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Abstract
On the basis of a nonlocal shell model, the thermal buckling analysis of carbon nanocones (CNCs) is presented. Using

Donnell’s strain–displacement relations and considering Eringen’s nonlocal elasticity theory, the stability equations of

CNCs are derived. Employing the generalized differential quadrature method and trigonometric expansion in axial and

circumferential directions of CNC, the stability equations are solved. The mechanical properties of CNCs such as Young’s

modulus and Poisson’s ratio are dependent on the apex angle. To show the accuracy of the present study, some numerical

results are compared with those reported in the literature. Furthermore, the effects of nonlocal parameter, length-to-radius

ratio, boundary conditions and apex angle on the thermal buckling load of CNCs are examined. The results indicate that the

thermal buckling load decreases by increasing the nonlocal parameter and apex angle.
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1 Introduction

Superior properties of nanomaterials such as high

mechanical strength, low density and good thermal and

electrical properties make them suitable for various appli-

cations in microelectromechanical systems (MEMS) and

nanoelectromechanical systems (NEMS). Since their dis-

covery by Ge and Sattler (1994), carbon nanocones (CNCs)

have attracted the attention of researchers from different

disciplines. Due to the various applications of CNCs in

nanomechanical systems, such as high resolution probes in

atomic force microscopy (Mohammadi et al. 2010; Yeh

et al. 2006) and also thermal rectifier (Yang et al. 2008),

their mechanical analysis is of paramount importance.

Several experimental studies have been conducted to

describe the mechanical behavior of nanostructures (Akita

et al. 2006; Jeng et al. 2007; Endo et al. 2002; Terrones

et al. 2001). However, as conducting such experiments is

generally expensive and difficult to control at nanoscale,

theoretical modeling is widely used in the area of

nanomechanics. Different atomistic methods such as

molecular dynamics (MD) (Hu et al. 2012; Firouz-Abadi

et al. 2012; Liao 2014; Liao 2015) and molecular

mechanics (MM) (Fakhrabadi et al. 2012; Ansari et al.

2014) have been employed to theoretically investigate the

vibration and buckling of nanocones. The computational

cost of atomistic simulations is also a restrictive parameter,

especially for a nanostructure with a large number of

atoms. Hence, the continuum mechanics can be regarded as

a computationally efficient tool to study the mechanical

behavior of nanomaterials.

The mechanical behavior of structures at the nanoscale

is size-dependent (Sharma et al. 2003; Sun and Zhang

2003), and classical continuum mechanics cannot take the

size effect into consideration. In this regard, the modified

continuum theories are employed. Among size-dependent

continuum theories, the nonlocal elasticity theory proposed

by Eringen (1983, 2002), has been widely used to predict

the mechanical behavior of graphene sheets (Peddieson

et al. 2003; Arash and Wang 2011; Ebrahimi and Barati

2016) and carbon nanotubes (Wang et al. 2006; Pradhan

and Reddy 2011; Hoseinzadeh and Khadem 2014). The

major difference between classical and nonlocal theories is
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that in the classical theory one can determine the stress

state at a given point by the strain state at the same point,

whereas in the nonlocal theory, the stress state at a given

point is a function of the strain state of all points in the

body.

The nonlocal elasticity theory can properly predict the

mechanical behavior of nanostructures (Gibson et al.

2007). Based on Eringen’s nonlocal theory and considering

beam models, the vibration (Ebrahimi and Barati 2016;

Dinçkal 2016; Yang et al. 2010) and buckling (Pradhan and

Reddy 2011; Wu and Liou 2016; Wang et al. 2012) of

carbon nanotubes has been studied by many researchers.

Also, various studies have been carried out on the static

(Ghorbanpour Arani et al. 2011, 2012; Gholami et al. 2017)

and dynamic (Li and Kardomateas 2007; Hu et al. 2008;

Asghari and Rafati 2010) behaviors of carbon nanotubes

based on the nonlocal shell model. However, based on the

nonlocal elasticity theory, a few studies have been per-

formed on the vibration and buckling of CNCs. Based on

the nonlocal elasticity theory and using the tapered rod

model, Shu and Shau (2012) studied the axial vibration of

CNCs. Using a nonlocal shell model and employing the

Galerkin technique, Firouz-Abadi et al. (2011) investigated

the free vibration of CNCs. Furthermore, Fotouhi et al.

