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Abstract
This paper develops a micro-scale vibration analysis of micro-plates using higher-order shear and normal deformable plate

theory in conjunction with modified couple stress theory. The present model includes one material length scale parameter

which takes into account the size effects. The equations of motions and boundary conditions are derived using Hamilton’s

principle. Analytical solutions for the free vibration problem of simply supported rectangular micro-plates are obtained.

Numerical results are presented to illustrate the effect of small scale on the dynamic response of functionally graded micro-

plates. The results show that the size-dependent effect increases the stiffness of the micro-plate and consequently increases

the natural frequencies.

Keywords Functionally graded � Modified couple stress theory � Higher-order shear and normal deformable plate theory �
Thick micro-plates

1 Introduction

Functionally graded materials (FGMs) are non-homoge-

neous composites that identify with their smooth and

continuous variations in one or more directions. They are

usually a combination of two different materials. Most

popular FGMs are made of two components: one is metal

and the other is ceramic. This combination is in order to

achieve a composition with specific characteristics. FGMs

have many advantages such as improved stress distribution,

high thermal resistance, high toughness and reduced stress

intensity factor. Recently, FGMs have found many appli-

cations in micro- and nano-scale devices and systems.

Some of these applications are thin films (Fu et al. 2003;

Lu et al. 2011), atomic force microscopes (AFMs) (Ra-

haeifard et al. 2009), micro- and nano-electromechanical

systems (MEMS and NEMS) (Witvrouw and Mehta 2005;

Lee et al. 2006) and so on. As the material size scales

reduce to the micron scales, the stiffness and strength of

materials increase because of material size effect. It is well

known that classical continuum theories do not include the

size effect in micro-scale structures. In order to overcome

this deficiency, many higher-order theories such as classi-

cal couple stress theory with two material length scale

parameters (Mindlin and Tiersten 1962; Toupin 1962;

Koiter 1964), strain gradient theory with three material

length scale parameters (Lam et al. 2003), micro-polar

theory (Eringen 1967), non-local elasticity theory (Eringen

1972), surface elasticity (Gurtin et al. 1998) and modified

couple stress theory with one material length scale

parameter (Yang et al. 2002) have been developed to

characterize the size effect in micro-scale structures. Based

on the modified couple stress theory, many size-dependent

beam and plate models have been developed to consider

the size effects in small-scale structures. Park and Gao

(2006) developed Euler–Bernoulli beam model for bending

analysis of micro-beams. Ma et al. (2008) used Timosh-

enko beam model for micro-beams. Asghari et al. (2010)

considered the Von-Karman nonlinear strains in the

Timoshenko beam model. Euler–Bernoulli beam model for

buckling analysis of axially loaded micro-beams was uti-

lized by Akgöz and Civalek (2011). Their model was

employed by Kong et al. (2008) and Kahrobaiyan et al.
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(2010) to study the vibration of micro-beams. Ke and

Wang (2011) developed a Timoshenko beam model to

study the size effect on dynamic stability of functionally

graded (FG) micro-beams. Tsiatas (2009) first developed a

Kirchhoff plate model (CPT) for static analysis of micro-

plates. Yin et al. (2010) and Jomehzadeh et al. (2011) used

the model presented by Tsiatas (2009) to study the vibra-

tion of micro-plates. This model was used by Akgöz and

Civalek (2012) to study the vibration of nano-plates.

Asghari and Taati (2013) dealt with classical (Kirchhoff)

plate theory (CPT) of FG micro-plates. On the other hand,

CPT does not consider shear deformation effect, so it

provides accurate results for thin homogeneous plates only

and is not suitable for thick plates. Using CPT for mod-

erately thick plates leads to overestimation of results. Ma

et al. (2011) and Ke et al. (2012) used the first-order shear

deformation theory (FSDT) to develop a size-dependent

model for accounting the shear deformation effects. In

view of difficulties in determining shear correction factor,

FSDT is not a convenient model, whereas it predicts suf-

ficiently accurate results for moderately thick plates. Roque

et al. (2013) used modified couple stress theory with

meshless method to study the bending of simply supported

isotropic micro-plates. Eshraghi et al. (2016) introduced

solution methods capable of treating static bending and free

vibration problems involving thermally loaded functionally

graded annular and circular micro-plates using modified

couple stress theory. Thai and Vo (2013) studied the static

and dynamic behavior of functionally graded micro-plates.

They used modified couple stress theory and sinusoidal

shear deformation theory.

