studied in the context of the SET of Gurtin–Murdoch.

Additionally, nonlocal continuum field theory in conjunc-

tion with the SET has been also employed for buckling

analysis of several nanoscaled structures (Lee and Chang

2011; Wang and Wang 2011; Juntarasaid et al. 2012;

Farajpour et al. 2013; Hu et al. 2014; Kiani 2017b).

One way to reduce the stresses within a thermally

affected nanobeam is to use an appropriate mixture of

materials across the length. In fact, if we could exploit

materials whose coefficients of thermal expansion as well

as those of thermal conductivity would gradually reduce by

approaching to the heat source, lower stresses would be

generated within the nanobeam, and therefore, the nanos-

tructure could bear a more axial load. There are many

experimental works in building structures at the nanoscale

with functional materials for various purposes (Barth et al.

2005; Yang et al. 2008; Matyjaszewski and Tsarevsky

2009; Cheng et al. 2011). In general, it can be imagined

that the properties of the materials in a nanobeam could

vary along its length and across its thickness. Since pro-

viding nanoscaled structures with variation of materials in

both directions is not an easy task, the material properties

are allowed to gradually change along a special direction

according to the required functionality from the nanos-

tructure. Based on this fact, buckling of nanobeams made

from transversely functionally graded materials (Simsek

and Yurtcu 2013; Eltaher et al. 2013) has been examined

using advanced continuum-based theories. Nevertheless,

Thermo-elastic buckling of nanoscaled beam-like struc-

tures with axially functionally graded materials has not

been discussed and formulated yet. Given the importance

of the subject, this work is devoted to study axial buckling

of thermally affected nanobeam with allowance of material

variation across the length.

Using surface elasticity theory of Gurtin–Murdoch,

thermo-elastic buckling of tapered nanowires/nanobeams

with axially varying material embedded within an elastic

matrix, hereinafter called axially varying nanowir-

es (AVNWs), is going to be investigated. Based on the

Euler–Bernoulli beam theory (EBT), Timoshenko beam

theory (TBT), and higher-order beam theory (HOBT), the

governing equations are constructed. To solve the resulting

relations, reproducing kernel particle method (RKPM) is

exploited and the critical buckling load of the thermally

affected nanostructure based on various beam models is

evaluated. By comparing the predicted results by the

RKPM and those of the Galerkin-based assumed mode

method (AMM), the efficiency of the suggested numerical

scheme is proved. Subsequently, the roles of influential

factors on the predicted critical buckling load are

explained. The discrepancies between the obtained results

based on the classical elasticity theory (CET) and those of

the surface elasticity theory (SET) are also displayed and

discussed. This work, with its own generality in buckling

analysis of individual nanowires with axially varying

materials, can be considered as a pivotal exploration for

buckling analysis of double-nanowire systems or even

vertically aligned nanowires in thermal environments.

These hot topics could be followed up by the interested

researchers since the latter one would have great applica-

tions in MEMS/NEMS.

2 Definition and Assumptions
of the Nanomechanical Problem

Consider an elastic non-prismatic nanowire/nanobeam of

length lb whose material properties vary gradually along its

length (see Fig. 1). The nanowire has circular cross section

whose the diameter of the bulk is represented by D0ðxÞ.
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The nanowire is prohibited from any axial movement at its

ends and it is subjected to axial compressive load of

magnitude N as well as the axial thermal field T ¼ TðxÞ.
Evaluation of the axial load corresponding to the buckling

of such a nanostructure (i.e., Ncr) is of concern in the

present work. In order to model the nanostructure, the

following assumptions are made:

1. The buckling behavior of the nanostructure under the

action of both the axial load and the induced thermal

field is studied in the context of elastic small deflec-

tion. In other words, only thermo-elastic buckling

analysis of the nanowire is of concern. For the

postbuckling analysis of the nanowire, one confronts

to a large deflection problem and special treatments

should be considered in modeling of the problem.

2. The material properties of materials only vary across

the length of the nanowire. For nanowires with

bidirectionally varying materials, more refined models

should be constructed. For instance, in the case of

variation of material properties across the transverse

direction, the neutral axis of the beam-like nanowire

would not necessarily pass through the center of cross-

sectional area.

3. The heat transfer occurs axially due to the existence of

steady temperature gradient between the ends of the

nanowire. Thereby, the resulted temperature field only

varies across the axial direction. It implies that a steady

axially thermo-mechanical force would be generated

within the nanowire. For the case of transverse heat

transfer, thermo-mechanical bending moment would

be also generated within the nanowire. Additionally,

when the temperature of the nanowire’s ends is time

dependent, an unsteady temperature resulted in the

body of the nanowire and the generated axial force

would be time dependent as well. Such more general

cases could be considered for future works.

4. The possible lateral interactions between the nanowire

and the surrounding elastic medium are modeled by

continuous transverse and rotational springs.

Generally, the constants of these springs could vary

along the nanowire’s length and depend on the

material properties of both nanowire and matrix as

well as their interatomic bonds. Without loss of

generality, to focus on the roles of variation of cross

section and material properties of the nanowire in the

critical buckling load, the variation of the springs’

constants across the nanowire’s length is ignored. In all

presented models, the constants of the transverse and

rotational springs are considered to be Kt and Kr,

respectively.

In the next part, the governing equations associated with

thermo-elastic buckling of nanowires/nanobeams with

varying cross section are presented based on the EBT,

TBT, and HOBT. For each developed model, a numerical

methodology based on the RKPM is developed and the

critical compressive buckling load of the nanostructure is

determined.

3 Axially Thermo-Elastic Buckling Based
on the Surface Energy-Based EBT

3.1 Governing Equations Using the EBT

According to the EBT, the displacement fields of both bulk

and the surface layer read:

uEx ðx; y; zÞ ¼ �z
dwEðxÞ

dx
; uEz ðx; y; zÞ ¼ wEðxÞ; ð1Þ

where uEx and uEz in order are the axial and transverse

displacements of the nanowire, wEðxÞ is the deflection of

the neutral axis of the nanowire, and d stands for the

derivative symbol. Thereby, the only nonzero strain within

the bulk would be:

�Exx ¼ �z
d2wEðxÞ

dx2
: ð2Þ

In the context of the surface elasticity theory of Gurtin–

Murdoch (Gurtin and Murdoch 1975, 1976), the only

nonzero stresses within the surface layer are as:

sExx ¼ s0ðxÞ þ k0ðxÞ þ 2l0ðxÞð Þ duEx
dx

¼ s0ðxÞ � z k0ðxÞ þ 2l0ðxÞð Þ d2wE

dx2
;

sExz ¼ nzs0ðxÞ
dwE

dx
;

ð3Þ

where sExx is the surface axial stress, sExz is the surface shear

stress, s0 is the residual surface stress under unconstrained

conditions, k0 and l0 are the axially varying Lame’s

r(x)

Bulk with varying materials

x

z

Kt

Kr

Ten,R

A thermally affected axially varying nanowire 
embedded in an elastic matrix 

NN

Surface layer with varying materials 

Ten,L

Fig. 1 A thermally affected tapered nanowire with axially varying

material subjected to thermo-mechanical axial force
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constants of the surface layer, and n ¼ nyey þ nzez is the

unit normal vector of the surface layer.

It is assumed that the bulk normal stress along the z-axis

(i.e., rEzz) would vary linearly between their surface values

at the bottom and top axes. Thereby,

rExx ¼ Eb�
E
xx þ mb r

E
zz ¼ �z EbðxÞ �

2s0ðxÞmbðxÞ
D0ðxÞ

� �
d2wE

dx2
;

ð4Þ

where q0ðxÞ is the surface density, EbðxÞ and mbðxÞ in order

are the spatially varying Young’s modulus and Poisson’s

ratio of the bulk.

By taking an infinitesimal element of the nanowire,

considering all the forces act on the bulk and the surface

layer, and using Newton’s second law, the governing

equations associated with the elastic buckling of the ther-

mally affected AVNW are obtained as follows:

�
dME

by

dx
�
Z
S
z

dsExx
dx

dS þ QE
bz
� Kr

dwE

dx
¼ 0; ð5aÞ

�
dQE

bz

dx
�
Z
S

dsExz
dx

nz dS þ N � NTð Þ d2wE

dx2
þ Ktw

E ¼ 0;

ð5bÞ

where dS is the length of a tiny element of the surface

layer’s cross section, QE
bz

is the resultant shear force of the

bulk, and NT represents the resulted axial force in the

nanostructure due to the thermal field.

For a nanowire in which the environmental temperatures

at the left and right ends are denoted by Ten;L and Ten;R, the

temperature field within the nanowire is calculated by:

TðnÞ ¼ v22C1 � v12C2

v22v11 � v12v21

� � Z n

0

dn0

kðn0Þ þ
v11C2 � v21C1

v22v11 � v12v21

� �
;

ð6Þ

where

n ¼ x

lb
; bL ¼ hL lb

kL
; bR ¼ hR lb

kR
; v11 ¼ � 1

kL
;

v12 ¼ bL; v21 ¼ bR

Z 1

0

dn0

kðn0Þ �
1

kR
; v22 ¼ bR;

C1 ¼ bL Ten;L; C2 ¼ bR Ten;R;

ð7Þ

in which k(x), kL, and kR represent the coefficients of

thermal conductivity of the nanobeam’s materials, the left

end, and the right end, respectively, hL and hR in order

denote the heat transfer coefficients of the left end and the

right end of the nanostructure.