(2013) examined the free vibration of CNCs embedded in

an elastic foundation based on a nonlocal continuum shell

model. In that study, by considering Donnell’s linear

strain–displacement relations for thin shells, the natural

frequencies of simply supported CNCs were obtained.

Based on an analytical approach, the nonlocal vibration of

CNCs was analyzed by Ansari et al. (2014). They used the

Galerkin method together with beam functions to study the

effects of boundary conditions, semi-vertex angle and

nonlocal parameter on the natural frequencies of CNCs.

Firouz-Abadi et al. (2012) studied the mechanical buckling

of CNCs under combined loading based on the nonlocal

shell model. In that study, by considering the nonlinear von

Kármán strain–displacement relations and using Hamil-

ton’s principle, the governing equations were presented and

the critical buckling load was calculated using the Galerkin

method. The influences of different geometrical parameters

and scale effects on the stability of nanocones were ana-

lyzed in their work. A survey of the literature indicates that

no study has been performed on the thermal buckling of

CNCs up to now. Consequently, in the present study, the

thermal buckling of CNCs is studied based on the nonlocal

elasticity theory. The CNC is considered as a conical shell

structure. Employing Donnell’s strain–displacement rela-

tions for thin shells and considering the nonlocal effect, the

governing equations are presented. To solve these equa-

tions, a semi-analytical approach is applied based on the

GDQ method and trigonometric expansion. The effects of

nonlocal parameter, boundary conditions and different

geometrical parameters on the thermal instability of CNC

are studied.

2 Governing Equations

The thermal buckling analysis of CNCs based on nonlocal

shell theory is presented in this section. Based on the

nonlocal elasticity theory proposed by Eringen

(1983, 2002), the stress at a point is a function of strains at

all points in the continuum. According to the nonlocal

theory, the differential form of constitutive relation can be

expressed as

1 � e0að Þ2r2
� �

r ¼ C� ð1Þ

where r and � are the stress and strain vectors, respectively,

and C is the material stiffness matrix. In addition, e0a

stands for the characteristic length or nonlocal parameter

which captures the size effect in small-scale structures and

r2 introduces the Laplacian operator. Thus, for the linearly

thermo-elastic material, the stress and strain relations can

be defined according to Eq. (1) and based on Hooke’s law

as
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where DT zð Þ is the temperature difference through the

thickness direction and the coefficients Qij i; j ¼ 1; 2; 6ð Þ
are given as

Q11 ¼ Q22 ¼ E

1 � m2
; Q12 ¼ Em

1 � m2
; Q66 ¼ E

2 1 þ mð Þ ;

ð3Þ

in which E and m are Young’s modulus and Poisson’s ratio

of the nanocone. In order to model the CNC, the following

assumptions are considered:

• The nanocone is considered as an elastic conical shell.

• The governing equations are derived based on the thin

shell model, and the nonlocal elasticity theory is used to

capture the size-dependent behavior of CNC.

• It is assumed that the material properties of CNC such

as its Young’s modulus and Poisson’s ratio depend on

the apex angle of the cone.

Figure 1 shows the schematic of conical shell with the

small radius R1, large radius R2, thickness h, semi-apex
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angle b and length L. Additionally, it should be pointed out

that according to coordinate system shown in Fig. 1, the

Laplacian operator can be expressed as

r2 ¼ o2

ox2 þ sin bð Þ
R xð Þ

o
ox
þ 1

R xð Þ2
o2

oh2.

Considering thin shell theory, the displacement field of

CNC can be presented as

�u x; h; zð Þ ¼ u x; hð Þ þ z
ow x; hð Þ

ox
; �v x; h; zð Þ

¼ v x; hð Þ þ z

R xð Þ
ow x; hð Þ

oh
; �w x; h; zð Þ ¼ w x; hð Þ

ð4Þ

in which �u; �v and �w are the displacements of an arbitrary

point of the CNC; and u; v and w represent the displace-

ments of the mid-plane in the x, h and z directions,

respectively. Based on Kirchhoff–Love’s hypothesis, the

strains at any point of the shell are Brush and Almroth

(1975) and Eslami et al. (1996)

ex
eh
cxh

8<
:

9=
; ¼

�ex
�eh
�cxh

8<
:

9=
;þ z

jx
jh
jxh

8<
:

9=
; ð5Þ

where �ex and �eh are the mid-plane normal strains, �cxh is the

mid-plane shear strain, jx and jh are the mid-plane cur-

vature changes, and jxh is the mid-plane twist change. On

the basis of classical shell theory and considering Don-

nell’s approach, the strain–displacement relations are

defined as Brush and Almroth (1975).
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In these equations, �ð Þ;x and �ð Þ;h denote the deriva-

tives with respect to axial and circumferential directions,

respectively.