Behavior of thick structures in macro- and micro-scales

was studied by some researchers (Arbind et al. 2014;

Akgöz and Civalek 2015, 2017). Batra and Vidoli (2002)

used virtual work principle to determine higher-order shear

and normal deformable plate theory for thick plates with

linear elastic incompressible anisotropic material. No shear

correction factor was used, and vibration analysis of simply

supported rectangular plates was investigated. The pro-

posed higher-order shear and normal deformable plate

theory is the closest theory to the three-dimensional elas-

ticity solution. According to this theory, Legendre poly-

nomials in thickness direction are used to approximate the

displacement field components. Ghayesh et al. (2017)

investigated the vibration analysis of geometrically

imperfect three-layered shear deformable micro-beams.

They considered both hardening and softening nonlinear

behavior. Xiao et al. (2008) used meshless local Petrov–

Galerkin method with radial basis function to study the

static behavior of thick laminated composite elastic plates.

They applied higher-order shear and normal deformable

plate theory and considered different boundary conditions.

Mohseni et al. (2017) studied the bending analysis of

micro-plates based on the higher-order shear and normal

deformable plate theory. They considered functionally

graded distribution of material properties through the

thickness.

In this paper, thick plates’ model is developed for free

vibration analysis of rectangular FG micro-plates using

modified couple stress theory. Variational formulation

based on Hamilton’s principle is used in order to obtain the

equations of motions and boundary conditions. A solution

is determined for FG micro-plates with all edges simply

supported (Navier solution). The natural frequencies are

obtained for rectangular micro-plates with different mate-

rial length scale parameters, various thickness ratios, var-

ious aspect ratios and some power law indices. The results

indicate that the size length scale parameter has a signifi-

cant effect when the thickness of the micro-plate becomes

small.

2 Theoretical Formulation

2.1 Modified Couple Stress Theory

The modified couple stress theory which was proposed by

Yang et al. (2002) is a modification of the classical couple

stress theory. According to this theory, the virtual strain

energy of a linear elastic micro-plate can be expressed as

dU ¼
Z
V

rijdeij þ mijdvij
� �

dV ð1Þ

where rij are the Cartesian components of the stress tensor,

eij are the components of the strain tensor, mij are the

components of deviatoric part of the symmetric couple

stress tensor and vij are the components of symmetric

curvature tensor, so that

vij ¼
1

2

ohi
oxj

þ ohj
oxi

� �
i; j ¼ 1; 2; 3 ð2Þ

where hi are the components of rotation vector that in terms

of displacement components are

h1 ¼
1

2

ou3

ox2
� ou2

ox3

� �
ð3aÞ

h2 ¼
1

2

ou1

ox3
� ou3

ox1

� �
ð3bÞ

h3 ¼
1

2

ou2

ox1
� ou1

ox2

� �
ð3cÞ

Also u1, u2 and u3 are the Cartesian components of

displacement field in x1, x2 and x3 direction, respectively.
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2.2 Kinematics

Consider a functionally graded (FG) micro-plate as shown

in Fig. 1, where x1x2-plane coincides with the middle

surface of the plate and the x3-axis is perpendicular to this

plane. As shown in Fig. 1, l1 is the length of the plate along

x1 direction, l2 is the width of the plate along x2 direction

and h is the thickness of the plate along x3 direction. Using

prescribed Cartesian coordinate, the infinitesimal defor-

mations and displacement field of FG micro-plate based on

the higher-order shear and normal deformable plate theory

(HOSNDPT) are described as (Batra and Vidoli 2002)

uiðx1; x2; x3; tÞ ¼ vaðx1; x2; x3; tÞdia þ wðx1; x2; x3; tÞdi3
a ¼ 1; 2

ð4Þ

where

vaðx1; x2; x3; tÞ ¼ Laðx3Þvaaðx1; x2; tÞ ð5aÞ

wðx1; x2; x3; tÞ ¼ Laðx3Þwaðx1; x2; tÞ ð5bÞ

and a = 0, 1, 2, …, k. Also, La(x3) are the orthonormal

Legendre polynomials with the following properties as

L0aðx3Þ ¼ DabLbðx3Þ ð6Þ

where La
0
(x3) is the first derivative of the orthonormal

Legendre polynomial with respect to x3.

Matrix D shows the matrix of differentiation coefficients.

