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Abstract
In this paper, vibrations of micropolar membranes in contact with fluid are investigated. The fluid is assumed to be

incompressible and contained in a cube and the only non-rigid lateral face is made of a flexible micropolar membrane and

interacts with the fluid. The Chebyshev–Ritz polynomials are adopted to attain the dry and wet frequencies of the

membranes. The microrotational frequencies evaluated in the present study are also compared with those from the

analytical solutions. This comparison shows that the differences between the calculated frequencies and analytical ones are

negligible.
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List of symbols
a; b; c; j Micropolar elasticity constants

u, v, w Displacements in x, y, z directions

fx; fy; fz Microrotations

G Shear modulus

qs; qs Mass density and the microinertia of the

membrane

qL Mass density of fluid

wk Microrotation

F, Ll External stress and couple stress

w1mn, w2mn, wmn Series expansion terms related to

displacements

U;u Deformation potential

TL
* Reference kinetic energy of the fluid

TS
* Reference kinetic energy of the

structure

TS Kinetic energy of the structure

VS Maximum reference potential energy of

the structure

x Natural frequency of the structure

vibration

X Natural frequency of the fluid–structure

vibration

1 Introduction

The micropolar theory constitutes extension of the classical

field theories where every particle of the material can make

both microrotation and volumetric microelongation in

addition to the bulk deformation. Since this theory includes

the influence of microstructure on the overall behavior of

the medium, it reflects physical realities significantly better

than the classical theory for the engineering materials.

In the micropolar theory, the material points are consid-

ered to possess orientations. A material point carrying three

rigid directors introduces one extra degree of freedom over

the classical theory, since in micropolar continuum a point is

endowed with three rigid directors only. A material point is

then equippedwith the degrees of freedom for rigid rotations,

in addition to the classical translational degrees of freedom.

In fact, the micropolar covers the results of the classical

continuum mechanics. The micropolar theory recently

gained attention in fluid mechanics and, consequently,

mathematicians and engineers are implementing this theory

in various theoretical (Eringen 1999, 2001, 1976; Kumar and

Partap 2007; Altenbach and Eremeyev 2014) and practical

applications (Genç 2013; Rojratsirikul et al. 2011).
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Moreover, the vibration analysis of the membranes

modeled by micropolar theory has been carried out. This

analysis shows the appearance of some additional fre-

quencies among the values of the frequencies obtained

from the classical theory of elasticity, due to the microp-

olarity of the membrane. These new frequencies are called

microrotational waves. Also, these additional frequencies

disappear when the micropolar material constants vanish

and only the classical frequencies remain. More impor-

tantly, these additional frequencies are more sensitive to

the change of the microelastic constants than the classical

frequencies. In the sequel, the mode shapes are attained for

the micropolar structure, micropolar structure in contact

with a fluid and finally the classical ones are attained for

comparison. Comparing the analytical results of classical

membrane with numerical ones documents their small

differences, which confirms our proposed method. The

microrotational wave frequencies and mode shapes are

developed. The results of natural frequencies and mode

shapes for the transverse vibrations of the membrane

confirm the classical ones.

In the classical theory of continuum mechanics, mate-

rials are assumed to be homogeneous. Nevertheless, some

modern engineering structures have a number of defects

with different sizes and forms which violate the assumption

of continuity at microscale. Such structures are made of

materials possessing an internal structure. Polycrystalline

materials, materials with fibrous or coarse grain structure

come in this category (Dos Reis and Ganghoffer 2012).

The analysis of such materials requires incorporating the

theory of oriented media.

Micropolar theory has been developed by Eringen

(1999, 2001, 1976) for elastic solids and fluid and further

for nonlocal polar fields. Micropolar theory constitutes

extension of the classical field theories concerned with the

rotations, in microscopic scale and short time scales.

Mathematically, material particles are assumed to be geo-

metrical points that possess physical and mathematical

properties, e.g., mass, charge and rigid directors. The field

equations constructed with this model are expected then to

represent many new and wider classes of physical phe-

nomena that fall outside the classical field.

In the micropolar theory, the material is endowed with

microstructure, like atoms and molecules at microscopic

scale. Homogenization of a basically heterogeneous

material depends on scale of interest. When stress fluctu-

ation is small enough compared to microstructure of the

material, homogenization can be made without considering

the detailed microstructure of the material. However, if it is

not the case, the microstructure of material must be con-

sidered properly in a homogenized formulation (Eringen

2001; Dos Reis and Ganghoffer 2012).