Considering Eqs. (2)–(7), the nonlocal force and

moment resultants can be obtained as
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with

ðAij;DijÞ ¼
Zh=2

�h=2

Qij 1; z2
� �

dz; i; j ¼ 1; 2; 6ð Þ ð10Þ

and

NT ¼
Z h

2

�h
2

EaDT zð Þdz MT ¼
Z h

2

�h
2

EazDT zð Þdz ð11Þ

where NT and MT stand for thermal force and moment

resultants. The stability equations of carbon nanocones

based on Dannell’s shell theory and using the adjacent

equilibrium criterion can be written as Brush and Almroth

(1975) and Akbari et al. (2015).

Fig. 1 Geometry and coordinate system of nanocone
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Nx;x þ
Nxh;h

R xð Þ þ
sin bð Þ
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Nh;h

R xð Þ þ Nxh;x þ
2 sin bð Þ
R xð Þ Nxh ¼ 0;

Mx;xx þ
2Mxh;xh

R xð Þ þ Mh;hh

R xð Þ2
� cos bð Þ

R xð Þ Nh þ
sin bð Þ
R xð Þ 2Mx;x �Mh;x þ

2Mxh;h

R xð Þ

� �
þ

þ 1

R xð Þ R xð ÞN0
x w;x þ N0

xhw;h

� �
;x
þ 1

R xð Þ N0
xhw;x þ N0

h
w;h

R xð Þ

� �

;h

¼ 0:

ð12Þ

In addition, the clamped (C) and simply supported

(S) boundary conditions can be given as

Clamped:

u ¼ v ¼ w ¼ w;x ¼ 0 ð13Þ

Simply supported:

u ¼ v ¼ w ¼ Mx ¼ 0 ð14Þ

Moreover, Nx
0 Nh

0 and Nxh
0 are prebuckling force resul-

tants which according to the membrane solution of linear

equilibrium equations can be obtained as Akbari et al.

(2015) and Torabi et al. (2013).

N0
x ¼ � 1 � mð Þ sin bð ÞL

R xð Þln 1 þ Lsin bð Þ
R1

� �NT ; ð15Þ

Substituting Eqs. (8) and (9) into Eq. (12) and consid-

ering the prebuckling force resultants defined in Eq. (15),

one can write the nonlocal stability equations of CNCs in

terms of displacement components as

A11 u;xx þ
sin bð Þ
R xð Þ u;x �
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� �
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3 Solution Procedure

The governing equations for thermal buckling of carbon

nanocones are derived in previous section based on the

nonlocal shell theory. Due to the circular shape of conical

shell, the displacement components in circumferential

direction (0 B h B 2p) are periodic. Therefore, the partial

differential Eqs. (16)–(18) can be converted into ordinary

differential equations using the following separation of

variables approach (Brush and Almroth 1975; Akbari et al.

2015)

u x; hð Þ
v x; hð Þ
w x; hð Þ

8<
:

9=
; ¼
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0 cos nhð Þ 0

0 0 sin nhð Þ

2
4

3
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V xð Þ
W xð Þ

8<
:

9=
;
ð19Þ

where in the above equation ns the wave number through

the circumferential direction. Applying Eq. (19), the three

coupled ordinary differential equations are obtained which

are discretized by the use of the GDQ method. In this

regard, a brief description of GDQ method is presented

here.
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3.1 GDQ Method

On the basis of the GDQ method (Shu 2000), the rth

derivative of function f(x) is specified as a linear sum of the

function, i.e.,

orf xð Þ
oxr

����
x¼xi

¼
Xn1

j¼1

1rijf xj
� �

; i ¼ 1; 2; . . .; n1 ð20Þ

in which 1ij
r is the weighting coefficients and n1 is the

number of grid points in x direction. A column vector F can

be given as

F ¼ Fj

	 