It could be readily researched that the thermally axial

force within the nanowire accounting for the surface effect

is expressed by:

NT ¼ �
Z 1

0

EbðnÞAbðnÞaTðnÞ þ E0ðnÞS0ðnÞaT0ðnÞð Þ TðnÞ dn;

ð8Þ

where E0ðxÞ and EbðxÞ in order are Young’s modulus of the

surface layer and the bulk, aTðxÞ and aT0ðxÞ denote the

coefficients of thermal expansion of the bulk and the sur-

face layer, respectively, AbðxÞ denotes the cross-sectional

area of the bulk, and S0ðxÞ is the length of surface layer’s

cross section.

In Eq. (5), ME
by

is the resultant bending moment of the

bulk about the y-axis which is given by:

ME
by
¼
Z
Ab

zrExx dA

¼ � EbðxÞIbðxÞ �
2s0ðxÞmbðxÞIbðxÞ

D0ðxÞ

� �
d2wE

dx2
: ð9Þ

where Ab represents the area of the bulk’s cross section, dA

is its infinitesimal part, and IbðxÞ is the moment inertia of

the bulk’s cross section. By mixing Eqs. (5a) and (5b) in

view of Eq. (9) through using the following dimensionless

quantities,

wE ¼ wE

lb
; k ¼ lb

rb;L
; AbðnÞ ¼

AbðxÞ
Ab;L

; IbðnÞ ¼
IbðxÞ
Ib;L

;

N
E ¼ Nl2b

Eb;LIb;L
; N

E

T ¼ NTl
2
b

Eb;LIb;L
; K

E

t ¼ Ktl
4
b

Eb;LIb;L
;

K
E

r ¼ Krl
2
b

Eb;LIb;L
; vE1 ðnÞ ¼

q0ðxÞS�0ðxÞ
qb;LAb;L

;

vE2 ðnÞ ¼
q0ðxÞI�0ðxÞ �

2mbðxÞIbðxÞq0ðxÞ
D0ðxÞ

qb;LIb;L
;

vE3 ðnÞ ¼
ðk0ðxÞ þ 2l0ðxÞÞI�0ðxÞ �

2mbðxÞIbðxÞs0ðxÞ
D0ðxÞ

Eb;LIb;L
;

vE4 ðnÞ ¼
s0ðxÞS�0ðxÞl2b
Eb;LIb;L

; ð10Þ

where rb;L, Ab;L, Ib;L, qb;L, and Eb;L are the gyration radius,

area, moment inertia, bulk’s density, and Young’s modulus

of the bulk of the left end’s cross section, respectively. By

introducing Eqs. (10) to (5) and using Eq. (9), the dimen-

sionless governing equation of the column buckling of

thermally affected nanostructure based on the EBT takes

the following form:

d2

dn2
EbðnÞIbðnÞ þ vE3 ðnÞ
� � d2wE

dn2

� �

� vE4 ðnÞ þ N
E

T þ K
E

r � N
E

� 	 d2wE

dn2
þ K

E

t w
E ¼ 0: ð11Þ

Due to the variation of both geometry and material prop-

erties along the length of the nanowire, finding an
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analytical solution to Eq. (11) is not an easy task. In the

following part, an efficient numerical scheme is proposed

to determine the critical buckling load of the nanowire.

3.2 Thermo-Elastic Buckling Analysis of the EBT-
Based Nanowire via RKPM

RKPM is an efficient meshless methodology that was

developed by Liu and coworkers (Liu et al. 1995a, b; Liu

and Chen 1995) about twenty years ago. Commonly, this

method is employed for solving the mechanical/physical

problems that suffer from shooting (i.e., high stress varia-

tions, high gradients of the physical fields), and those with

the unknown fields of higher-order derivatives. Until now,

this approach has been broadly implemented in mechanical

analysis of structures (Chen et al. 1996; Wang and Liu

2004; Jun et al. 1998; Liu and Jun 1998). This is mainly

because of this fact that the shape functions of this

numerical method are constructed based on the window

functions with higher-order of continuity.

Now the deflection of the nanowire modeled on the basis

of the EBT is discretized in the following form:

wEðnÞ ¼
XNP

i¼1

/w
i ðnÞwE

i ; ð12Þ

where NP is the number of RKPM’s particles, /w
i ðnÞ is the

shape function pertinent to the ith particle of the dimen-

sionless field wE, and wE
i is the corresponding nodal

parameter value of the ith particle. By pre-multiplying both

sides of Eq. (11) by dwE, in which d is the variation

symbol, taking the integral in the spatial interval [0,1], and

exploiting integration by parts, the following set of linear

equations are obtained as:

½KE

b �
ww

� ½KE

g �
ww

� 	
wE ¼ 0; ð13Þ

where the nonzero elements of the thermo-material stiff-

ness matrix and those of dimensionless geometry stiffness

matrix are defined by:

K
E

b

h iww
ij
¼
Z 1

0

EbðnÞIbðnÞ þ vE3 ðnÞ
� � d2/w

i

dn2

d2/w
j

dn2

þ vE4 ðnÞ þ N
E

T þ K
E

r

� 	 d/w
i

dn

d/w
j

dn
þ K

E

t /
w
i /

w
j

0
BB@

1
CCAdn;

ð14aÞ

K
E

g

h iww
ij
¼ N

E
Z 1

0

d/w
i

dn

d/w
j

dn
dn; ð14bÞ

wE ¼ \wE
1 ;w

E
2 ; . . .;w

E
NP [

T: ð14cÞ

For nanowires with simply supported ends, the follow-

ing boundary conditions in the dimensionless manner

should be enforced:

wEð0Þ ¼ wEð1Þ ¼ 0; M
E

by
ð0Þ ¼ M

E

by
ð1Þ ¼ 0; ð15Þ

where M
E

by
¼

ME
by
lb

Eb;LIb;L
. In order to satisfy the essential

boundary conditions from all conditions in Eq. (15), the

corrected collocation method (Wagner and Liu 2000) is

used. By solving the resulting set of eigenvalue equations

for the dimensionless axial buckling loads, N
E

cr;i, the critical

compressive buckling load of the thermally affected

nanowire based on the EBT is calculated by: NE
cr ¼

N
E

cr;1 Eb;LIb;Ll
�2
b where N

E

cr;1 denotes the lowest value of the

obtained dimensionless buckling loads.

4 Axially Thermo-Elastic Buckling Based
on the Surface Energy-Based TBT

4.1 Governing Equations Using the TBT

In the framework of TBT, the axial displacement (uTx ) and

the transverse displacement (uTz ) of the thermally affected

nanowire are related to the deformations of the neutral axis

by the following relations:

uTx ðx; y; zÞ ¼ �zhTy ðxÞ; uTz ðx; y; zÞ ¼ wTðxÞ; ð16Þ

where wT is the deflection field of the neutral axis, and hTy
represents its angle of rotation field. Hence, the only non-

zero strains of both bulk and surface are:

�Txx ¼ �z
dhTy
dx

; cTxz ¼
dwT

dx
� hTy : ð17Þ

Based on the proposed surface elasticity theory by Gurtin–

Murdoch (Gurtin and Murdoch 1975, 1976), the stresses of

the surface layer of the axially varying nanowire modeled

on the basis of the TBT are expressed by:

sTxx ¼ s0ðxÞ þ k0ðxÞ þ 2l0ðxÞð Þ duTx
dx

¼ s0ðxÞ � z k0ðxÞ þ 2l0ðxÞð Þ
dhTy
dx

;

sTxz ¼ nzs0

dwT

dx
:

ð18Þ

By assuming linear variation of the normal stress of the

bulk between their surface counterparts along the z-axis

(i.e., rTzz), the axial stress in the bulk takes the following

form:

rTxx ¼ z �EbðxÞ
dhTy
dx

þ 2mbðxÞs0ðxÞ
D0ðxÞ

d2wT

dx2

 !
; ð19Þ

and the shear stress within the bulk is given by:
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rTxz ¼ GbðxÞ
dwT

dx
� hTy

� �
: ð20Þ

where GbðxÞ ¼ EbðxÞ
2ð1þmðxÞÞ represents the shear elastic modu-

lus. The governing equations of a beam-like nanostructure

modeled based on the TBT in terms of its internal forces

are given by:

�
dMT

by

dx
� d

dx

Z
S
z sTxx dS

" #
þ QT

bz
þ Krh

T
y ¼ 0; ð21aÞ

�
dQT

bz

dx
� d

dx

Z
S
sTxznz dS

" #
þ N � NT � s0ðxÞS�0ðxÞ
� �

d2wT

dx2
þ Ktw

T ¼ 0; ð21bÞ

where the underlined statements in Eqs. (21a) and (21b) in

order represent the bending moment and the shear force of

the surface layer, QT
bz

is the shear force of the bulk along

the z-axis, and MT
by

is the bending moment of the bulk about

the y-axis which are evaluated by the following relations:

MT
by
¼
Z
AbðxÞ

zrTxx dA

¼ �EbðxÞIbðxÞ
dhTy
dx

þ 2mbðxÞIbðxÞ
D0ðxÞ

s0ðxÞ
d2wT

dx2
� q0ðxÞ

d2wT

dt2

� �
; ð22aÞ

QT
bz
¼
Z
AbðxÞ

ksðxÞ rTxz dA ¼ ksðxÞGbðxÞAbðxÞ
dwT

dx
� hTy

� �
;

ð22bÞ

where ksðxÞ denotes the shear correction factor which is set

equal to 0.9 for nanowires with circular cross sec-

tion. Through introducing Eqs. (16), (18), (22a), and (22b)

to Eqs. (21a)–(21d), and employing the following dimen-

sionless quantities:

wT ¼ wT

lb
; h

T

y ¼ hTy ; ksðnÞ ¼
ksðxÞ
ks;L

;

GbðnÞ ¼
GbðxÞ
Gb;L

; K
T

t ¼ Ktl
2
b

ks;LGb;LAb;L
;

K
T

r ¼ Kr

ks;LGb;LAb;L
; gðnÞ ¼ EbðxÞIbðxÞ

ks;LGb;LAb;Ll
2
b

;

N
T ¼ N

ks;LGb;LAb;L
; N

T

T ¼ NT

ks;LGb;LAb;L
;

vT1 ðnÞ ¼
q0ðxÞS�0ðxÞ
qb;LAb;L

;

vT2 ðnÞ ¼
q0ðxÞI�0ðxÞ
qb;LIb;L

; vT3 ðnÞ ¼
2mbðxÞq0ðxÞ
qb;LD0ðxÞ

;

vT4 ðnÞ ¼
2mbðxÞIbðxÞs0ðxÞ

ks;LGb;LAb;Ll
2
bD0ðxÞ

;

vT5 ðnÞ ¼
k0ðxÞ þ 2l0ðxÞð ÞI�ðxÞ

ks;LGb;LAb;Ll
2
b

; vT6 ðnÞ ¼
s0ðxÞS�0ðxÞ
ks;LGb;LAb;L

;

ð23Þ

the dimensionless governing equations for examining col-

umn buckling of thermally affected tapered nanowires with

axial material variation are obtained as:

d

dn
vT4 ðnÞ

d2wT

dn2

� �
� d

dn
gðnÞ þ vT5 ðnÞ
� � dh

T

y

dn

" #

� ksðnÞGbðnÞAbðnÞ
dwT

dn
� h

T

y

� �
þ K

T

r h
T

y ¼ 0; ð24aÞ

� d

dn
ksðnÞGbðnÞAbðnÞ

dwT

dn
� h

T

y

� �� �

� vT6 ðnÞ þ N
T

T � N
T

� 	 d2wT

dn2
þ K

T

t w
T ¼ 0: ð24bÞ

Seeking for an analytical solution to the critical buckling

load according to Eqs. (24a) and (24b) is a very problem-

atic job. To overcome such a difficulty, an efficient

numerical scheme is proposed in the next part.

4.2 Thermo-Elastic Buckling Analysis of the TBT-
Based Nanowire via RKPM

The deformation fields of the neutral axis of the nanowire

modeled based on the TBT are discretized by RKPM in the

following form:

wTðnÞ ¼
XNP

i¼1

/w
i ðnÞwT

i ; h
T

y ðnÞ ¼
XNP

i¼1

/hy
i ðnÞh

T

yi
; ð25Þ

where /w
i and /hy

i are the RKPM’s shape functions, and wT
i

and h
T

yi
are the nodal parameter values. Now, Eqs. (24a)

and (24b) in order are pre-multiplied by dh
T

y , and dwT .

After taking successful integration by parts and using

Eq. (25), one can arrive at the following set of equations:

½KT

b �
hyhy ½KT

b �
hyw

½KT

b �
why ½KT

b �
ww

2
4

3
5�

½KT

g �
hyhy ½KT

g �
hyw

½KT

g �
why ½KT

g �
ww

2
4

3
5

0
@

1
A H

T

y

wT

( )

¼
0

0


 �
; ð26Þ

where the non-vanishing submatrices and vectors are given

by:
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K
T

b

h ihyhy
ij

¼
Z 1

0

ksðnÞGbðnÞAbðnÞ þ K
T

r

� 	
/hy
i /

hy
j

�

þ gðnÞ þ vT5 ðnÞ
� � d/hy

i

dn

d/hy
j

dn
Þdn; ð27aÞ

K
T

b

h ihyw
ij

¼ �
Z 1

0

ksðnÞGbðnÞAbðnÞ/hy
i

d/w
j

dn

�

þ vT4 ðnÞ
d/hy

i

dn

d2/w
j

dn2
Þdn; ð27bÞ

K
T

b

h iwhy
ij

¼ �
Z 1

0

ksðnÞGbðnÞAbðnÞ
d/w

i

dn
/hy
j dn; ð27cÞ

K
T

b

h iww
ij

¼
Z 1

0

ksðnÞGbðnÞAbðnÞ þ vT6 ðnÞ þ N
T

T

� 	�

d/w
i

dn

d/w
j

dn
þ K

T

t /
w
i /

w
j Þ dn; ð27dÞ

K
T

g

h iww
ij
¼ N

T
Z 1

0

d/w
i

dn

d/w
j

dn
dn; ð27eÞ

H
T

y ¼ \h
T

y1
; h

T

y2
; . . .; h

T

yNP
[ T; ð27fÞ

wT ¼ \wT
1 ;w

T
2 ; . . .;w

T
NP [

T: ð27gÞ

For simply supported nanowires modeled via the TBT,

the boundary conditions in the dimensionless form read:

wTð0Þ ¼ wTð1Þ ¼ 0; M
T

by
ð0Þ ¼ M

T

by
ð1Þ ¼ 0; ð28Þ

where M
T

by
¼

MT
by

ksGb;LAb;Llb
. To impose the essential conditions

from all those given in Eq. (28), the corrected collocation

method (Wagner and Liu 2000) is employed. By solving

the resulting set of eigenvalue equations for the dimen-

sionless buckling loads, N
T

i , the buckling loads of the

nanostructure on the basis of the TBT are readily evaluated

by: NT
i ¼ ksGb;LAb;L N

T

i . The lowest buckling load (i.e.,

NT
cr) represents the critical buckling load of the thermally

affected non-prismatic nanowire with varying material

properties.

5 Axially Thermo-Elastic Buckling Based
on the Surface Energy-Based HOBT

5.1 Governing Equations Using the HOBT

By employing the HOBT of Reddy and Bickford, the dis-

placement fields of the surface layer as well as those of the

bulk as a function of the deformations of the neutral axis of

the nanowire are expressed by:

uHx ðx; y; zÞ ¼ � z� aðxÞz3
� �

wH
y ðxÞ þ aðxÞz3 dwHðxÞ

dx

� �
;

uHz ðx; y; zÞ ¼ wHðxÞ;
ð29Þ

where wH
y is the angle of rotation of the neutral axis about

the y-axis, wH represents the deflection of the neutral axis

in the z direction, and aðxÞ ¼ 4
3D2

0
ðxÞ ensures us on the var-

nishing of the shear stress on the outermost surface of the

nanowire.

In the framework of small deformations, the only strains

of the bulk are given by:

�Hxx ¼ � z� aðxÞz3
� � dwH

y

dx
þ az3 d2wH

dx2

" #
;

cHxz ¼ 1 � 3aðxÞz2
� � dwH

dx
� wH

y

� �
:

ð30Þ

Additionally, the stresses within the surface layer are

related to the deformation field of the neutral axis by the

following relations:

sHxx ¼ s0ðxÞ � k0ðxÞ þ 2l0ðxÞð Þ

z� aðxÞz3ð Þ
dwH

y

dx
þ aðxÞz3 d2wH

dx2

� �
;

sHxz ¼ nzs0ðxÞ
dwH

dx
:

ð31Þ

For more accurate predicting the mechanical behavior of

the nanostructure, it is assumed that the bulk’s normal

stresses along the z-axis would vary linearly across the

diameter between their surface layer’s counterparts. Hence,

rHzz ¼
2z s0ðxÞ
D0ðxÞ

d2wH

dx2
: ð32Þ

Using generalized Hooke’s law, in view of Eqs. (30) and

(32), the most important component of the stresses in the

bulk, namely rHxx, reads:

rHxx ¼ �EbðxÞ z� aðxÞz3
� � dwH

y

dx
þ aðxÞz3 d2wH

dx2

" #

þ z
2mbðxÞs0ðxÞ

D0ðxÞ
d2wH

dx2
: ð33Þ

Furthermore, based on the given strains in Eq. (30), the

only shear stress field in the bulk is provided by:

rHxz ¼ 1 � 3aðxÞz2
� �

GbðxÞ
dwH

dx
� wH

y

� �
: ð34Þ

In the context of the HOBT, the strain energy of the

thermally affected nanowire with varying cross section

accounting for the surface energy effect is given by:
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UH ¼ 1

2

Z lb

0

dwH
y

dx
MH

by
þ wH

y þ dwH

dx

� �
a

dPH
by

dx
þ QH

bz

 !