At each particle of a micropolar continuum, it is

assumed that a microstructure rotates independently from

the surrounding medium (Ramezani et al. 2009). Accord-

ingly, every particle contains six degrees of freedom, three

translational motions which are assigned to the macro-

element and three rotational ones which are referred to the

microstructure.

Due to theoretical and practical importance, many

problems of waves and vibration of micropolar elasticity

have been investigated by different researchers. A

micropolar elasticity behavior analysis has been carried out

for macroscopically heterogeneous materials (Eringen

1999, 2001; Beveridge et al. 2013).

Recently, a linear theory for the analysis of beams based

on the micropolar continuum mechanics has been devel-

oped by Ramezani et al. (2009). Power series expansions

for the axial displacement and microrotation fields were

assumed in the mentioned work. The governing equations

were derived by integrating the momentum and moment of

momentum equations in the micropolar continuum theory.

On the other hand, the fluid–structure problems have

also been extensively contemplated by many researchers

(Amabili et al. 1998; Amabili 2001). In such studies, the

fluid is considered to be ideal and incompressible (com-

pressible) with the Laplace (wave) as its governing equa-

tion, where the structure has a variety of shapes and

assumptions. For fluid–structure systems, the vibration of

the structure in contact with a fluid has been thoroughly

analyzed by many authors (Amabili 2003; Amabili et al.

2000; Morand and Ohayon 1995). Such problems appear

frequently in practice, for example when studying the

veins, pulmonary passages and urinary systems which can

be modeled as shells conveying fluid, aero-elastic insta-

bilities around flexible aircraft, container conveying the

fluids and dams (Amabili 2003; Amabili et al. 2000;

Morand and Ohayon 1995; Amabili and Paıdoussis 2003).
In the present work, fluid–structure interaction problems

having microstructure are modeled by the microstretch

theory. Then, an analytical formulation for vibration

analysis of a micropolar membrane in contact with fluid

and based on the micropolar continuum mechanics is

developed. We follow Eringen’s method for constructing

the micropolar membrane theory (Beveridge et al. 2013).

Next, we study the coupled problem to obtain natural

frequencies of the fluid–structure problem. The Chebyshev

polynomials are employed in this paper to simplify com-

putations, in addition to the high accuracy and numerical

reliability (Dong 2008; İnan and KiriŞ 2008).

Finally, an analytical approach is utilized to investigate

the vibration characteristics of the aforementioned fluid–

structure problem. The fluid is considered to be non-vis-

cous and incompressible. Duplicate Chebyshev series,

multiplied by boundary functions are used as admissible
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functions and the frequency equations of the micropolar

membrane are obtained by the use of Chebyshev–Ritz

method.

2 Mathematical Model

As stated in the previous section, there are instances in

which the assumption of material homogeneity is inade-

quate: either the size of the loaded structure is very small

and comparable to the length scale of its constituent

material microstructure or the length scale of the hetero-

geneity with the material structure is significantly larger

than microscopic. Many nano-devices fall into the first

category, whereas materials such as ceramics, cement,

rock, soil, bone and short fiber and particulate-reinforced

composites may be referred to as the second category

(Eringen 1999, 2001, 1976). Micropolar theory is an

alternative theory describing the behavior of heterogeneous

materials. The mathematical foundation of micropolar

continuum mechanics theory has been developed through

the works of Eringen and his coworkers (Eringen 2001). In

this section, we present some basic relations of the

micropolar elasticity needed for our derivation in the next

sections.

2.1 Structure Domain

The vibration analysis of a micropolar membrane in con-

tact with a fluid is considered. The fluid is contained in a

cube with all faces except one of the lateral faces being

rigid. The only non-rigid lateral face is made of a flexible

micropolar membrane. Therefore, it interacts with the fluid.

The problem is shown in Fig. 1.