¼ f xj

� �	 

¼ f xð Þ; f x2ð Þ; . . .; f xn1

ð Þ½ �T ð21Þ

where f(xj) is the nodal values of f(x) at x = xj. According

to Eq. (20), a differential matrix operator can be written as

or

oxr
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x

h i
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� �
ð22Þ

where

D rð Þ
x ¼ D rð Þ

x

h i
i;j
¼ 1rij; i; j ¼ 1 : n1 ð23Þ

In the above equation, 1ij
r is presented by Shu (2000)
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Iij; r ¼ 0
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8>>>>>>>>>><
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where I is a n1 9 n1 identity matrix and L xið Þ is given as

L xið Þ ¼
Yn1

j¼1;j 6¼i

xi � xj
� �

ð25Þ

Previous studies (Tornabene et al. 2009) showed that the

Chebyshev–Gauss–Lobatto grid point distribution has the

most convergence and stability. Consequently, the grid

points in axial direction can be generated as

xi ¼
1

2
1 � cos

i� 1

n1 � 1
p

� �
L ð26Þ

Therefore, using the separation variables approach and

GDQ method, the discretized form of governing equations

of CNCs can be given as
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K11 ¼ A11 D2
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x
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x
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K23 ¼ nA11 cos bð Þ �R2D0
x ð33Þ

K31 ¼ A11 cos bð Þ sin bð Þ �R2D0
x þ A12 cos bð Þ �R1D1

x ð34Þ

K32 ¼ �nA11 cos bð Þ �R2D0
x ð35Þ

K33 ¼D11D
4
x þ2D11 sin bð Þ �R1D3

x � 2n2 D12 þ2D66ð Þcos bð Þ
�

þD11sin2b
�
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x 2n2 D12 þ2D66ð Þsin bð Þ
�
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�
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�
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�R4
�
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1 � mð Þ sin bð ÞL
ln 1 þ Lsin bð Þ

R1

� �

�R1D2
x

�
� e0að Þ2 �R1D4

x � sin bð Þ �R2D3
x

�
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x

�
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where

�Ri ¼ diag

1

R1 þ sin bð Þx1ð Þi
1

R1 þ sin bð Þx2ð Þi

..

.

1

R1 þ sin bð Þxn1
ð Þi

2
6666666664

3
7777777775

0
BBBBBBBBB@

1
CCCCCCCCCA

; i ¼ 1; 2; 3; 4ð Þ:

ð38Þ

Substituting the boundary conditions into Eq. (27) and

setting the determinant of coefficient matrix to zero, the

critical thermal load can be obtained.

Iran J Sci Technol Trans Mech Eng (2019) 43 (Suppl 1):S723–S732 S727

123



4 Results and Discussion

On the basis of nonlocal shell model, the buckling analysis

of CNCs subjected to thermal loading was presented. The

mechanical properties of CNCs such as Young’s modulus

and Poisson’s ratio depend on the apex angle of the cone

and can be given as follows (Hu et al. 2012; Firouz-Abadi

et al. 2012; Wei et al. 2007): E ¼ 0:89 cos4 bð Þ TPað Þ and

m = 0.25 sin2(b). The wall thickness of the cone is con-

sidered to be h ¼ 0:34 nm. In addition, the uniform tem-

perature rise through the thickness direction of the

nanocone is assumed as the thermal loading. The numerical

results for thermal buckling of CNC is given based on non-

dimensional thermal buckling load defined as

nT ¼ NTR2
1

D11

ð39Þ

As mentioned before, the carbon nanocone is modeled

as a continuum conical shell. In this regard, the accuracy of

the present study is validated by the thermal buckling load

of the conical shell given by Akbari et al. (2015). The

critical buckling temperature difference of conical shell

subjected to uniform temperature rise through the thickness

direction is compared in Table 1 for different boundary

conditions. For another comparison, the critical buckling

temperature difference of conical shell is compared in

Table 2 with the results reported by Sofiyev (2007) and

Torabi et al. (2013). Sofiyev (2007) presented the stability

equations based on modified Donnell’s shell theory, and

the stress function together with the Galerkin method was

employed to solve the problem. Also, Torabi et al. (2013)

derived the stability equations based on the classical shell

theory and Sander’s kinematic relations, and Galerkin

method was used to find the critical buckling temperature.

