
RESEARCH PAPER

Thermoelastic Analysis of Multilayered FG Spherical Shells Based
on Lord–Shulman Theory

Yasin Heydarpour1 • Parviz Malekzadeh1

Received: 19 March 2018 / Accepted: 21 May 2018 / Published online: 26 May 2018
� Shiraz University 2018

Abstract
The thermoelastic wave in multilayered spherical shells with functionally graded (FG) layers under thermal boundary

conditions is studied. The Lord–Shulman generalized coupled thermoelasticity theory is applied to illustrate the effect of

finite heat wave speed. The material properties are assumed to be temperature dependent, and consequently, the governing

equations become nonlinear ones. The layerwise-differential quadrature method together with Newmark time integration

scheme and Newton–Raphson method are employed to solve the governing equations. The fast rate of convergence of the

method is illustrated, and its accuracy is assessed by comparing the results with various existing solutions in the open

literature wherever possible. Afterward, the effects of different parameters and also the temperature dependence of material

properties on the transient thermoelastic responses of the FG spherical shells are studied and discussed. It is found that the

temperature dependence of material properties, thermo-mechanical coupling, thickness-to-outer radius ratio and FG layer

layout significantly affect the thermo-mechanical behavior of the FG shells.

Keywords Transient thermoelasticity � Functionally graded materials � Layered spherical shells � L–S theory �
Layerwise-differential quadrature method

1 Introduction

Hollow spherical shells as important pressure vessels have

found extensive applications in various modern industries

such as aerospace, petroleum and nuclear engineering. In

most cases, these structures should operate in high-tem-

perature chemical environments. Hence, they should be

protected for chemical and physical interaction of their

materials with environments (i.e., corrosion and erosion)

and also maintain their structural integrity under thermal

conditions. In order to obtain such a desired performance,

functionally graded materials (FGMs) as a new class of

materials have been used to fabricate these types of pres-

sure vessels (Obata and Noda 1994; Eslami et al. 2005;

Shen 2009). The advantage of these advanced materials

over the conventional laminated composite materials is that

their physical properties vary smoothly and continuously in

spatial domain from one material to another one by suit-

able distribution of component materials, particularly along

the thickness direction. Consequently, the disadvantageous

problems of other composite types such as stress concen-

tration phenomenon are reduced or eliminated. Usually,

FGMs are made from a mixture of ceramic and metal.

Ceramic constituents of FGMs are able to withstand high-

temperature environments due to their favorable heat and

corrosion resistance, while metal constituents have high

tensile strength, toughness and bonding capability that

provide stronger mechanical performance and reduce the

possibility of catastrophic fracture.

In most previously studied thermoelasticity problems,

the uncoupled classical thermoelasticity theory has been

employed to investigate the thermoelastic behavior of the

FG structural elements and the temperature distributions in

the bodies have been estimated based on the Fourier heat

conduction law; see, for example, Refs. (Ootao and Tani-

gawa 2004; Shao 2005; Eslami et al. 2005; Shao and Wang

2006; Ching and Yen 2006; Santos et al. 2008; Poultangari

et al. 2008; Ootao 2009; Peng and Li 2010; Malekzadeh

and Heydarpour 2012; Heydarpour et al. 2012; Zenkour
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and Sobhy 2013; Dai and Rao 2014). On the other hand,

although the accuracy of Fourier heat conduction theory is

sufficient for many practical engineering applications, this

theory cannot accurately predict the transient temperature

field caused by sudden change of the thermal boundary

conditions and also laser heating. This is because the

Fourier heat conduction law relates the heat flux directly to

the temperature gradient using the thermal conductivity. In

addition, this conventional heat conduction theory leads to

an infinite speed of thermal wave propagation, which is

physically unrealistic. To eradicate these deficiencies and

improve the accuracy of the traditional heat conduction law

and also uncoupled thermoelasticity theory, different gen-

eralized thermoelasticity theories have been developed in

the past years (Lord and Shulman 1967; Hetnarski and

Ignaczak 1999; Chouduri 2007). In this regard, Lord and

Shulman (L–S) (Lord and Shulman 1967) have introduced

an additional material property, called thermal relaxation

time, to consider a finite wave speed for the thermal energy

propagation. Based on the generalized coupled thermoe-

lasticity of Lord and Shulman, the temperature field is

coupled with the displacement field, and therefore, any

attempt to define the temperature distribution within the

body should be done with simultaneous consideration of

thermoelastic equations (Lord and Shulman 1967).