As mentioned earlier, the micropolar elasticity defines

more degrees of freedom. We consider the linear isotropic

membrane of lowest order. The governing equations of the

three-dimensional micropolar elasticity are as follows

(Eringen 1999, 2001, 1976):

lþ jð Þr2uþ kþ lð Þ o

ox
u;x þv;y þw;z
� �

� j fy;z �fz;y
� �

¼ qu;tt

ð1Þ

lþ jð Þr2vþ kþ lð Þ o

oy
u;x þv;y þw;z
� �

� j fz;x �fx;zð Þ

¼ qv;tt

ð2Þ

lþ jð Þr2wþ kþ lð Þ o
oz

u;x þv;y þw;z
� �

� j fx;y �fy;x
� �

¼ qw;tt

ð3Þ

r2fx � 2jfx þ aþ bð Þ o

ox
fx;x þfy;y þfz;z
� �

� j v;z �w;y
� �

¼ qjfx;tt

ð4Þ

cr2fy � 2jfy þ aþ bð Þ o

oy
fx;x þfy;y þfz;z
� �

� j w;x �u;zð Þ
¼ qjfy;tt ð5Þ

cr2fz � 2jfz þ aþ bð Þ o
oz

fx;x þfy;y þfz;z
� �

� j u;y �v;x
� �

¼ qjfz;tt

ð6Þ

where q is the mass density, j is the microinertia,

k; l; j; a; b and c are material constants. Also, u, v, w and

fx; fy; fz are displacement and microrotation components,

respectively.

k ¼ lþ j
k1 ¼ kþ 2lþ j
k2 ¼ aþ bþ c
k3 ¼ aþ b
k4 ¼ kþ l

8
>>>><

>>>>:

ð7Þ

For attaining the governing equations of the micropolar

membrane from three-dimensional micropolar elasticity,

various methods have been used (Eringen 1999). Some

Fig. 1 Schematic view of

micropolar membrane in contact

with a fluid
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authors have used the perturbation method, while some

others have used the asymptotic analysis (Aganović et al.

2006). Based on the method used in Eringen (1999), the

governing equations of the lowest-order micropolar mem-

brane are obtained by some integration in the thickness

direction of the micropolar media. The result is as follows:

Gþ j
2

� �
r2wþ jekl3wl;k þqs F � €wð Þ ¼ 0 ð8Þ

aþ bð Þwk;lk þcwl;kk �jekl3w;k �2jwl þ qs Ll � j €wl

� �
¼ 0

ð9Þ

where w and wl are displacement and microrotation com-

ponent, respectively.

We consider the simply supported problem in which the

boundary conditions are as follows:

w ¼ 0;w1 ¼ w2 ¼ 0 on x ¼ �1; 1 ð10Þ
w ¼ 0;w1 ¼ w2 ¼ 0 on y ¼ �1; 1 ð11Þ

2.2 Fluid Domain

For the fluid domain, we have the following equations

(Amabili et al. 1998; Amabili 2001):

r2U ¼ 0 ð12Þ

where U is the deformation potential (Amabili et al. 1998;

Amabili 2001). The related boundary conditions are as

follows (Fig. 1):

oU
on

¼ 0 on x ¼ 0; a ð13Þ

oU
on

¼ 0 on y ¼ 0; b ð14Þ

oU
on

¼ 0 on z ¼ �c ð15Þ

oU
on

¼ wðx; y; 0; tÞ on z ¼ 0 ð16Þ

Using separations of variable in fluid domains yields the

following results (Greenberg 1988):

u ¼
X1

m¼1

X1

n¼1

Emn cos mpxð Þ cos npyð Þ cosh Kmn zþ cð Þð Þ

ð17Þ

where

Kmn ¼ mpð Þ2þ npð Þ2
h i1=2

U ¼ u x; y; zð Þei xtþhð Þ
ð18Þ

And Emn’s are duplicate Fourier series coefficients.

3 Natural Frequencies and Mode Shapes
of the Free Vibration of the Structure

For the natural frequencies and mode shapes of the free

vibration of the structure (Rao 2007), we have

Gþ j

2

� �
r2wþ jekl3/l;k ¼ qs €w ð19Þ

aþ bð Þwk;lk þcwl;kk �jekl3w;k �2jwl ¼ qsj €wl ð20Þ

As shown in Fig. 2, the boundary conditions are (10)

and (11).

For the natural frequencies and mode shapes of the free

vibrating micropolar membrane, the following results can

be obtained after performing some mathematical

operations,

w

w1

w2

8
<

:

9
=

;
¼ 1� x2

� �
1� y2
� �X1

n¼1

X1

m¼1

wmn

w1mn

w2mn

8
<

:

9
=

;
ei xtþhð Þ

ð21Þ

where

wmn ¼ AmnPm xð ÞPn yð Þ ð22Þ
w1mn ¼ BmnPm xð ÞPn yð Þ ð23Þ
w2mn ¼ CmnPm xð ÞPn yð Þ ð24Þ

Pm(x) is the mth Chebyshev polynomial and is defined as

Pm(x) = cos((m - 1)Arccos(x)).