Hence, for k = 7, the general matrix D is defined as follows:

0 0 0 0 0 0 0 0ffiffiffi
3

p
0 0 0 0 0 0 0

0
ffiffiffiffiffi
15

p
0 0 0 0 0 0ffiffiffi

7
p

0
ffiffiffiffiffi
35

p
0 0 0 0 0

0 3
ffiffiffi
3

p
0 3

ffiffiffi
7

p
0 0 0 0ffiffiffiffiffi

11
p

0
ffiffiffiffiffi
35

p
0 3

ffiffiffiffiffi
11

p
0 0 0

0
ffiffiffiffiffi
39

p
0

ffiffiffiffiffi
91

p
0

ffiffiffiffiffiffiffiffi
143

p
0 0ffiffiffiffiffi

15
p

0 5
ffiffiffi
3

p
0 3

ffiffiffiffiffi
15

p
0

ffiffiffiffiffiffiffiffi
195

p
0

2
66666666664

3
77777777775

ð7Þ

According to Einstein’s notation, repeated indices are

summed even if they appear as a subscript and a superscript.

Hence, by considering the linear form of Von-Karman

relations for strain–displacement equations, they are sim-

plified as

eij ¼
1

2
ui;j þ uj;i
� �

i; j ¼ 1; 2; 3 ð8Þ

and also,

v1 ¼ Laðx3Þva1 ð9aÞ
v2 ¼ Laðx3Þva2 ð9bÞ

w ¼ Laðx3Þwa ð9cÞ

2.3 Constitutive Relations

As explained earlier, it is assumed that the micro-plate is

made of functionally graded materials where material

properties are expressed by the power law function in the

thickness direction as

Cðx3Þ ¼ ðCc � CmÞ
1

2
þ x3

h

� �N

þCm ð10Þ

In the above equation, Cc and Cm are the values of a

typical material property, such as Young’s modulus (E),

density (q) or Lamè constants (k, l) of the ceramic and

metal parts, respectively. In addition, N is the power law

index denoting the volume fraction of the exponent. Con-

stitutive relations for a linear elastic micro-plate in modi-

fied couple stress theory are

rij ¼ 2leij þ kekkdij ð11Þ

ekk ¼ e11 þ e22 þ e33 ð12Þ

mij ¼ 2ll2vij ð13Þ

where ekk is the dilatation strain tensor and dij is Kronecker
delta. Also, Lamè constants, l and k in terms of engi-

neering constants, are l ¼ Eðx3Þ
2ð1þmÞ and k ¼ Eðx3Þm

ð1þmÞð1�2mÞ. It must

be noted that the Poisson’s ratio (m) of FG micro-plate is

considered to be constant due to its small variation through

the thickness of the micro-plate. In Eq. (13), l is called the

material length scale parameter which is regarded as a

material property measuring the effect of couple stress.

This parameter can be determined from torsion test of slim

cylinder (Chong et al. 2001) or bending test of thin beams

(Lam et al. 2003).

2.4 Equations of Motion

Hamilton’s principle is used herein to derive the equations

of motion and boundary conditions (Reddy 2002). Hence,Z T

0

dU þ dW � dKð ÞdT ¼ 0 ð14Þ
Fig. 1 Geometry of FG micro-plate

Iran J Sci Technol Trans Mech Eng (2019) 43 (Suppl 1):S641–S651 S643

123



where U is the strain energy, W is the work done by

external forces, K is the kinetic energy and T denotes time.

Using the variational approach, variation of strain

energy dU is given by

dU ¼
Z
X

Z h
2

�h
2

r11de11 þ r22de22 þ r33de33 þ r12dc12 þ r13dc13 þ r23dc23ð Þ½

þ m11dv11 þ m22dv22ð þm33dv33 þ 2m12dv12 þ 2m13dv13 þ 2m23dv23Þ�dx1dx2dx3

ð15Þ

so that

Consider the following force and moment resultants:

Ma
ab ¼

Z h
2

�h
2

rabLaðx3Þdx3 ð17aÞ

Ta
i ¼

Z h
2

�h
2

ri3Laðx3Þdx3 ð17bÞ

Ma
ab ¼

Z h
2

�h
2

mabLaðx3Þdx3 ð17cÞ

sai ¼
Z h

2

�h
2

mi3Laðx3Þdx3 ð17dÞ

Substituting relations (17) in Eq. (16) and simplifying

the results leads to

Also, variation of the work done by external forces can

be obtained as (Reddy and Kim 2012)

dW ¼
Z
V

�f1dv1 þ �f2dv2 þ �f3dwþ �c1dh1 þ �c2dh2 þ �c3dh3ð Þdx1dx2dx3

þ
Z
Xþ

qt1dv1 þ qt2dv2 þ qt3dw
� �

dx1dx2

þ
Z
X�

qb1dv1 þ qb2dv2 þ qb3dw
� �

dx1dx2 þ
Z
s

�t1dv1 þ �t2dv2 þ �t3dwð Þds

ð19Þ

In Eq. (19), �fi; �ci; qi and �ti ði ¼ 1; 2; 3Þ are body forces

(per unit volume), body couples (per unit volume), dis-

tributed transverse loads on the plate surfaces (superscripts

t and b indicate top and bottom) and surface forces,

respectively. Also V, X and S denote the volume, surface

and lateral surface of the micro-plate, respectively.