The static, free vibration and buckling analyses of homo-

geneous and non-homogeneous plates and shells have been

studied extensively in previous works using different

numerical techniques (Gürses et al. 2009; Civalek et al. 2010;

Baltacıoglu et al. 2010; Xiang et al. 2002; Civalek 2006;

Fantuzzi et al. 2017; Tornabene 2009; Tornabene and Viola

2013; Tornabene et al. 2016; Banic et al. 2017; Tornabene

et al. 2017). Also, many investigators have conducted the

thermoelastic analysis of FG spherical shells based on the

classical uncoupled theory of thermoelasticity (Obata and

Noda 1994; Eslami et al. 2005; Poultangari et al. 2008; Alavi

et al. 2008; Dai et al. 2011; Bayat et al. 2012). But, in com-

parison with the research works in these topics, to the best of

the authors’ knowledge, there are only few available studies in

the open literature which are concerned with the thermoelastic

analysis of single-layer homogeneous and FG spherical shells

based on the generalized theories of thermoelasticity (Bagri

and Eslami 2007; Ghosh and Kanoria 2008, 2009; Kiani and

Eslami 2016; Sharma and Mishra 2017).

Bagri and Eslami (2007) examined the dynamic response

of a FG sphere under thermal shock loads. The Galerkin finite

element method together with the Laplace transformation

was employed to solve the coupled form of the governing

equations. A numerical inversion of the Laplace transform

was used to obtain the results in the time domain. Ghosh and

Kanoria (2008) determined the displacement, stress and

temperature distributions in a FG spherically isotropic infi-

nite elastic medium having a spherical cavity under thermal

shock. Also, in another study, they carried out the displace-

ment and stress distributions in a FG spherically isotropic

hollow sphere subjected to a time-dependent thermal shock

on its inner surface and a prescribed constant temperature on

its outer surface (Ghosh and Kanoria 2009). In both men-

tioned works, the basic equations were written in the form of

a vector–matrix differential equation in the Laplace trans-

form domain which was then solved by an eigenvalue

approach. The above-mentioned studies are performed based

on the Green–Lindsay theory of thermoelasticity which has

two relaxation time parameters. Recently, Kiani and Eslami

(2016) investigated the thermoelastic response of a thick

sphere based on the Lord–Shulman theory of generalized

thermoelasticity under thermal shock. They considered the

thermally nonlinear term in energy equation. The resulting

one-dimensional radial equation of motion and energy

equation were discretized by means of the generalized dif-

ferential quadrature method and Newmark time marching

scheme in the radial direction and time domain, respectively.

Also, Sharma and Mishra (2017) presented analytical solu-

tion for the free vibrations of FG hollow sphere in the context

of linear theory of generalized thermoelasticity with one

relaxation time (i.e., Lord–Shulman theory).

In the all of the important works reviewed above, the

temperature dependence of material properties is neglected,

and in addition, the radiation heat transfer from the boundaries

of the shell is not considered. On the other hand, to the best of

the authors’ knowledge, there is no study on the thermoelastic

analysis of laminated spherical shells with FG layers in the

open literature. Due to the practical importance of this prob-

lem, this issue is considered in the present study. In this regard,

the coupled equations of the L–S thermoelasticity theory are

employed to evaluate the impacts of thermal and stress wave

propagation velocity and, consequently, the better simulation

of the variation of temperature, displacement and stress

components in the FG spherical shells. On the inner and outer

surfaces of the shells, both the radiation and convection heat

transfer are considered. The material properties are assumed

to be temperature dependent and graded in the radial direction.

As an efficient and accurate numerical tool, the layerwise-

differential quadrature method (LW-DQM) (Heydarpour

et al. 2012; Civalek 2004; Malekzadeh et al. 2008, 2012;

Malekzadeh and Heydarpour 2013; Talebitooti 2013; Mal-

ekzadeh et al. 2014; Heydarpour et al. 2014; Tornabene et al.

2015; Tornabene et al. 2016; Tornabene 2016; Heydarpour

and Aghdam 2016; Heydarpour and Aghdam 2016) in con-

junction with the Newmark time integration scheme (Reddy

2006) is employed to discretize the governing equations in the

spatial and temporal domains, respectively. The resulting

nonlinear system of equations is solved using the Newton–

Raphson method. After validating the approach, some para-

metric studies are carried out to investigate the influence of

material properties, temperature dependency of material
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properties, relaxation time, radiation heat transfer and differ-

ent geometrical parameters on the nonlinear transient

response of the FG laminated spherical shells under thermal

loading.