þ NT � Nð Þ dwH

dx

� �2

þKt wHð Þ2þKr wH
y

� 	2

0
BBBB@

1
CCCCAdx

þ 1

2

Z lb

0

Z
S
sHxx�

H
xx þ sHxzc

H
xz

� �
dSdx;

ð35aÞ

where the first-order and the third-order moments about the

y-axis, namely MH
by

and PH
by

, as well as the resultant shear

force along the z-axis, QH
bz

, are as follows:

MH
by
¼
Z
AbðxÞ

zrHxx dA ¼ � J2ðxÞ � aðxÞJ4ðxÞð Þ
dwH

y

dx

"

þ aðxÞJ4ðxÞ
d2wH

dx2
� þ 2mbðxÞI02ðxÞs0ðxÞ

D0ðxÞ
d2wH

dx2
; ð36aÞ

PH
by
¼
Z
AbðxÞ

z3rHxx dA ¼ � J4ðxÞ � aðxÞJ6ðxÞð Þ
dwH

y

dx

"

þ aðxÞJ6ðxÞ
d2wH

dx2
� þ 2mbðxÞI04ðxÞs0ðxÞ

D0ðxÞ
d2wH

dx2
; ð36bÞ

QH
bz
¼ jðxÞ dwH

dx
� wH

y

� �
; ð36cÞ

and

jðxÞ ¼
Z
AbðxÞ

GbðxÞ 1 � 3aðxÞz2
� �

dA;

I0mðxÞ ¼
Z
AbðxÞ

zm dA; I0�m ðxÞ ¼
Z
SðxÞ

zm dS; m ¼ 2; 4;

JnðxÞ ¼
Z
AbðxÞ

EbðxÞ zn dA; InðxÞ ¼
Z
AbðxÞ

qbðxÞ zn dA;

I�nðxÞ ¼
Z
SðxÞ

q0ðxÞzn dS; n ¼ 0; 2; 4; 6:

ð37Þ

By exploiting Hamilton’s principle, the governing equa-

tions associated with column buckling of cross-varying

nanowires subjected to axial thermal field via the HOBT

are obtained as:

�
dMH

by

dx
þ a

dPH
by

dx
þ QH

by
�
Z
S
z

dsHxx
dx

dS þ Kr w
H
y ¼ 0;

ð38aÞ

�
dQH

bz

dx
� a

d2PH
by

dx2
�
Z
S

dsHxz
dx

nz dS þ N � NTð Þ d2wH

dx2

þ Kt w
H ¼ 0; ð38bÞ

by introducing Eqs. (31) and (36a)–(36c), to Eqs. (38a) and

(38b), the governing equations of the axially loaded

AVNWs under axial thermal gradients on the basis of the

HOBT take the following form:

d

dx
aðxÞJ4ðxÞ � a2ðxÞJ6ðxÞ þ k0ðxÞ þ 2l0ðxÞð ÞaðxÞI0�4 ðxÞ
��

� 2mbðxÞs0ðxÞ
D0ðxÞ

I02ðxÞ � aðxÞI04ðxÞ
� �

Þ d2wH

dx2
� J2ðxÞð

� 2aðxÞJ4ðxÞ þ a2ðxÞJ6ðxÞ þ k0ðxÞ þ 2l0ðxÞð Þ I0�2 ðxÞ
�

� aI0�4 ðxÞÞÞ
dwH

y

dx
� � jðxÞ dwH

dx
� wH

y

� �
þ Kr w

H
y ¼ 0;

ð39aÞ

� d

dx
jðxÞ dwH

dx
� wH

y

� �� �
� d

dx

s0ðxÞS�0ðxÞ þ NT � N
� � dwH

dx

� �
þ d2

dx2

aðxÞJ4ðxÞ � a2ðxÞJ6ðxÞ
� � dwH

y

dx
þ a2ðxÞJ6ðxÞ
�"

� 2aðxÞmbðxÞI04ðxÞs0ðxÞ
D0ðxÞ

Þ d2wH

dx2
� þ Ktw

H ¼ 0:

ð39bÞ

To explore the problem more conveniently, the following

dimensionless quantities are taken into account:

wH ¼ wH

lb
; w

H

y ¼ wH
y ; c2

1ðnÞ ¼
aðxÞI4ðxÞ � a2ðxÞI6ðxÞ

I0;Ll
2
b

;

c2
2ðnÞ ¼

a2ðxÞI6ðxÞ
I0;Ll

2
b

; c2
3ðnÞ ¼

jðxÞl2b
a2
LJ6;L

;

c2
4ðnÞ ¼

aðxÞJ4ðxÞ � a2ðxÞJ6ðxÞ
a2
LJ6;L

;

c2
6ðnÞ ¼

aðxÞI4ðxÞ � a2ðxÞI6ðxÞ
I2;L � 2aLI4;L þ a2

LI6;L
;

c2
7ðnÞ ¼

jðxÞI0;Ll4b
I2;L � 2aLI4;L þ a2

LI6;L
� �

a2
LJ6;L

;

c2
8ðnÞ ¼

ðJ2ðxÞ � 2aðxÞJ4ðxÞ þ a2ðxÞJ6ðxÞÞI0;Ll2b
I2;L � 2aLI4;L þ a2

LI6;L
� �

a2
LJ6;L

;

c2
9ðnÞ ¼

aðxÞJ4ðxÞ � a2ðxÞJ6ðxÞð ÞI0;Ll2b
I2;L � 2aLI4;L þ a2

LI6;L
� �

a2
LJ6;L

;

K
H

t ¼ Ktl
2
b

a2
LJ6;L

; N
H ¼ Nl2b

a2
LJ6;L

; N
H

T ¼ NTl
2
b

a2
LJ6;L

;

K
H

r ¼ KrI0;Ll
4
b

I2;L � 2aLI4;L þ a2
LI6;L

� �
a2
LJ6;L

;

vH1 ðnÞ ¼
I�2ðxÞ � 2aI�4ðxÞ þ a2I�6ðxÞ
I2;L � 2aLI4;L þ a2

LI6;L
; vH2 ðnÞ ¼

aðxÞI�4ðxÞ � a2ðxÞI�6ðxÞ �
2mbðxÞq0ðxÞ

D0ðxÞ I02ðxÞ � aðxÞI04ðxÞ
� �

I2;L � 2aLI4;L þ a2
LI6;L

;

vH3 ðnÞ ¼
k0ðxÞ þ 2l0ðxÞð Þ � 2mbðxÞs0ðxÞ

D0ðxÞ I02ðxÞ � aðxÞI04ðxÞ
� �� 	

I0;Ll
2
b

I2;L � 2aLI4;L þ a2
LI6;L

� �
a2
LJ6;L

;

vH4 ðnÞ ¼
k0ðxÞ þ 2l0ðxÞð Þ I�2ðxÞ � aðxÞI�4ðxÞ

� �� �
I0;Ll

2
b

I2;L � 2aLI4;L þ a2
LI6;L

� �
a2
LJ6;L

;
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vH5 ðnÞ ¼
q0ðxÞS�0ðxÞ þ

2aðxÞmbðxÞI04ðxÞq0ðxÞ
D0ðxÞ

I0;L
;

vH6 ðnÞ ¼
s0ðxÞS�0ðxÞl2b

a2
LJ6;L

;

vH7 ðnÞ ¼
2mbðxÞI04ðxÞs0ðxÞ
aLJ6;LD0ðxÞ

; .H1 ðnÞ

¼ I2ðxÞ � 2aI4ðxÞ þ a2I6ðxÞ
I2;L � 2aLI4;L þ a2

LI6;L
;

.H5 ðnÞ ¼
I0ðxÞ
I0;L

; .H7 ðnÞ ¼
a2ðxÞJ6ðxÞ
a2
l J6;L

;

ð40Þ

by introducing Eq. (40) to Eqs. (39a) and (39b), it is

obtainable:

� d

dn
c2

9ðnÞ þ vH3 ðnÞ
� � d2wH

dn2
þ c2

8ðnÞ þ vH4 ðnÞ
� � dw

H

y

dn

" #

� c2
7ðnÞ

dwH

dn
� w

H

y

� �
þ K

H

r w
H

y ¼ 0; ð41aÞ

� d

dn
c2

3ðnÞ
dwH

dn
� w

H

y

� �
þ vH6 ðnÞ þ N

H

T � N
H

� 	 dwH

dn

� �

þ d2

dn2
c2

4ðnÞ
dw

H

y

dn

" #
þ d2

dn2
.H7 ðnÞ � vH7 ðnÞ
� � d2wH

dn2

� �

þ K
H

t w
H ¼ 0:

ð41bÞ

Equations (41a) and (41b) furnish us regarding the

governing equations pertinent to the elastic buckling of the

thermally affected nanowires with variable cross section

and materials across the length based on the HOBT.