Also, the terms (1 - x2) and (1 - y2) are the boundary

functions to meet the necessary condition for admissibility

of the functions.

The corresponding potential energy and kinetic energy

functionals of the structure are obtained as [for more details

see (Eringen 1999)]

Fig. 2 Micropolar membrane shape
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Vs ¼
1

2

Z1

�1

Z1

�1

h awk;k wl;l þbwk;l wl;k þcwk;l wk;lð Þ½

þGhw;k w;k þ2jh rk � wkð Þ rk � wkð Þ�dxdy

ð25Þ

Ts ¼
h

2

Z1

�1

Z1

�1

½qsj _wk
_wk

þ qs _w
2 dxdy ¼ h

2
x2

Z1

�1

Z1

�1

½qsjwkwk þ qsw
2

3

5

3

5dxdy

ð26Þ

Based on the above relations, one can have the reference

kinetic energy of the structure as

T�
s ¼

h

2

Z1

�1

Z1

�1

½qsjwkwk þ qsw
2�dxdy ð27Þ

The maximum reference potential energy of the struc-

ture can also be written as

Vs ¼
1

2

Z1

�1

Z1

�1

h awk;k wl;l þbwk;l wl;k þcwk;l wk;lð Þ½

þGhw;k w;k þ2jh rk � wkð Þ rk � wkð Þ�dxdy

ð28Þ

Since we need to attain the natural frequencies and

mode shapes of the free vibration of the structure, we

define the following functional:

P ¼ Vs � Ts ¼ Vs � x2T�
s ð29Þ

By minimizing this functional with respect to

Amn;Bmn;Cmn, one can obtain the natural frequencies and

natural modes of the free vibrations.

3.1 Numerical Results

In this paper, we use the Chebyshev polynomials because

of their simplicity for computations and coding and also

their high accuracy and numerical reliability. The first six

terms of the Chebyshev polynomials are

T0 ¼ 1;

T1 ¼ x;

T2 ¼ 2x2 � 1;

T3 ¼ 4x3 � 3x;

T4 ¼ 8x4 � 8x2 þ 1;

T5 ¼ 16x5 � 20x3 þ 5x;

These functions are mutually orthogonal in the interval

[- 1, 1] with the weighting function 1� x2ð Þ�1=2
.

The six polynomial graphs are shown in Fig. 3.

Using Chebyshev–Ritz method, and approximating the

number of series (we use 48 terms for all three variables),

the problems turn to

det

Kww Kww1
Kww2

Kw1w Kw1w1
Kw1w2

Kw2w Kw2w1
Kw2w2

2

4

3

5

48�48

�x2

Mww 0 0

0 Mw1w1
0

0 0 Mw2w2

2

4

3

5

48�48

0

@

1

A¼ 0

ð30Þ

where

Kww ¼ o2Vs

oðAmnÞ2

" #

16�16

ð31Þ

Kww1
¼ Kw1w ¼ o2Vs

oAmnoBmn

� �

16�16

ð32Þ

Kww2
¼ Kw2w ¼ o2Vs

oAmnoCmn

� �

16�16

ð33Þ

Kw1w1
¼ o2Vs

oðBmnÞ2

" #

16�16

ð34Þ

Kw2w2
¼ o2Vs

oðCmnÞ2

" #

16�16

ð35Þ

Mww ¼ o2T�
s

oðAmnÞ2

" #

16�16

ð36Þ

Mw1w1
¼ o2T�

s

oðBmnÞ2

" #

16�16

ð37Þ

Mw2w2
¼ o2T�

s

oðCmnÞ2

" #

16�16

ð38Þ

The numerical results from the present study for dry

structure are compared with those obtained from analytical

solution (Rao 2007) in Table 1.

Fig. 3 Chebyshev polynomials
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The numerical results for frequencies of transverse

vibration of dry structure obtained by using the micropolar

theory are given in Table 2 and are compared with the

results of analytical method. The different parameters for

the micropolar theory are also presented in Table 3.

As can be seen, even though in our computations the

micropolar frequencies are a bit less than the classical

frequencies, the micropolar frequencies are very close to

the classical one (with two decimal digit accuracy). The

main reason is that the micropolar theory admits the rigid

body rotation for microelements. It should also be noted

that some additional frequencies are observed due to

microstructure of the membrane among the values of the

frequencies obtained from classical theory of the elasticity.

The results for the microrotational wave frequencies are

presented in Table 3. It should be noted that these addi-

tional frequencies disappear when all micropolar parame-

ters are considered to be zero.