2 Governing Equation

A multilayered FG spherical shell with the inner radiusRi, outer

radiusRo and layer thicknessh is considered (Fig. 1). Due to the

axisymmetric geometry, material properties and loading con-

ditions of the shells under consideration, their field variables

become axisymmetric, and consequently, the system of dif-

ferential equations is reduced to the one-dimensional one.

In order to accurately model the variation of the field

variables across the thickness of laminated shells, in the

radial direction they are divided into Nm mathematical

layers which can be equal to or greater than the number of

actual physical layers NL. It is assumed that the material

properties of each physical layer vary continuously and

smoothly through-the-thickness direction r such that the

inner (outer) surface of each layer is ceramic rich (metal

rich) and the outer surface is metal rich (ceramic rich). In

this study, the effective material properties are obtained

using the power-law distribution. Hence, a typical effective

material property ‘P’ of the eth layer can be represented as

(Heydarpour et al. 2012):

P eð Þ r; T eð Þ
� �

¼ P
eð Þ
i T eð Þ
� �

þ P eð Þ
o T eð Þ
� �

� P
eð Þ
i T eð Þ
� �h i r � R

eð Þ
i

R
eð Þ

o � R
eð Þ
i

 !p

ð1Þ

where p denotes the power-law exponent, which is a pos-

itive real number, and P(e) and T eð Þ are the material prop-

erty and the temperature (in Kelvin) at an arbitrary material

point of the eth layer, respectively. Also, the subscripts

i and o, respectively, indicate the material of the inner and

outer surfaces of the shell layers. Hereafter, the subscripts

m and c are used to signify the metal and ceramic phases of

the layers, respectively. For example, if i = m and o = c,

then the inner surface of the shell layer is metal rich,

whereas the outer surface is pure ceramic.

Variation of an arbitrary material property ‘Q eð Þ’ of the

eth layer in terms of temperature can be expressed as

(Santos et al. 2008):

Q eð Þ Tð Þ ¼ Q
eð Þ

0 Q
eð Þ
�1T

�1 þ 1 þ Q
eð Þ

1 T þ Q
eð Þ

2 T2 þ Q
eð Þ

3 T3
� �

ð2Þ

The coefficients Q
eð Þ
i (i = - 1,0,1,2,3) are unique for each

material.

Based on the linear elasticity theory, the constitutive

relations at an arbitrary material point of the eth shell layer

can be written as:
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where r eð Þ
ii i ¼ r; h;/ð Þ are the normal stress tensor com-

ponents in which r, h and / are the conventional coordinate

variables of the spherical coordinate system; u eð Þ is the

radial displacement component at an arbitrary material

point of the eth layer; a eð Þ ¼ a eð Þ r; T eð Þ� �� �
is the thermal

expansion coefficient; and T0 is the reference temperature,

Fig. 1 a, b Two different types

of laminated FG hollow

spherical shells
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i.e., the temperature at which the shell is stress free; also,

c
eð Þ
ij ¼ c

eð Þ
ij r; T eð Þ� �

; i; j ¼ 1; 2
h i

are the material elastic

coefficients at an arbitrary material point of the shell

(Ghosh and Kanoria 2008).

It is assumed that the spherical shell has an initial

temperature distribution T0 and then suddenly exchanges

heat through its inner and outer boundaries with the inside

and outside mediums. Due to the axisymmetric geometry,

thermal loading conditions and also the material properties,

the governing equations become independent of h and /
coordinate variable coordinates. Hence, in each layer, the

equation of balance of energy and equation of motion

based on the L–S theory can be expressed as (Lord and

Shulman 1967), respectivelyEnergy equation:

q eð Þ c eð Þ oT eð Þ

ot
þ s eð Þ

0

o2T eð Þ

ot2

� 	
þ a eð Þ 3k eð Þ þ 2l eð Þ

� �

0 s eð Þ
0

o2

ot2
þ o

ot

� 	
ou eð Þ

or
þ 2u eð Þ

r

� 	
¼ 1

r2

o

or
r2k eð Þ oT

eð Þ

or

� 	

ð4Þ

Equation of motion:

or eð Þ
rr

or
þ

2 r eð Þ
rr � r eð Þ

hh

� �

r
¼ q eð Þ o

2u eð Þ

ot2
ð5Þ

where e = 1,2,…,Nm; also, k eð Þ ¼ k eð Þ r; Tð Þ
� �

is the thermal

conductivity, q eð Þ ¼ q eð Þ r; Tð Þ
� �

is the mass density,

c eð Þ ¼ c eð Þ r; Tð Þ
� �

is the specific heat capacity, s eð Þ
0 is the

relaxation time of the L–S model, k eð Þ and l eð Þ is the Lamé

constants of material surface (r) of the eth layer and t is the

time.