Finding an analytical solution to these relations is a very

cumbersome job. In the following section, an efficient

numerical methodology is proposed.

5.2 Thermo-Elastic Buckling Analysis
of the HOBT-Based Nanowire via RKPM

The Galerkin–RKPM-based approach is adopted to con-

struct the weak version of Eqs. (41a) and (41b). To this

end, the dimensionless deformation fields of the neutral

axis are discretized as:

wHðnÞ ¼
XNP

i¼1

/w
i ðnÞwH

i ; w
H

y ðnÞ ¼
XNP

i¼1

/
wy

i ðnÞwH

yi
: ð42Þ

Now both sides of Eqs. (41a) and (41b) are pre-multiplied by

dw
H

y , and dwH , respectively, and the resulted expressions are

integrated over the dimensionless spatial domain of the

nanowire. By taking the required integration by parts in view

of Eq. (42), the following set of linear equations are

obtained:

½KH

b �
wywy ½KH

b �
wyw

½KH

b �
wwy ½KH

b �
ww

" #
�

½KH

g �
wywy ½KH

g �
wyw

½KH

g �
wwy ½KH

g �
ww

2
4

3
5

0
@

1
A W

H

y

wH

( )
¼ 0

0


 �
;

ð43Þ

where the nonzero dimensionless stiffness and geometrical

submatrices as well as the dimensionless nodal parameter

value vectors are given in the following:

K
H

b

h iwywy

ij
¼
Z 1

0

c2
7ðnÞ þ K

H

r

� 	
/
wy

i /
wy

j þ c2
8ðnÞ þ vH4 ðnÞ

� � d/
wy

i

dn

d/
wy

j

dn

 !
dn;

ð44aÞ

K
H

b

h iwyw

ij
¼ �

Z 1

0

c2
7ðnÞ/

wy

i

d/w
j

dn
� c2

9ðnÞ þ vH3 ðnÞ
� � d/

wy

i

dn

d2/w
j

dn2

 !
dn;

ð44bÞ

K
H

b

h iwwy

ij
¼ �

Z 1

0

c2
3ðnÞ

d/w
i

dn
/
wy

j � c2
4ðnÞ

d2/w
i

dn2

d/
wy

j

dn

 !
dn;

ð44cÞ

K
H

b

h iww
ij
¼
Z 1

0

c2
3ðnÞ þ vH6 ðnÞ þ N

H

T

� 	 d/w
i

dn

d/w
j

dn

þ .H7 ðnÞ � vH7 ðnÞ
� � d2/w

i

dn2

d2/w
j

dn2
þ K

H

t /
w
i /

w
j

0
BB@

1
CCAdn;

ð44dÞ

K
H

g

h iww
ij
¼ N

H
Z 1

0

d/w
i

dn

d/w
j

dn
dn; ð44eÞ

W
H

y ¼ \w
H

y1
;w

H

y2
; . . .;w

H

yNP
[ T; ð44fÞ

wH ¼ \wH
1 ;w

H
1 ; . . .;w

H
NP [

T: ð44gÞ

For simply supported nanowires modeled on the basis of

the HOBT, the following conditions should meet:

wHð0Þ ¼ wHð1Þ ¼ 0; M
H

by
ð0Þ ¼ M

H

by
ð1Þ ¼ 0; ð45Þ

where M
H

by
¼ Mby lb

a2
L
J6;L

. In order to enforce the essential

boundary conditions from all those given in Eq. (45), the

corrected collocation method (Wagner and Liu 2000) is

applied. By solving the resulting set of linear eigenvalue

equations for the dimensionless buckling loads, N
H

cr;i (i.e.,

N
H

cr;1\N
H

cr;2\ � � �\N
H

cr;i), the critical buckling load of the

thermally affected AVNW is obtained: NH
cr ¼

a2
LJ6;L

l2
b

N
H

cr;1.
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6 Results and Discussion

Consider an AVNW in which its materials’ properties

change longitudinally between those of Al[111] at the left-

hand side and those of Si[100] at the right-hand-side. Such

properties for these two ends are given by: Eb;R ¼ 210 GPa,

mb;R ¼ 0:24, qb;R ¼ 2370 kg=m
3
, l0;R ¼ � 0:6543 N=m,

k0;R ¼ �10 N=m, s0;R ¼ 0:6048 N=m, q0;R ¼ 3:1710�7

kg=m
2
, aT ;R ¼ 2:6 � 10�6=�C, kt;R ¼ 280 W=ðm �CÞ,

Eb;L ¼ 70 GPa, mb;L ¼ 0:3, qb;L ¼ 2700 kg=m
3
, l0;L ¼

� 5:4251 N=m, k0;L ¼ 3:4939 N=m, s0;L ¼ 0:5689 N=m,

q0;L ¼ 5:4610�6 kg=m
2
, aT ;L ¼ 23:1 � 10�6=�C, and

kt;L ¼ 209 W=ðm �C). In the case that the radius of the

ends’ cross sections has not been explicitly specified, we

take the following values: rL ¼ 5 nm and rR ¼ 9 nm. The

variation of geometry, surface, and bulk properties of the

nanowire along its length is assumed as:

½:�ðnÞ ¼ ½:�L þ ½:�R � ½:�L
� �

npg ;

hðnÞ ¼ hL þ hR �hLð Þnps ;
}ðnÞ ¼ }L þ }R �}Lð Þnpm ;

ð46Þ

where [.], h, and } represent the properties associated with

the geometry, surface layer, and bulk, respectively, pg, ps,

and pm in order are their corresponding power-law indices,

and parameters with the subscript L or R denote the values

of those parameter at the left end or the right end of the

nanostructure.

In all carried-out calculations via RKPM, 13 particles

with uniform distribution across the length of the nanowire,

6 Gaussian points in each integration cell, and the dilation

parameter of value 3.2 times of the interparticle distance

have been taken into account. To construct the RKPM’s

shape functions, the cubic spline window function and the

linear base function have been employed.

6.1 Several Comparison Studies

6.1.1 Verification of the Obtained Results by RKPM
and Those of the AMM

In the absence of theoretical works on the subject of con-

cern, herein, the predicted results by the RKPM are

checked with those of the AMM. In studying the problem

using AMM, the unknown fields are expressed in terms of

admissible mode shapes that satisfy the geometrical

boundary conditions of the nanostructure. For instance, the

dimensionless deformation fields of the EBT, TBT, and

HOBT for simply supported AVNWs are considered as

follows:

wEðnÞ ¼
XNM

i¼1

aEi sinðipnÞ;

wTðnÞ ¼
XNM

i¼1

aTi sinðipnÞ; h
T

y ðnÞ ¼
XNM

i¼1

b
T

i cosðipnÞ;

wHðnÞ ¼
XNM

i¼1

aHi sinðipnÞ; w
H

y ðnÞ ¼
XNM

i¼1

b
H

i cosðipnÞ;

ð47Þ

where aEi , aTi , b
T

i , aHi , and b
H

i represent the unknowns

pertinent to the ith mode of buckling, NM is the total

number of modes (here, NM ¼ 13). The main privilege of

the AMM with respect to other numerical methods is that

its mode shapes satisfy strong conditions of the problem.

Thereby, to evaluate buckling loads based on the Galerkin-

AMM, it suffices to substitute these mode shapes into their

counterpart shape functions of RKPM in the dimensionless

stiffness and geometry stiffness submatrices of the sug-

gested models. Subsequently, by solving the resulted

eigenvalue equations for buckling loads, the buckling

behavior of the nanostructure could be studied. In Table 1,

the predicted first three buckling loads of the simply sup-

ported nanostructure by both RKPM and AMM are given

in the cases of ps ¼ pm ¼ 2, pg ¼ 1, Kt ¼ 0, and Kr ¼ 0.

The obtained results are provided for two levels of the

temperature gradient (i.e., DT ¼ 100 and 200 oC) and four

levels of the slenderness ratio (i.e., k ¼ 10; 20, 40, and 60).

As it is seen, the predicted results by the RKPM based on

the EBT, TBT, and HOBT can successfully capture those

of the AMM for all considered values of the temperature

gradient and slenderness ratio. According to the presented

results in Table 1, the discrepancies between the results of

various models would reduce by increasing the slenderness

ratio. In fact, the effect of shear deformation on the

buckling behavior of the nanostructure decreases as the

slenderness ratio grows. Additionally, variation of the

temperature gradient is more influential on the variation of

buckling loads of stockier nanowires. The more detailed

roles of temperature gradient and slenderness ratio in the

buckling behavior of the nanostructure will be explained in

the upcoming parts.

6.1.2 Comparison of the Results of RKPM and Those
of Another Work in a Special Case

Consider a macroscale axially functionally graded beam

with rectangular cross section whose width(height) varies

linearly between bL(hL) and cbbL(chhL) where bL and hL
denote the dimensions of the cross section of the beam at

the left. The beam under study has simple supports and it is

not subjected to any variation of the temperature (i.e.,

N
½:�
T ¼ 0 where ½:� ¼ E, T, or H). The variation of the
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Young’s modulus and the density across the length is

assumed to be EbðnÞ ¼ Eb;L 1 þ nð Þ and

qbðnÞ ¼ qb;L 1 þ nþ n2
� �

. For various values of cb and ch,

the predicted dimensionless axial buckling loads by the

suggested models and those of Shahba and Rajasekaran

(2012) using differential quadrature element method of

lowest order (DQEL) are provided in Table 2. As it is seen,

there exists a reasonably good agreement between the

predicted results by RKPM and those of Shahba and

Rajasekaran (2012) in most of the cases.