As mentioned previously, the microrotational wave

which arises from the micromotion assumptions in

micropolar theory enables us to explain more phenomena

than the classical theory; also their accuracy is more than

the classical theory. Therefore, the most important part of

this theory is that it presents micromotion and microrota-

tion waves.

The shapes for the first three mode shapes of the

transverse displacement of the micropolar structure are

shown in Figs. 4, 5, 6 and 7.

4 Fluid–Structure Interaction

The coupling between the fluid and structure occurs in a

boundary condition at z ¼ 0 (16) and fluid domain is (17).

Also, (8) and (9) are the structure’s equations with the

boundary conditions of (10), (11) and (16).

where P is the hydrodynamic pressure due to interaction

between fluid and structure. At this step, we use the Che-

byshev polynomials to write the membrane parameters.

1� x2
� �

1� y2
� �X1

m¼1

X1

n¼1

AmnPm xð ÞPn yð Þ

¼
X1

m¼1

X1

n¼1

KmnEmn cos mpxð Þ cos npyð Þ sinh Kmnc½ � ð39Þ

By some straightforward algebraic operations, one can

obtain

Epq¼
X1

m¼1

X1

n¼1

csch Kpqc
� �

Amn

Z1

�1

Z1

�1

1�x2
� �

1�y2
� �

cos mpxð Þcos npyð ÞPm xð ÞPn yð Þdxdy

ð40Þ

Because of the orthonormality nature of the Chebyshev

polynomials in [- 1, 1], the above relations can easily be

computed.

4.1 Chebyshev–Ritz Method

At this step, we are ready to find natural frequencies of the

coupled problem by using Chebyshev–Ritz method. It is

necessary to construct the Rayleigh quotient. To find the

Rayleigh quotient, the related reference energies should be

determined (Rao 2007).

4.2 Fluid Reference Kinetic Energy

The reference kinetic energy of the fluid is due to the fluid–

structure interaction (Amabili et al. 1998; Amabili 2001).

T�
L ¼ 1

2
qL

ZZ

S

u
ou

on
dS ð41Þ

which yields the following relation for the fluid reference

kinetic energy

T�
L ¼ 1

4
qL

X1

m¼1

X1

n¼1

E2
mnKmnsinh 2Kmncð Þ ð42Þ

4.3 Energy of the Structure

The reference kinetic energy of the structure is (27) and the

maximum potential energy of the structure is (28). Hence,

we are ready to find the natural frequencies of the coupled

problem. Utilizing Rayleigh quotient,

Table 1 Natural frequencies of

vibration for dry structure

obtained from classical theory,

x (s�1Þ

Mode no. Present study Analytical results İnan and KiriŞ (2008) Error (%)

1 162.150 162.150 0

2 256.441 256.381 0.02

3 256.441 256.381 0.02

4 324.395 324.300 0.03

5 363.215 362.578 0.2
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X2 ¼ Vs

T�
L þ T�

s

ð43Þ

And minimizing the following functional

P ¼ Vs � X2 T�
L þ T�

S

� �
ð44Þ

With respect to Amn; Bmn and Cmn as

oP
oApq

¼ 0 ð45Þ

oP
oBpq

¼ 0 ð46Þ

oP
oCpq

¼ 0 ð47Þ

yields the desired result. Noting that E
0
mns are functions of

Amn;Bmn;Cmn, therefore we can compute the mode shapes

and natural frequencies of the coupled problem.

Fig. 4 First mode shape of the micropolar structure for w as the

transverse displacement (all parameters are in centimeters)

Fig. 5 Second mode shape of the micropolar structure for w as the

transverse displacement

Table 2 Natural frequencies of

transverse vibration for dry

structure obtained from

micropolar theory, x (s�1Þ

Mode no. Micropolar theory (present study) Analytical results Beveridge et al. (2013) Error (%)

1 162.150 162.150 0

2 256.441 256.381 0.02

3 256.441 256.381 0.02

4 324.395 324.300 0.03

5 363.215 362.578 0.2

Table 3 Microrotaional wave natural frequencies for dry structure, x(s�1Þ

Parameters’ values a = 0.1236, b = 0.01585, c = 0.05966, j = 0.325 9 10-7, j = 0.1316, h = 0.002, G = 26.64 9 105, E = 70.85 9 105,

m = 0.33

Mode no. 1 2 3 4 5 6 7

Microrotational wave 0 95.206 173.905 191.051 198.261 258.348 348.973

Fig. 6 Third mode shape of the micropolar structure for w as the

transverse displacement
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4.3.1 Numerical Results