Among the different thermal boundary conditions that

can be considered at the surfaces of the spherical shell, the

convection–radiation thermal conditions are assumed on

the inner and outer surfaces of the shell

At r ¼ R
1ð Þ
i : �kð1Þ

oTð1Þ

o�r

¼ hci T1i � T 1ð Þ
� �

þ er T4
1i � T 1ð Þ

� �4

 �

;

At r ¼ R Nmð Þ
o : �kðNmÞ oT

ðNmÞ

o�r

¼ hco T Nmð Þ � T1o

� �
þ er T Nmð Þ

� �4

�T4
1o


 �
ð6a; bÞ

where T1i and T1o are the temperature of the inner and

outer mediums, respectively, which are assumed to be

constant; hci and hco denote the convective heat transfer

coefficients of the inside and outside media of the shell,

respectively; r refers to the Boltzmann constant; and e is

the emissivity coefficient. Also, the following thermal

initial conditions are considered

T eð Þ r; 0ð Þ ¼ T0;
oT eð Þ r; tð Þ

ot

����
t¼0

¼ 0 ð7a; bÞ

The mechanical boundary conditions at the inner and outer

surfaces of the shells r ¼ R
1ð Þ

i ; R
Nmð Þ

o

h i
, which are assumed to

be stress free, and also their initial conditions are as follows:

Mechanical boundary conditions (traction free surface

boundaries):

At r ¼ R
1ð Þ

i : C
1ð Þ

11

ou 1ð Þ

or
þ 2C

1ð Þ
12

u 1ð Þ

r
� C

1ð Þ
11 þ 2C

1ð Þ
12
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Z T 1ð Þ

T0

a 1ð ÞdT

 !#
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C

Nmð Þ
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Nmð Þ
12
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r

� C
Nmð Þ

11 þ 2C
Nmð Þ

12

� � Z T Nmð Þ

T0

a Nmð ÞdT

 !#
¼ 0

ð8a; bÞ

Mechanical initial conditions:

u eð Þ r; 0ð Þ ¼ 0;
ou eð Þ r; tð Þ

ot

����
t¼0

¼ 0 ð9a; bÞ

In addition to the above boundary and initial conditions,

the geometrical and natural compatibility conditions at the

interface of the two adjacent shell layers should be

implemented to allow one to uniquely determine the tem-

perature distribution and the displacement component in

the layered shells. These continuity conditions at the

interface of two adjacent layers of the multilayered

spherical shell take the following form:Thermal compati-

bility conditions:

T eð Þ R eð Þ
o

� �
¼ T eþ1ð Þ R

eþ1ð Þ
i

� �
;

k eð Þ rð Þ oT
eð Þ

or


 �

r¼R
eð Þ
o

¼ k eþ1ð Þ rð Þ oT
eþ1ð Þ

or


 �

r¼R
eþ1ð Þ
i

ð10a; bÞ

Mechanical compatibility conditions:

u eð Þ R eð Þ
o

� �
¼ u eþ1ð Þ R

eþ1ð Þ
i

� �
;

C
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11

ou eð Þ
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eð Þ
12
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r
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12

u eþ1ð Þ

r
� C

eþ1ð Þ
11 þ 2C

eþ1ð Þ
12

� �

Z T eþ1ð Þ

T0

a eþ1ð ÞdT

 !#

r¼R
eþ1ð Þ
i

ð11a; bÞ

where e = 1, 2,…, Nm � 1.
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3 Solution Procedure

Due to the fact that the governing differential equations have

variable coefficients and also the governing differential equa-

tion of energy balance and the related boundary conditions are

nonlinear, it is difficult to solve them analytically. Hence, an

appropriate numerical method should be employed to find the

solution. In this work, the layerwise-differential quadrature

method (LW-DQM) as an accurate and efficient numerical tool

(Heydarpour et al. 2012; Civalek 2004; Malekzadeh et al.