As it can be seen, the results are in good agreement with

the reported data.

Figure 2 shows the variations of non-dimensional ther-

mal buckling load of CNC versus length-to-radius ratio for

various nonlocal parameter values. Clamped–clamped

(CC) and simply supported–simply supported (SS)

boundary conditions are considered. As it can be seen, in

the case of CC boundary condition and e0a = 1, the

increase of length-to-radius ratio of the cone from L/R1 = 5

to L/R1 = 30 decreases the non-dimensional thermal

buckling load for more than 58%. This amount is about

Table 1 Comparison of critical buckling temperature difference of

conical shell (R1

h
¼ 300; L

R1
¼ 1; b ¼ 15�; E ¼ 322:27 GPa;

a ¼ 7:47 � 10�61=�C; m ¼ 0:24)

Boundary condition Present study Ref. (Akbari et al. 2015)

CC 228.66 228.68

CS 228.07 228.09

SC 228.21 228.23

SS 227.86 227.89

Table 2 Comparison of critical buckling temperature difference of

conical shell (R2 ¼ 0:25; L ¼ 0:5077; b ¼ 10�; E ¼ 380 GPa;

a ¼ 7:4 � 10�61=�C; m ¼ 0:3)

R2/

h

Present study Ref. (Sofiyev 2007) Ref. (Torabi et al. 2013)

100 993.46 955 998

200 496.63 478 501

L/R
1
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n
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CC

e
0
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e
0
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e
0
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e
0

=1

e
0

=1.2

L/R
1

5 10 15 20 25 30

n
T

0

50

100

150
SSFig. 2 Variation of non-

dimensional thermal buckling

load of CNC versus length-to-

radius ratio for various nonlocal

parameters and different

boundary conditions

(R1

h
¼ 25; 2b ¼ 38:9)
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49% for SS boundary condition. The nonlocal parameter

has an important effect on the thermal stability of the CNC,

as the increase of nonlocal parameter considerably

decreases the non-dimensional thermal buckling load. In

addition, the results show that the buckling behavior of

cones with the larger L/R1 ratio is less size-dependent.

Variations of non-dimensional thermal buckling load of

CC and SS carbon nanocones versus the apex angle are

demonstrated in Fig. 3 for various nonlocal parameters.

Five apex angles of 19.2�, 38.9�, 60�, 86.6� and 112.9� are

considered for CNC. It is observed that the cones with the

smaller apex angles are more stable and buckle at higher

thermal buckling loads. Moreover, the increase in apex

angle of CNCs decreases the influence of nonlocal

parameter and this effect is more evident in the case of CC

carbon nanocones.

Figure 4 shows the variations of non-dimensional ther-

mal buckling load of CC and SS CNCs versus the length-

to-radius ratio for various radius-to-thickness ratios. It is

found that increasing the R1/h ratio increases the non-di-

mensional thermal buckling load. In addition, one can see

that in the case of the smaller radius-to-thickness ratios, the

stability of the CNCs is less affected by the increase of L/

R1 ratio.

The changes of the non-dimensional thermal buckling

load of CNCs are presented in Table 3 for different

boundary conditions, nonlocal parameter values, radius-to-

thickness ratios and length-to-radius ratios. In addition, the

2
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SSFig. 3 Variation of non-

dimensional thermal buckling

load of CNC versus apex angle

for various nonlocal parameters

and different boundary

conditions (R1

h
¼ 25; L

R1
¼ 4)
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SSFig. 4 Variation of non-

dimensional thermal buckling

load of CNC versus length-to-

radius ratio for various radius-

to-thickness ratios and different

boundary conditions

(e0a ¼ 0:5 nm; 2b ¼ 38:9)
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influences of boundary conditions on the non-dimensional

thermal buckling load of CNCs are illustrated in Fig. 5.

The results reveal that the edge conditions can play an

important role on the buckling behavior of the short carbon

nanocones, while in the case of the larger L/R1 ratios, the

effects of boundary conditions are less significant. Fur-

thermore, it can be seen that the increase of R1/h ratio

decreases the size-dependent behavior of CNCs. Addi-

tionally, considering the stiffer boundary conditions at the

edges of CNC makes the structure more stable and

increases the non-dimensional thermal buckling load.