Using again Chebyshev–Ritz method, and approximating

the number of series (we use 16 terms for fluid domain), the

problem turns to

det

Kww Kww1
Kww2

Kw1w1
Kw1w1

Kw1w2

Kw2w Kw2w1
Kw2w2

2

4

3

5

48�48

�X2
Mww 0 0

0 Mw1w1
0

0 0 Mw2w2

2

4

3

5

48�48

0

@

1

A¼ 0

ð48Þ

where

Kww ¼ o2Vs

oðAmnÞ2

" #

16�16

ð49Þ

Kww1
¼ Kw1w ¼ o2Vs

oAmnoBmn

� �

16�16

ð50Þ

Kww2
¼ Kw2w ¼ o2Vs

oAmnoCmn

� �

16�16

ð51Þ

Kw1w1
¼ o2Vs

oðBmnÞ2

" #

16�16

ð52Þ

Kw2w2
¼ o2Vs

oðCmnÞ2

" #

16�16

ð53Þ

Kw2w2
¼ o2Vs

oðCmnÞ2

" #

16�16

ð54Þ

Mww ¼
o2 T�

L þ T�
s

� �

oðAmnÞ2

" #

16�16

ð55Þ

Mw1w1
¼

o2 T�
L þ T�

s

� �

oðBmnÞ2

" #

16�16

ð56Þ

Mw2w2
¼

o2 T�
L þ T�

s

� �

oðCmnÞ2

" #

16�16

ð57Þ

The numerical results from the present study for wet-

micropolar structure are given in Table 4 and are compared

with those obtained for the dry micropolar structure.

In Table 5, we compare the results from the classical

theory and micropolar theory in FSI problem. As one can

see, they are same as each other.

Figures 7, 8 and 9 represent the shapes for the first three

mode shapes of the transverse displacement of the

micropolar fluid–structure in FSI problem.

Fig. 7 First mode shape of the micropolar fluid–structure for w (all

parameters are in centimeters)

Table 4 Results for FSI natural frequencies (X) in (s�1Þ

Parameters’ values a = 0.12355; b = 0.01585; c = 0.05966; j = 0.325 9 10-7; j = 0.13155; h = 0.002; G = 26.64 9 105; E = 70.85 9 105;

m = 0.33; c = 5; qs = 500; qL = 1000

Mode no. 1 2 3 4 5 6 7

Wet frequencies 32.913 59.664 64.679 93.057 170.788 249.077 256.441

Dry frequencies 162.150 256.441 256.441 324.395 363.215 363.215 413.999

Table 5 Results for FSI natural

frequencies of micropolar and

classical structures (X) in (s�1Þ

Mode no. Micropolar theory (present study) Classical theory (present study) Error (%)

1 32.913 32.913 0

2 59.664 59.664 0

3 64.679 64.679 0

4 93.057 93.057 0

5 170.788 170.788 0

6 249.077 249.077 0

7 256.441 256.441 0
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The results for microrotations w1,2 are obtained similarly

and therefore we omit them.

5 Conclusion

In this paper, the coupled vibration of the lowest-order

micropolar membrane in contact with the ideal incom-

pressible fluid has been investigated. The micropolar

membrane shows the more accurate response in compar-

ison with classic membranes. The method for finding the

natural frequencies of the coupled vibration relies on the

Chebyshev–Ritz method.

It is known that using the Chebyshev polynomials, more

eigenfrequencies than using other polynomial functions

can be obtained because of the excellent mathematical

properties of Chebyshev polynomial series in approxima-

tion. The Chebyshev polynomials have an additional

advantage in that they can be expressed in terms of cosine

functions, which facilitate the analysis and programming.

The nature of waves in the micropolar membrane has

been investigated. This theory predicts the existence of

microrotational waves which are not present in any of the

known membrane theories based on the classical contin-

uum mechanics. We see the excellent agreements between

micropolar elasticity and classical elasticity in finding

natural frequencies for free vibration of the membrane.

Also, for fluid–structure frequencies, we see that the nat-

ural frequencies in coupling are less than natural frequen-

cies in free vibrations of the micropolar membrane which is

expected. Moreover, if the micropolar constants are con-

sidered to be zero, the classical elasticity results for the

frequencies will be obtained. Results for classical problem

have been compared to analytical ones; we saw that their

differences are so small and therefore negligible, which

verifies our results and method.
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