2008, 2012; Malekzadeh and Heydarpour 2013; Talebitooti

2013; Malekzadeh et al. 2014; Heydarpour et al. 2014; Torn-

abene et al. 2015; Tornabene et al. 2016; Tornabene 2016;

Heydarpour and Aghdam 2016; Heydarpour and Aghdam

2016) in conjunction with Newmark’s time integration

scheme (Reddy 2006) is adopted to discretize the governing

equations in the spatial and time domains, respectively.

According to this method, each mathematical layer of the shell

is discretized into a set of N
eð Þ

r grid points along the radial

direction. Then, the spatial derivatives in the differential equa-

tions are discretized at the domain grid points. More details of

the differential quadrature method (DQM) can be found in the

interesting review paper of Tornabene et al. (2015). For the sake

of brevity, the differential quadrature (DQ) discretized form of

the balance of energy Eq. (4) for the eth layer is presented here

q eð Þ
i c

eð Þ
i

dT eð Þ

dt
þ s eð Þ

0

d2T eð Þ

dt2

� 	

i

þa eð Þ
i 3k eð Þ

i þ 2l eð Þ
i

� �

T0 s eð Þ
0i

d2

dt2
þ d

dt

� 	 XN eð Þ
r

m¼1

A
erð Þ
im u eð Þ

m þ 2u
eð Þ
i

ri

0
@

1
A ¼

k
eð Þ
i

XN eð Þ
r

m¼1

B
erð Þ
im T eð Þ

m þ dk eð Þ

dr
þ 2k eð Þ

r

� 	

i

XN eð Þ
r

m¼1

A
erð Þ
im T eð Þ

m ð12Þ

where i ¼ 2; . . .; N̂ eð Þ
r ¼ N eð Þ

r � 1
� �

and A
eð Þ
im and B

eð Þ
im refer to

the weighting coefficients of the first- and second-order

DQM weighting coefficients (Malekzadeh et al. 2012). In a

similar manner, the other differential equations and the

related boundary and compatibility conditions can be dis-

cretized. After doing these, one gets a system of nonlinear

ordinary differential equations as

M½ � d2D

dt2


 �
þ C½ � dD

dt


 �
þ K½ � Df g ¼ f tð Þf g ð13Þ

where Df g is the vector of degrees of freedom (i.e., the

temperature and the radial displacement of the grid points);

also, M½ �, C½ � and K½ � are the mass, thermoelastic damping

and stiffness matrices, respectively. In order to solve the

system of ordinary differential Eq. (13) in the time domain,

the Newmark’s time integration scheme (Reddy 2006) is

employed. Afterward, one obtains a system of nonlinear

algebraic equations in each time interval. In this work,

Newton–Raphson method is employed to solve this system

of nonlinear algebraic equations in each time step and the

procedure is repeated for all time intervals. At the end of

each time interval, the obtained temperature and displace-

ment component are used as the initial conditions for the

next time step. Finally, the temperature distribution toge-

ther with the displacement and stress components is

obtained in each time step and at any grid point of the FG

spherical shell.

4 Numerical Results

In this section, after validating the present formulation and

solution technique for the transient thermoelastic analysis

of laminated spherical shells with FG layers subjected to

thermal loading, some parametric studies are carried out.

Two common types of FG sandwich shells are considered.

Type I consists of FG core surrounded by homogeneous

inner and outer layers (Fig. 1a), while type II is made of

Table 1 Temperature-

dependent coefficients of

material properties for zirconia

(ZrO2) and stainless steel (AISI

304) (Santos et al. 2008)

Material Q�1 Q0 Q1 Q2 Q3

E Pað Þ Stainless steel 0 201:04 � 109 3:079 � 10�4 �6:534 � 10�7 0

Zirconia 0 244:27 � 109 �1:371 � 10�3 1:214 � 10�6 �3:681 � 10�10

m Stainless steel 0 0.3262 �2:002 � 10�4 3:797 � 10�7 0

Zirconia 0 0.2882 1:133 � 10�4 0 0

q kg=m3ð Þ Stainless steel 0 8166 0 0 0

Zirconia 0 5700 0 0 0

a 1=Kð Þ Stainless steel 0 12:330 � 10�6 8:086 � 10�4 0 0

Zirconia 0 12:766 � 10�6 �1:491 � 10�3 1:006 � 10�5 �6:778 � 10�11

k W=m Kð Þ Stainless steel 0 15.379 �1:264 � 10�3 2:092 � 10�6 �7:223 � 10�10

Zirconia 0 1.700 1:276 � 10�4 6:648 � 10�8 0

c J=kgKð Þ Stainless steel 0 496.56 �1:151 � 10�3 1:636 � 10�6 �5:863 � 10�10

Zirconia 0 487.34 3:049 � 10�4 �6:037 � 10�8 0
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FG inner/outer layers with homogeneous core (Fig. 1b).