6.2 Parametric Studies

In the following subsections, we schedule a fairly com-

prehensive parametric study to reveal the influences of the

influential factors on the thermo-elastic buckling behavior

of AVNWs.

6.2.1 The Influence of the Slenderness Ratio

In Fig. 2a–c, the predicted critical buckling load of the

nanowire as a function of the slenderness ratio is plotted

for three levels of the temperature gradient (i.e.,

DT ¼ 100; 500, and 900 �C). The nanowire is free from the

surrounding elastic medium, pm ¼ ps ¼ 3 and pg ¼ 2.

Throughout this article, the plotted results based on the

CET and the SET are demonstrated by the dashed lines and

the solid lines, respectively. Additionally, the results of the

EBT, TBT, and HOBT in order are specified by the lines

with square, circle, and triangle markers. Irrespective of

the considered model, the critical buckling load of the

nanowire would reduce as the slenderness ratio increases.

The main reason of this fact is the reduction of the trans-

verse stiffness by increasing the nanowire’s length. The

rate of reduction is more obvious for the plots pertinent to

the EBT and the nanowires with lower levels of the slen-

derness ratio. Commonly, the plotted results based on the

TBT are closer to those of the HOBT since both of these

theories take into account shear deformation effect in their

formulations. The predicted buckling loads by the EBT are

usually greater than those of the TBT and the HOBT. It is

mainly because of this fact that the EBT has no sense with

respect to shear effect; therefore, the factual transverse

stiffness is overestimated by the EBT. All the proposed

models predict that the buckling load of the nanowire

would reduce as the temperature gradient increases. The

more accurate influence of the temperature gradient on the

buckling behavior of the nanostructure will be explained in

the following subsection. In the cases of DT ¼ 500 and

900 �C, the zero buckling loads are detectable at special

levels of the slenderness ratio. The slenderness ratio

associated with the zero buckling load is called critical

Ta
bl
e
1

C
o

m
p

ar
is

o
n

b
et

w
ee

n
th

e
p

re
d

ic
te

d
fi

rs
t

th
re

e
b

u
ck

li
n

g
lo

ad
s

o
f

th
e

n
an

o
st

ru
ct

u
re

b
y

th
e

R
K

P
M

an
d

th
o

se
o

f
th

e
A

M
M

(p
m
¼

p
m
¼

2
,
p
g
¼

1
,
K
t
¼

K
r
¼

0
)

k
i

D
T
¼

1
0

0
� C

D
T
¼

2
0

0
� C

E
B

T
T

B
T

H
O

B
T

E
B

T
T

B
T

H
O

B
T

R
K

P
M

A
M

M
R

K
P

M
A

M
M

R
K

P
M

A
M

M
R

K
P

M
A

M
M

R
K

P
M

A
M

M
R

K
P

M
A

M
M

1
0

1
2

1
0

4
.7

0
9

2
0

8
9

.3
6

5
1

1
8

3
.1

4
1

1
3

0
4

.6
2

9
1

0
7

8
.0

1
2

1
1

9
7

.5
2

2
2

0
7

5
.3

4
3

2
0

5
9

.9
9

9
1

1
5

3
.7

7
5

1
2

7
5

.2
6

3
1

0
4

8
.6

4
6

1
1

6
8

.1
5

6

2
8

9
3

3
.5

3
4

8
8

6
6

.2
0

2
1

9
2

5
.4

9
1

1
9

8
9

.5
7

2
1

8
6

4
.9

3
6

1
8

8
6

.9
7

7
8

9
0

4
.1

6
8

8
8

3
6

.8
3

6
1

8
9

6
.1

2
5

1
9

6
0

.2
0

6
1

8
3

5
.5

6
9

1
8

5
7

.6
1

1

3
2

0
4

4
2

.0
8

6
2

0
1

9
1

.6
0

9
2

2
8

1
.4

6
1

2
4

3
9

.2
2

7
2

4
3

9
.4

3
1

2
4

6
2

.7
8

8
2

0
4

1
2

.7
2

0
2

0
1

6
2

.2
4

3
2

2
5

2
.0

9
5

2
4

0
9

.8
6

1
2

4
1

0
.0

6
4

2
4

3
3

.4
2

2

2
0

1
5

1
2

.7
3

5
5

0
8

.8
9

9
4

2
9

.3
5

8
4

4
7

.2
1

6
4

1
4

.0
2

7
4

3
4

.1
9

8
4

8
3

.3
6

8
4

7
9

.5
3

3
3

9
9

.9
9

1
4

1
7

.8
5

0
3

8
4

.6
6

0
4

0
4

.8
3

2

2
2

2
2

0
.0

4
9

2
2

0
3

.2
1

4
1

2
6

1
.0

2
4

1
2

6
3

.9
0

9
1

1
4

5
.8

4
2

1
3

2
7

.8
5

1
2

1
9

0
.6

8
3

2
1

7
3

.8
4

8
1

2
3

1
.6

5
8

1
2

3
4

.5
4

2
1

1
1

6
.4

7
6

1
2

9
8

.4
8

5

3
5

0
9

7
.2

4
7

5
0

3
4

.6
0

3
1

7
7

9
.7

3
3

1
8

2
1

.5
7

5
1

6
0

3
.6

0
9

1
7

2
9

.0
0

6
5

0
6

7
.8

8
1

5
0

0
5

.2
3

6
1

7
5

0
.3

6
6

1
7

9
2

.2
0

9
1

5
7

4
.2

4
3

1
6

9
9

.6
4

0

4
0

1
1

1
4

.7
3

7
1

1
3

.7
7

9
1

0
8

.2
4

4
1

0
9

.6
2

5
1

0
7

.0
9

0
1

0
8

.6
5

2
8

5
.3

7
1

8
4

.4
1

2
7

8
.8

7
7

8
0

.2
5

9
7

7
.7

2
4

7
9

.2
8

6

2
5

4
1

.6
7

9
5

3
7

.4
6

9
4

5
6

.6
2

8
4

5
6

.6
1

2
4

4
0

.6
4

8
8

3
2

.2
3

4
5

1
2

.3
1

3
5

0
8

.1
0

3
4

2
7

.2
6

2
4

2
7

.2
4

5
4

1
1

.2
8

2
8

0
2

.8
6

8

3
1

2
6

1
.0

3
8

1
2

4
5

.3
5

2
8

9
1

.4
0

2
8

9
0

.5
3

8
8

3
3

.1
4

1
1

2
1

2
.9

3
5

1
2

3
1

.6
7

2
1

2
1

5
.9

8
6

8
6

2
.0

3
5

8
6

1
.1

7
1

8
0

3
.7

7
5

1
1

8
3

.5
6

9

6
0

1
4

1
.0

2
7

4
0

.6
0

2
3

9
.4

8
5

3
9

.7
5

7
3

9
.2

6
9

3
9

.5
5

3
1

1
.6

6
1

1
1

.2
3

5
1

0
.1

1
9

1
0

.3
9

0
9

.9
0

3
1

0
.1

8
7

2
2

3
0

.8
7

3
2

2
9

.0
0

0
2

1
1

.9
4

5
2

1
1

.8
1

7
2

0
8

.2
7

4
4

4
6

.4
0

8
2

0
1

.5
0

7
1

9
9

.6
3

4
1

8
2

.5
7

9
1

8
2

.4
5

1
1

7
8

.9
0

8
4

1
7

.0
4

2

3
5

5
0

.6
3

0
5

4
3

.6
4

0
4

6
4

.0
6

5
4

6
2

.7
6

1
4

4
7

.8
4

1
1

0
1

6
.4

4
8

5
2

1
.2

6
4

5
1

4
.2

7
4

4
3

4
.6

9
9

4
3

3
.3

9
5

4
1

8
.4

7
5

9
8

7
.0

8
2

Iran J Sci Technol Trans Mech Eng (2019) 43:457–475 467

123



slenderness ratio. In fact for these levels of the slenderness

ratio and the given temperature gradient, the nanowire

could not bear any axial load and buckles by exertion a

small axial force. Among the suggested models, the

HOBT(EBT) has the lowest(highest) critical slenderness

ratio.

In the case of DT ¼ 100, the relative discrepancies

between the predicted results by the proposed models

would generally decrease by an increase in the slenderness

ratio. For k ¼ 10, 20, and 30, the EBT(TBT) overestimates

the results of the HOBT with relative errors of about 53.8

(7), 14.3 (2.25), and 7.24 (1.1), respectively. For each

model, the relative discrepancies between the results of the

SET and those of the CET would reduce by increasing the

slenderness ratio. The maximum discrepancies are

observed for the TBT. In the cases of DT ¼ 500 and

900 �C, the relative discrepancies between the predicted

results by the EBT or the TBT and those of the HOBT

would commonly increase by increasing the slenderness

ratio, and the maximum discrepancies are observed at the

critical slenderness ratios. For these cases, the role of the

surface energy on the buckling behavior of the nanowire

becomes highlighted as the slenderness ratio increases. At

the critical slenderness ratios, the maximum surface energy

effect is detectable for all suggested models.