5 Conclusion

Eringen’s nonlocal elasticity theory was incorporated into

the thin shell theory to study the thermal buckling of

CNCs. Considering Donnell’s strain–displacement rela-

tions for thin shells and taking the nonlocal effect into

account, the governing equations were obtained. Employ-

ing the GDQ method in the axial direction and trigono-

metric expansion in circumferential direction, the stability

equations were solved and the thermal buckling load was

calculated. The accuracy of results was verified through

comparison with those available in the literature. More-

over, the effects of various boundary conditions, apex

angle and nonlocal parameter on the thermal instability of

CNCs were examined.

The results indicated that the small-scale effect plays an

important role in the thermal buckling of CNCs. The

increase of nonlocal parameter significantly decreases the

non-dimensional thermal buckling load of CNCs. Also,

geometrical parameters such as length and apex angle have

significant effects on the size-dependent thermal buckling

load. The increase of length-to-radius ratio and apex angle

makes the structure more flexible and reduces the non-

dimensional thermal buckling load. Moreover, increasing

the apex angle weakens the nonlocal effect on the buckling

behavior of CNCs. Moreover, the effects of different

boundary conditions on the thermal buckling of CNCs were

examined, and the results revealed that the cones with CC

and SS edge conditions have the highest and the lowest

thermal buckling load. Also, the influences of boundary

conditions on the thermal buckling load of short CNCs are

more significant. Furthermore, the results showed that the

increase in radius-to-thickness ratio decreases the size-de-

pendency of non-dimensional thermal buckling load.

Table 3 Variations of non-

dimensional thermal buckling

load of CNCs (2b = 38.9)

L=R1 e0a nmð Þ R1/h = 20 R1/h = 40

CC CS SS CC CS SS

1 0 167.89 148.97 140.74 309.35 288.97 282.46

0.4 137.56 125.29 120.67 282.86 267.84 259.56

0.6 110.75 97.92 92.72 250.94 238.59 229.64

0.8 85.22 76.22 68.31 235.48 201.31 192.76

1 56.12 51.39 48.80 208.70 175.15 156.70

3 0 115.11 113.42 112.85 227.95 226.65 226.43

0.4 107.31 100.27 95.24 215.33 212.90 208.12

0.6 96.23 90.21 74.99 203.30 200.45 184.41

0.8 72.18 64.67 54.84 192.46 181.32 155.39

1 46.20 43.22 39.19 179.58 161.07 125.82

L/R1

1 1.5 2 2.5 3 3.5 4 4.5 5

n
T

80
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100

110

120
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140

150
CC
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Fig. 5 Variation of non-dimensional thermal buckling load of CNC

versus length-to-radius ratio for various boundary conditions

(e0a ¼ 0:4 nm; 2b ¼ 38:9; R1

h
¼ 20)
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Dinçkal C (2016) Free vibration analysis of carbon nanotubes by

using finite element method. Iran J Sci Technol Trans Mech Eng

40:43–55

Ebrahimi F, Barati MR (2016a) Nonlocal thermal buckling analysis of

embedded magneto-electro-thermo-elastic nonhomogeneous

nanoplates. Iran J Sci Technol Trans Mech Eng 40:243–264

Ebrahimi F, Barati MR (2016b) A nonlocal higher-order shear

deformation beam theory for vibration analysis of size-depen-

dent functionally graded nanobeams. Arab J Sci Eng

41:1679–1690

Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M,

Yanagisawa T, Higaki S, Dresselhaus MS (2002) Structural

characterization of cup-stacked-type nanofibers with an entirely

hollow core. Appl Phys Lett 80:1267

Eringen AC (1983) On differential equations of nonlocal elasticity

and solutions of screw dislocation and surface waves. J Appl

Phys 54:4703–4710

Eringen AC (2002) Nonlocal continuum field theories. Springer, New

York

Eslami MR, Ziaii AR, Ghorbanpour A (1996) Thermoelastic buckling

of thin cylindrical shells based on improved stability equations.