The individual layers are assumed to have equal thickness

and are composed of zirconia (ceramic) and stainless steel

(metal) (Santos et al. 2008). The material properties of

zirconia (ZrO2) and stainless steel (AISI 304) are given in

Table 1. Three mathematical layers are used to model these

shells in the thickness direction. Also, unless otherwise

specified, in all case studies, the material properties are

assumed to be temperature dependent and the following

values are used for the other parameters: Ri ¼ 1 :4 mð Þ ;
Ro ¼ 2 mð Þ ; T0 ¼ T1o ¼ 300 Kð Þ, T1i ¼ 1000 Kð Þ and

hci ¼ hco ¼ 10 W=m2Kð Þ. Also, the non-dimensional

parameters are defined as:

Fo ¼
tk0m

qc0mR2
o

; k ¼ Ro er T3
1

k0m

; s ¼ s0a
_

R2
o

;

T� ¼ T � T1
T1

; U ¼ h

1 þ m0mð Þa0mT1R2
o

u

n ¼ r � Ri

Ro � Ri

; Rii ¼
1 þ m0mð Þh

RoE0ma0mT1
rii with i ¼ r; h :

ð14a-hÞ

where a
_ ¼ k=qcð Þ is the thermal diffusivity of the FG

shell.

As a first example, the convergence behavior of the non-

dimensional results of sandwich shell of type II under

Fig. 2 a–d Convergence of the results against the number of DQ grid points for the spherical shells of type II Foð ¼ 0:2; p ¼ 1; s ¼ 0:1; k ¼ 0:1;
Nt ¼ 400Þ
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thermal loading against the DQ number of grid points

along the thickness direction N
eð Þ
n ¼ N eð Þ

r

� �
and the num-

ber of time steps are carried out and are shown in Figs. 2

and 3, respectively. The fast rate of convergence and

numerical stability of the results are clear, and one can

observe that thirty DQ grid points per layer yield con-

verged results.

In order to clarify the accuracy of the presented for-

mulation and method of solution, the non-Fourier heat

conduction of a FG spherical shell subjected to a sudden

temperature change on its outer surface, which has been

analytically analyzed by Akbarzadeh and Chen (2014), is

considered. The results for the temperature distribution

within the shell based on the non-Fourier and Fourier heat

conduction theories are compared with Akbarzadeh and

Fig. 3 a–d Convergence of the results against the number of time steps for the spherical shells of type II p ¼ 1;ð s ¼ 0:1; k ¼ 0:1;

n ¼ 0:25; N
eð Þ
n ¼ 30

�
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Chen (2014) in Fig. 4. The material properties vary radially

according to the following power-law formulation:

w ¼ w0r
n ð15Þ

where w0 denotes the material constant at the outer surface

and n is the non-homogeneity index. The geometrical and

heat transfer parameters are: Ri ¼ 0:6 mð Þ ; Ro ¼ 1 mð Þ ;
Twi ¼ T1 ¼ 300 K and Two ¼ 500 K. Also, similar non-

dimensional parameters, thermal and initial boundary

conditions at the inner and outer surfaces of the sphere as

those in Ref. (Akbarzadeh and Chen 2014) are chosen,

which are:

�Fo ¼ tk0

q0c0R2
o

; �s ¼ s0�a
R2

o

; �T ¼ T � T1
Two � T1

;

T Ri; tð Þ ¼ Twi; T Ro; tð Þ ¼ Two; T r; 0ð Þ ¼ T1

oT

ot
¼ 0 at t ¼ 0

ð16a-gÞ

where �a ¼ k0=q0c0ð Þ is the thermal diffusivity. From Fig. 4,

excellent agreement of the present work results with the

analytical solution (Akbarzadeh and Chen 2014) is

observed. Hence, it can be concluded that the method can

accurately predict the thermal wave propagation in the

spherical shells.