6.2.2 The Influence of the Temperature Gradient

The plots of the critical buckling load of the thermally

affected AVNW in terms of the temperature gradient are

provided in Fig. 3a–c for three levels of the slenderness

ratio (i.e., k ¼ 10; 20, and 40). The demonstrated results

are related to the case of pm ¼ ps ¼ 3, pg ¼ 2 when the

nanowire is released from its surrounding environment. As

a general result, the critical buckling load of the nanos-

tructure would reduce by increasing the temperature gra-

dient. Such a reduction is more obvious for higher slender

nanowires. A close survey of the plotted results reveals that

the relative discrepancies between the proposed models

would slowly increase by an increase in the temperature

gradient. In the case of k ¼ 10 and for DT ¼ 0; 50, and

100 �C, the EBT(TBT) overestimates the results of the

HOBT about 51.9 (6.7), 52.8 (6.8), and 53.8 (6.9)%,

respectively. In the cases of k ¼ 10 and 20, the proposed

models based on the CET overestimate the results of the

models based on the SET. Additionally, variation of the

temperature gradient has a small influence on the variation

of the relative discrepancies between the predicted results

by the CET’s models and those of the SET’s ones. How-

ever, in the case of k ¼ 40, the predicted results by the

CET’s models underestimate the predicted results by the

SET’s models for the considered range of the temperature

gradient. In such a case, the influence of the surface energy

Table 2 Verification of the

dimensionless critical buckling

loads (i.e., N
�
cr ¼

N
½:�
cr l

2
b

Eb;LIb;L
) based

on the suggested models via

RKPM and those of Shahba and

Rajasekaran (2012)

ch Method cb

0 0.2 0.4 0.6 0.8

0 EBT 14.6195 13.2378 11.7842 10.2206 8.4577

TBT 14.5076 13.1369 11.6944 10.1424 8.3913

HOBT 14.5274 13.1548 11.7104 10.1563 8.4032

Shahba and Rajasekaran (2012) 14.5112 13.1398 11.6969 10.1451 8.3957

0.2 EBT 10.7658 9.6687 8.5173 7.2821 5.8929

TBT 10.6905 9.6013 8.4580 7.2313 5.8509

HOBT 10.7039 9.6133 8.4685 7.2403 5.8584

Shahba and Rajasekaran (2012) 10.6860 9.5971 8.4543 7.2284 5.8498

0.4 EBT 7.3372 6.5195 5.6644 4.7511 3.7289

TBT 7.2926 6.4801 5.6303 4.7226 3.7064

HOBT 7.3006 6.4871 5.6364 4.7277 3.7104

Shahba and Rajasekaran (2012) 7.2831 6.4715 5.6228 4.7164 3.7019

0.6 EBT 4.3604 3.8169 3.2519 2.6529 1.9891

TBT 4.3413 3.8005 3.2382 2.6422 1.9817

HOBT 4.3449 3.8035 3.2408 2.6443 1.9831

Shahba and Rajasekaran (2012) 4.3287 3.7892 3.2283 2.6338 1.9748

0.8 EBT 1.8804 1.6068 1.3255 1.0318 .7131

TBT 1.8844 1.6109 1.3298 1.0363 .7186

HOBT 1.8844 1.6109 1.3296 1.0361 .7182

Shahba and Rajasekaran (2012) 1.8667 1.5950 1.3157 1.0239 .7075
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on the buckling behavior of the nanostructure increases as

the temperature gradient increases.

6.2.3 The Influence of the Power-law Index of Material

An important parametric study is conducted to answer this

critical question that how variation of the material prop-

erties across the nanowire’s length could influence on its

axial buckling behavior. The predicted critical buckling

loads of the AVNW as a function of the power-law index

of material are presented in Fig. 4a–c for three levels of the

slenderness ratio (i.e., k ¼ 10; 20, and 40). The results are

presented for AVNWs with pg ¼ 2, Kt ¼ Kr ¼ 0, which is

subjected to DT ¼ 200 �C. Irrespective of the slenderness

ratio, the critical buckling load of the nanostructure

decreases as the power-law index of material magnifies.

Such a decreasing is more apparent in the case of k ¼ 40.

As it is seen in these figures, the predicted results by the

TBT are generally close to those of the HOBT. In the cases

of k ¼ 10 and 20, the relative discrepancies between the

predicted buckling loads by the EBT and those of the

HOBT would increase with the power-law index of mate-

rial up to a certain level. For the power-law index lower

than this particular value, the aforementioned discrepancies

would mildly decrease as the power-law index of material

grows. For k ¼ 40, the relative discrepancies between the

predicted buckling loads of various models would obvi-

ously magnify as the power-law index of material increa-

ses. A close scrutiny of the plotted results shows that the

influence of the surface energy on the critical buckling load

of the nanowire becomes important by increasing the

power-law index of the material. Commonly, such a fact is

not affected by the slenderness ratio of the nanowire;

however, variation of the power-law index of material is

more influential on the variation of the buckling load of

more slender nanowires. For example, the HOBT based on

the CET could capture the results of the HOBT based on

the SET for the set of the material power-law index

(0,2.5,5) with relative error about (1.9, 3.1, 3.6), (1.8, 2.6,

2.7), and (2.7, 19.3, 33.8) for the slenderness ratios k ¼ 10,

20, and 40, respectively. Additionally, the relative dis-

crepancies between the results of the EBT/TBT/HOBT

based on the CET and their corresponding SET-based

models are lower than 5% for the power-law index of

material lower than (5, 5, 0.58)/(0.8, 5, 0.7)/(5, 5, 0.54) for

the set of slenderness ratios k ¼ ð10; 20; 40Þ.

6.2.4 The Influence of the Power-law Index of Geometry

To study the role of variation of the nanowire’s cross

section across the length on its buckling behavior, an

investigation is performed. For this purpose, the plots of

the buckling load as a function of the power-law index of

geometry are presented in Fig. 5a–c for three levels of the

slenderness ratio (i.e., k ¼ 10; 20, and 40). These results

are given for pm ¼ ps ¼ 3, Kt ¼ Kr ¼ 0, and DT ¼ 200 �C.

As it is obvious in Fig. 5a–c, the predicted critical buckling

load of the nanostructure would usually decrease as the

power-law index of geometry increases. For the considered

temperature gradient, the obtained graphs consist of two

apparent branches: a descending part and a fairly constant

part. In the descending branch, the predicted buckling load

would harshly decrease with the power-law index of

geometry. However, in the fairly constant branch, variation

of the power-law index of geometry has moderately no

influence on the variation of the critical buckling load of

the AVNW. A detailed investigation of the demonstrated

results indicates that the relative discrepancies between the

predicted results by the EBT or the TBT and those of the

HOBT would magnify with the power-law index up to a

10 20 30
0

200

400

600

800

1000

1200
 N

cr
 (n

N
)

λ
10 20 30
0

500

1000

1500

λ
10 20 30
0

500

1000

λ

(a) (c)(b)

Fig. 2 Critical buckling load of the AVNW as a function of the slenderness ratio for three values of the temperature gradients: a DT ¼ 100,

b DT ¼ 500, c DT ¼ 900 �C; (pm ¼ ps ¼ 3, pg ¼ 2, Kt ¼ Kr ¼ 0; (���) SET, (—) CET; (h) EBT, (�) TBT, (4) HOBT)

Iran J Sci Technol Trans Mech Eng (2019) 43:457–475 469

123



particular value. For power-law indices of geometry greater

than this, such relative discrepancies would reduce slowly

as the power-law index of geometry increases. For

k ¼ 10; 20, and 40 and in the context of the SET, the

maximum discrepancies between the buckling load by the

EBT and those of the HOBT are observed at pg � 0:3; 0:3,

and 0.4, respectively. In the cases of k ¼ 10; 20, and 40, the

TBT in order overestimates the predicted results by the

HOBT with relative error lower than 12, 6, and 2%. Nev-

ertheless, for these cases, the EBT captures the results of

the HOBT with relative error greater than 41, 12, and 6%

for the considered range of the power-law index of

geometry. For the set of slenderness ratios k ¼ ð10; 20Þ, the

EBT/TBT/HOBT based on the CET overestimates the

results of their counterpart surface elasticity-based models

with relative errors lower than (4.1, 3.2)/(6.5, 4.6)/(3.5,

2.8)% for all considered values of the power-law index of

geometry. However, in the case of k ¼ 40, the relative

discrepancies between the predicted buckling load by the

models based on the CET and those of the SET would

commonly grow as the power-law index of geometry

increases. For instance, for pg ¼ ð0; 2:5; 5Þ, the classical

models based on the EBT/TBT/HOBT could capture the

results of the models on the basis of the SET with relative

error about (0.76, 17.17, 24.76)/(0.26, 19.14, 26.74)/(0.12,

19.52, 27.06)%, respectively.