J Therm Stresses 19:299–315

Fakhrabadi MMS, Khani N, Pedrammehr S (2012) Vibrational

analysis of single-walled carbon nanocones using molecular

mechanics approach. Physica E 44:1162–1168

Firouz-Abadi R, Fotouhi M, Haddadpour H (2011) Free vibration

analysis of nanocones using a nonlocal continuum model. Phys

Lett Sect A General Atomic Solid State Phys 375:3593–3598

Firouz-Abadi RD, Amini H, Hosseinian AR (2012a) Assessment of

the resonance frequency of cantilever carbon nanocones using

molecular dynamics simulation. Appl Phys Lett 100:173108

Firouz-Abadi R, Fotouhi M, Haddadpour H (2012b) Stability analysis

of nanocones under external pressure and axial compression

using a nonlocal shell model. Physica E 44:1832–1837

Fotouhi MM, Firouz-Abadi RD, Haddadpour H (2013) Free vibration

analysis of nanocones embedded in an elastic medium using a

nonlocal continuum shell model. Int J Eng Sci 64:14–22

Ge M, Sattler K (1994) Observation of fullerene cones. Chem Phys

Lett 220:192–196

Gholami R, Darvizeh A, Ansari R, Pourashraf T (2017) Analytical

treatment of the size-dependent nonlinear postbuckling of

functionally graded circular cylindrical micro-/nano-shells. Iran

J Sci Technol Trans Mech Eng 1–13

Ghorbanpour Arani A, Mohammadimehr M, Saidi AR, Shogaei S,

Arefmanesh A (2011) Thermal buckling analysis of double-

walled carbon nanotubes considering the small-scale length

effect. Proc Inst Mech Eng C J Mech Eng Sci 225:248–256

Ghorbanpour Arani A, Amir S, Shajari AR, Mozdianfard MR (2012)

Electro-thermo-mechanical buckling of DWBNNTs embedded

in bundle of CNTs using nonlocal piezoelasticity cylindrical

shell theory. Compos B Eng 43:195–203

Gibson RF, Ayorinde OE, Wen YF (2007) Vibration of carbon

nanotubes and their composites: a review. Compos Sci Technol

67:1–28

Hoseinzadeh MS, Khadem SE (2014) A nonlocal shell theory model

for evaluation of thermoelastic damping in the vibration of a

double-walled carbon nanotube. Physica E 57:6–11

Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal

shell model for elastic wave propagation in single- and double-

walled carbon nanotubes. J Mech Phys Solids 56:3475–3485

Hu YG, Liew KM, He XQ, Li Z, Han J (2012) Free transverse

vibration of single-walled carbon nanocones. Carbon

50:4418–4423

Jeng YR, Tsai PC, Fang TH (2007) Experimental and numerical

investigation into buckling instability of carbon nanotube probes

under nanoindentation. Appl Phys Lett 90:161913

Li R, Kardomateas GA (2007) Vibration characteristics of multi-

walled carbon nanotubes embedded in elastic media by a

nonlocal elastic shell model. J Appl Mech 74:1087–1094

Liao ML (2014) Buckling behaviors of open-tip carbon nanocones at

elevated temperatures. Appl Phys A 117:1109–1118

Liao ML (2015) Influences of vacancy defects on buckling behaviors

of open-tip carbon nanocones. J Mater Res 30(7):896–903

Mohammadi A, Kaminski F, Sandoghdar V, Agio M (2010)

Fluorescence enhancement with the optical (bi-) conical antenna.

J Phys Chem C 114:7372–7377

Peddieson J, Buchanan GR, McNitt RP (2003) Application of

nonlocal continuum models to nanotechnology. Int J Eng Sci

41:305–312

Pradhan SC, Reddy GK (2011) Analysis of single walled carbon

nanotube on Winkler foundation using nonlocal elasticity theory

and DTM. Comput Mater Sci 50:1052–1056

Sharma P, Ganti S, Bhate N (2003) Effect of surfaces on the size-

dependent elastic state of nano-inhomogeneities. Appl Phys Lett

82:535

Shu C (2000) Differential quadrature and its application in engineer-

ing. Springer, London

Shu QG, Shau PY (2012) Axial vibration analysis of nanocones based

on nonlocal elasticity theory. Acta Mech Sin 28:801–807

Sofiyev AH (2007) Thermoelastic stability of functionally graded

truncated conical shells. Compos Struct 77:56–65

Sun CT, Zhang H (2003) Size-dependent elastic moduli of platelike

nanomaterials. J Appl Phys 93:1212
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