As another study to examine the accuracy of the method,

the non-dimensional temperature distribution, radial dis-

placement and stress components of the FG hollow

spherical shells subjected to internal pressure in thermal

environment are compared with those of the exact solution

obtained by Eslami et al. (2005) in Fig. 5. To find such a

solution, all the material properties of the sphere, except

Poisson’s ratio, vary according to Eq. (15). The material

properties, non-dimensional parameters and boundary

conditions of the FG hollow sphere in this example are,

respectively (Eslami et al. 2005):

m ¼ 0:3; E0 ¼ 200 GPað Þ; a0 ¼ 1:2 � 10�6 1
oC

� 	
;

T̂ ¼ T

T Rið Þ ; û ¼ u

Ri

; r̂jj ¼
rjj

rrr Rið Þ with j ¼ r; h ;

T Ri; tð Þ ¼ 10 �Cð Þ; T Ro; tð Þ ¼ 0 �Cð Þ;
rrr Ri; tð Þ ¼ � 50 MPað Þ; rrr Ro; tð Þ ¼ 0

ð17a-hÞ

It can be seen that for different values of the material

graded index (n), the results of the present approach are in

close agreement with the exact solution of Eslami et al.

(2005).

After showing the convergence and accuracy of the

present approach, parametric studies for the two types of

laminated FG spherical shells subjected to thermal loading

are carried out. In all solved examples, 400 time steps and

thirty grid points per layer in the radial direction are used to

generate the numerical results.

The effects of material properties on the thermal wave

propagation in the single-layer spherical shells are studied

by showing the results for spherical shells made of metal,

ceramic and FG materials in Figs. 6, 7, 8, respectively.

From these figures, one can see that the propagation of

thermal wave for spherical shell made of metal is more

obvious than those of shells with ceramic and FG materials.

In Figs. 9, 10, 11, the effects of material properties on

the thermo-mechanical behavior of the single- and multi-

layer spherical shells are studied. For this purpose, in Fig. 9

comparison between the through-the-thickness variations

of the non-dimensional thermo-mechanical field variables

(i.e., the non-dimensional temperature distribution, radial

displacement and stress components) of a single-layer FG

spherical shell (with inner face ceramic and outer face

Fig. 4 Comparison of the non-dimensional temperature of an FG

hollow sphere subjected to a sudden temperature change on the outer

surface based on the non-Fourier and Fourier heat conduction

theories. n ¼ 0:8;ð �s ¼ 0:35Þ
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Fig. 5 a–d Comparison of results across the thickness of a FG hollow sphere subjected to internal pressure in thermal environment Ri ¼ 1 mð Þ;½
Ro ¼ 1:2 mð Þ �
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metal), types I and II of layered spherical shells are done. It

seems that the layered shell of type II has better thermo-

mechanical performance than the other ones. This is

because among the three types of shells, this type has the

lowest radial displacement and minimum stress compo-

nents. Also, the influence of the material graded index

(p) on the time histories of the thermo-mechanical field

variables of the types I and II of spherical shells is shown in

Figs. 10 and 11, respectively. It can be seen that in all cases

there are considerable differences between the results of

Fig. 6 a–d The wave propagation through the radial direction for spherical shells made of metal p ¼ 1;ð s ¼ 0:2; k ¼ 0:5Þ
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the homogeneous (p = 0) and non-homogenous (p = 1)

spherical shells. These differences are more obvious for the

type II of FG shells which have metal core than type I with

FG core.

The effects of relaxation time on the time histories and

the distribution of the non-dimensional thermo-mechanical

field variables through the radial direction of the spherical

shells of type II are exhibited in Figs. 12 and 13, respec-

tively. It can be seen that by increasing the relaxation time,

the non-dimensional temperature, radial displacement and

stress components decrease. However, the relaxation time

does not change the variation patterns of these parameters

Fig. 7 a–d The wave propagation through the radial direction for spherical shells made of ceramic p ¼ 1;ð s ¼ 0:2; k ¼ 0:1Þ
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considerably. Figure 14 depicts the through-the-thickness

variations of the non-dimensional thermo-mechanical field

variables for the spherical shells of type II at different time

levels. It is evident that by increasing the time level, the

field variables increase.

The influences of temperature dependence of material

properties on the time histories of the results for the

spherical shells of type II are studied in Fig. 15. As it can

be observed, the temperature dependence of material

properties significantly changes the thermo-mechanical

Fig. 8 a–d The wave propagation through the radial direction for a single-layer FG spherical shell p ¼ 1;ð s ¼ 0:2; k ¼ 0:1Þ
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behavior of the system and cannot be ignored. It is obvious

that all of the non-dimensional field variables increase

when the temperature dependence of material properties is

considered.