6.2.5 The Influence of the Nanowire’s Diameter

We are also interested in this fact that how variation of the

nanowire’s diameter could influence on the critical buck-

ling load. Additionally, the roles of the surface energy

effect as well as the shear deformation on the predicted

results for various nanowire’s diameters are of concern. To

this end, the predicted critical buckling load of the AVNW

as a function of the diameter of the left end is plotted in
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Fig. 6a–c for three levels of the temperature gradients (i.e.,

DT ¼ 100; 300, and 500�C). The demonstrated results have

been provided for a freely deformed nanowire (i.e.,

Kt ¼ Kr ¼ 0) of length 40 nm whose geometry and mate-

rial varies across its length such that pm ¼ ps ¼ 3 and

pg ¼ 2. As it is seen in these figures, the critical buckling

load of the nanowire commonly magnify by increasing the

left end’s diameter. For lower levels of the temperature

gradient, variation of the diameter is more influential on the

variation of the buckling load. Such a fact is predicted by

all suggested models. In the case of DT ¼ 100 �C, the

relative discrepancies between the predicted buckling loads

by the EBT and those of the HOBT would generally

increase by an increase in the nanowire’s diameter. For

example, the EBT(TBT) overestimates the results of the

HOBT with relative error about 3.9 (0.8), 8.8 (1.4), and

15.3 (2.4)% in the cases of DL ¼ 4; 6, and 8 nm, respec-

tively. In the case of DT ¼ 300 �C, the relative discrep-

ancies between the results of the EBT or TBT and those of

the HOBT would decrease up to a certain nanowire’s

diameter. For diameters greater than this special one, the

relative discrepancies between the results of the EBT or the

TBT and those predicted by the HOBT would slightly

magnify with the nanowire’s diameter. For DL ¼ 4; 6, and

8 nm, the relative discrepancies between the EBT(TBT)

results and those of the HOBT in order are about

62.1(12.9), 15.3(2.4), and 20.2(3.2)%. In the case of

DT ¼ 500 �C, the critical buckling load of the nanowire

would reduce by reduction of the diameter such that

becomes zero at particular values of the nanowire’s

diameters. This is called critical diameter of the nanowire.

A close exploration of the obtained results reveals that the

relative discrepancies between the obtained results by

various models reach to their maximum levels at the crit-

ical nanowire’s diameter. Generally, the relative

discrepancies between the predicted results based on the

SET and those of the CET would harshly decrease by

increasing the nanowire’s diameter up to a particular value.

For diameters greater than this special value, the above-

mentioned discrepancies would slightly increase as the

diameter increases.

6.2.6 The Influence of the Transverse Stiffness of the Matrix

When an AVNW is embedded in a matrix, the transverse

stiffness of the surrounding medium could affect on the

buckling behavior of the nanostructure. To examine such a

fact, the plots of the critical buckling load of the nanowire

as a function of the dimensionless transverse stiffness of

the matrix for three levels of the slenderness ratio (i.e.,

k ¼ 5; 10, and 30) are demonstrated in Fig. 7a–c. The

plotted results are given for thermally affected nanowires

with pm ¼ ps ¼ 3, pg ¼ 2, Kr ¼ 0, and DT ¼ 200 �C. In

order to neutralize the effect of the slenderness ratio on the

transverse stiffness of the matrix, its dimensionless value is

defined by: K
�
t ¼ K

E

t
k�

k

� �4
where k� ¼ 30. All the proposed

models predict that the critical buckling load of the

nanostructure would increase by increasing the transverse

stiffness of the matrix and the rate of increase is more

obvious in more slender nanowires. In very stocky nano-

wires (i.e., k	 10), the relative discrepancies between the

results of various models are slightly affected by the

variation of the transverse stiffness of the matrix. Irre-

spective of the transverse stiffness of the surrounding

medium, the EBT(TBT) commonly overestimates the

predicted results by the HOBT with relative error of about

225 (11.8) and 58 (7.5)% for the cases of k ¼ 5 and 10,

respectively. It also implies that the predicted results by the

EBT are not trustable at all for such nanowires. In the case

of k ¼ 30, the relative discrepancies between the predicted
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buckling loads by the EBT or TBT and those of the HOBT

would decrease by increasing the matrix transverse stiff-

ness up to a particular value. For the transverse stiffness of

the matrix greater than this value, such discrepancies would

grow as the transverse stiffness of the matrix increases. For

K
�
t ¼ 0, 250, and 500, the EBT (TBT) could reproduce the

predicted results by the HOBT with relative error about

14.8 (2.2), 5.7 (0.94), and 7.4 (1.4)%, respectively.

Regarding the role of the surface energy on the buckling

behavior of the nanostructure, in the case of k ¼ 5, surface

effect is fairly not affected by the variation of the trans-

verse stiffness of the surrounding medium. In the cases of

k ¼ 10 and 30, the effect of the surface energy on the

predicted results would diminish by increasing the trans-

verse stiffness of the matrix.

6.2.7 The Influence of the Rotational stiffness of the Matrix

We are also interested in the role of rotational stiffness of

the surrounding medium on the buckling behavior of the

thermally affected AVNW. For this purpose, the plots of

the critical buckling load of the nanostructure in terms of

the dimensionless rotational stiffness of the matrix are

demonstrated in Fig. 8a–c. The presented results are pro-

vided for three levels of the slenderness ratio (i.e.,

k ¼ 5; 10, and 30) of the thermally affected nanowire with

pm ¼ ps ¼ 3, pg ¼ 2, Kt ¼ 0, and DT ¼ 200 �C. Let define

the dimensionless rotational stiffness of the matrix as fol-

lows: K
�
r ¼ K

E

r
k�

k

� �2
where k� ¼ 30. According to the

plotted results in Fig. 8a–c, irrespective of the slenderness

ratio of the nanowire, the critical buckling load would

magnify as the rotational stiffness of the surrounding

medium increases. Such an issue is more obvious for more

slender nanowires (see Fig. 8c). In fact, variation of the

rotational stiffness of the matrix is more influential on

buckling load of AVNWs with higher slenderness ratios.

The plots associated with the TBT are commonly closer to

those of the HOBT since the shear deformation effect is

taken into account by these models. A close survey of the

plotted results shows that the relative discrepancies

between the predicted buckling loads by the EBT or the

TBT and those of the HOBT would generally increase by

an increase in the rotational stiffness of the matrix. In the

cases of k ¼ 10 and 30, the EBT overestimates the pre-

dicted results by the HOBT with relative error about (58,

78.1, 98.5) and (14.8, 32.5, 54.6) for K
�
r ¼ ð0; 50; 100Þ,

respectively. For similar cases, the TBT in order captures

the results of the HOBT with relative error about (7.5, 12.3,

16.4) and (2.2, 10.6, 17.4). Concerning the role of the

surface energy on the predicted critical buckling loads, a

detailed scrutiny of the plotted results indicates that relative

discrepancies between the obtained results based on the

SET and those of the CET would generally decrease by

increasing the rotational stiffness of the matrix. Such a

reduction is also more apparent for more slender nano-

wires. In other words, the influence of the surface energy

on the buckling behavior of the nanowire would reduce as

the rotational stiffness grows. For example, in the case of

k ¼ 30, the HOBT based on the SET overestimates the

results of the CET with relative error about 5.3, 1.5, and

1.1% for K
�
r ¼ 0; 50, and 100, respectively.

7 Conclusions

Axial buckling behavior of thermally affected AVNW was

investigated in the context of the surface elasticity theory

of Gurtin–Murdoch. To this end, the governing equations

were constructed based on the EBT, TBT, and HOBT. Due

to non-uniformity of the nanowire’s cross section as well as
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variation of the material property along the nanowire,

finding an analytical solution to the governing equations is

a cumbersome task. As an alternative methodology, RKPM

was proposed and the critical buckling loads of the nano-

wire were calculated. In a special case, the predicted results

by the RKPM were compared with those of AMM and a

reasonably good agreement was obtained. Subsequently,

the roles of the slenderness ratio, nanowire’s diameter,

power-law indices of geometry and material, temperature

gradient, transverse and rotational stiffness of the sur-

rounding medium on the critical buckling load of the

nanostructure were addressed in some detail. Additionally,

the roles of shear deformation and surface effects on the

obtained results were discussed and explained.

Commonly, the surface elasticity-based-beam models

are appropriately affected by the diameter of nanowires,

while the nonlocal continuum-based ones are more sensi-

tive with respect to the nanowire’s length. To employ the

privileges of these two ones in modeling of the buckling

and postbuckling of AVNWs, a suitable combination of the

nonlocal- and surface elasticity-based theories would be a

wise decision. Further, the present work could be regarded

as a basic bed for more advanced researches on thermo-

elastic buckling and vibration of vertically aligned tapered

nanowires with arbitrary distribution of material across the

length. Owing to high potential applications of ensembles

of nanowires in NEMS, these crucial issues should be

followed up seriously by the applied mechanics and other

related communities.
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