In Fig. 16, comparisons between the across-the-thick-

ness variations of the non-dimensional field variables for

the spherical shells of type II based on the uncoupled and

coupled thermoelasticity theories are performed. One can

Fig. 9 a–d Comparison of the results for three different types of hollow spherical shells Fo ¼ 0:3;ð p ¼ 1;�s ¼ 0:1; k ¼ 0:05Þ
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find that the uncoupled thermoelasticity overpredicts the

non-dimensional temperature and radial displacement dis-

tribution in the shell. In addition, there are large discrep-

ancies between the stress components obtained according

to these theories.

Figure 17 depicts the effects of the thickness-to-outer

radius ratio, as an important geometrical parameter, on the

time histories of the non-dimensional field variables for the

spherical shells of type II. It is interesting to note that all of

the field variables, except the radial stress component,

Fig. 10 a–d Time histories of the results against the material graded index (p) for type I spherical shells s ¼ 0:1;ð n ¼ 0:25; k ¼ 0:1Þ
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decrease by increasing the thickness-to-outer radius ratio.

However, the radial stress component increases by

increasing this geometrical parameter.

5 Conclusion

The transient thermoelastic analysis of multilayered

spherical shells with FG layers under the radiative-con-

vective thermal boundary conditions was presented based

on the generalized coupled thermoelasticity of Lord–

Shulman. The material properties were assumed to be

temperature dependent and graded in the radial direction.

Fig. 11 a–d Time histories of the results against the material graded index (p) for type II spherical shells s ¼ 0:1;ð n ¼ 0:25; k ¼ 0:1Þ
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The layerwise-differential quadrature method in conjunc-

tion with Newmark’s time integration scheme was

employed to discretize the governing equations in the

spatial and temporal domains, respectively. Then, the

resulting nonlinear system of algebraic equations was

solved using the Newton–Raphson method. At first, the fast

rate of convergence and accuracy of the method were

demonstrated. Then, parametric studies were conducted to

Fig. 12 a–d The influence of relaxation time on the time histories of the results for the spherical shells of type II p ¼ 1;ð n ¼ 0:25; k ¼ 0:1Þ
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illustrate the effects of different parameters on the transient

thermoelastic responses of the FG spherical shells and the

results were discussed. Through the comparison studies, it

was illustrated that the method can accurately predict the

thermal wave propagation in the spherical shells. It was

shown that the temperature dependence of material prop-

erties, thermo-mechanical coupling, FG layer layout,

material gradient index and thickness-to-outer radius ratio

have significant effect on the thermo-mechanical behavior

of the FG shells. For example, it was shown that by con-

sidering the temperature dependence of material properties,

all of the non-dimensional thermo-mechanical field vari-

Fig. 13 a–d The effect of relaxation time on the distribution of the results through the radial direction for the spherical shells of type II

Fo ¼ 0:3;ð p ¼ 1; k ¼ 0:05Þ
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ables increase. Also, it was found that the propagation of

thermal wave for spherical shell made of metal was clearer

than those of shells with ceramic and FG materials.

Moreover, it was shown that the uncoupled thermoelas-

ticity overpredicts the non-dimensional temperature and

radial displacement component of the shell. On the other

hand, except the radial stress component, all the other field

variables decrease by increasing the thickness-to-outer

Fig. 14 a–d The effects of different time levels on the distribution of the results through the radial direction for the spherical shells of type II

p ¼ 1;ð s ¼ 0:1; k ¼ 0:05Þ
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radius ratio. Furthermore, from the presented results, it was

observed that in all cases there were considerable differ-

ences between the responses of the homogeneous and non-

homogenous spherical shells. And among the different

types of shells under investigation in this study, it was

established that the sandwich shells with metal core (i.e.,

type II) have better thermo-mechanical performance than

other ones. For this type of shells (i.e., type II), it was

Fig. 15 a–d Temperature dependence of material properties on the time histories of the results for the spherical shells of type II

p ¼ 1;ð s ¼ 0:1; k ¼ 0:05Þ
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found that by increasing the thickness-to-outer radius ratio,

in spite of the radial stress component, all the other field

variables decrease. Also, it was seen that by increasing the

relaxation time, the non-dimensional temperature, radial

displacement and stress components decrease. However,

the relaxation time does not have a significant effect on the

variation patterns of these parameters.

Fig. 16 a–d Comparison of the results for the spherical shells of type II with two different coupled and uncoupled theories Fo ¼ 0:3;ð p ¼ 1;
s ¼ 0:05; k ¼ 0:05Þ
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