Replacing Eqs. (9) in Eq. (19) leads to the following

relation:

dU ¼
Z
X

Z h
2

�h
2

r11Laðx3Þdva1;1 þ r22Laðx3Þdva2;2 þ r33DabLbðx3Þdwa þ r12 Laðx3Þdva1;2 þ Laðx3Þdva2;1
� �hn

þ r13 DabLbðx3Þdva1 þ Laðx3Þdwa
;1

� �
þ r23 DabLbðx3Þdva2 þ Laðx3Þdwa

;2

� �i
þ 1

2
m11 Laðx3Þdwa

;12

�	

�DabLbðx3Þdva2;1
�
þ 1

2
m22 DabLbðx3Þdva1;2 � Laðx3Þdwa

;12

� �
þ 1

2
m33 DabLbðx3Þdva2;12

�

�DabLbðx3Þdva1;2
�
þ 1

2
m12 Laðx3Þdwa

;22 � DabLbðx3Þdva2;2 þ DabLbðx3Þdva1;1 � Laðx3Þdwa
;11

� �

þ 1

2
m13 DabLbðx3Þdwa

;2 � DabDbcLcðx3Þdva2 þ Laðx3Þdva2;11 � Laðx3Þdva1;12
� �

þ 1

2
m23 DabDbcLcðx3Þdva1 � DabLbðx3Þdwa

;1 � Laðx3Þdva2;12 � Laðx3Þdva1;22
� �
�

dx1dx2dx3

ð16Þ

dU ¼
Z
X

Ma
11dv

a
1;1 þMa

22dv
a
2;2 þ Tb

33Dabdw
a þMa

12dv
a
1;2 þMa

12dv
a
2;1 þ Tb

1Dabdv
a
1 þ Ta

1dw
a
;1 þ Tb

2Dabdv
a
2

�h

þ Tb
2dw

a
;2

�
þ 1

2
Ma

11dw
a
;12 �Mb

11Dabdv
a
2;1 þMb

22Dabdv
a
1;2 �Ma

22dw
a
;12 þ sb3Dabdv

a
2;1 � sb3Dabdv

a
1;2

�

þ Ma
12dw

a
;22 �Mb

12Dabdv
a
2;2 þMb

12Dabdv
a
1;1 �Ma

12dw
a
;11 þ sb1Dabdw

a
;2 � sc1DabDbcdv

a
2 þ sa1dv

a
2;11

� sa1dv
a
1;12 þ sc2DabDbcdv

a
1 � sb2Dabdw

a
;1 � sa2dv

a
2;12 � sa2dv

a
1;22

�i
dx1dx2dx3

ð18Þ
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so that

dW ¼
Z
X

Fa
1dv

a
1 þ Fa

2dv
a
2 þ Fa

3dw
a þ 1

2
ca1dw

a
;2 �

1

2
cb1Dabdv

a
2

�

þ 1

2
cb2Dabdv

a
1 �

1

2
ca2dw

a
;1 þ

1

2
ca3dv

a
2;1:�

1

2
ca3dv

a
1;2

�
dx1dx2

þ
Z
s

ta1dv
a
1 þ ta2dv

a
2 þ ta3dw

a
� �

ds

ð21Þ

It should be noted that variation of work done by the

external forces is simplified using Reddy’s definitions

(Reddy and Kim 2012) as

f ai ¼
Z h

2

�h
2

Laðx3Þ�fidx3 ð22aÞ

tai ¼
Z h

2

�h
2

Laðx3Þ�tidx3 ð22bÞ

cai ¼
Z h

2

�h
2

Laðx3Þ�cidx3 ð22cÞ

Fa
i ¼ qtiLa

h

2

� �
þ qbi La � h

2

� �
þ f ai ð22dÞ

Also, variation of kinetic energy is expressed as

dK ¼
Z
X

Z h
2

�h
2

q
ov1

ot

odv1
ot

þ ov2

ot

odv2
ot

þ ow

ot

odw
ot

� �
dx1dx2dx3

ð23Þ

Replacing Eqs. (9) in Eq. (23) and simplifying the

relations results in

dK ¼
Z
X

Z h
2

�h
2

q Laðx3Þ _va1Lbðx3Þd _vb1 þ Laðx3Þ _va2Lbðx3Þd _vb2
�

þLaðx3Þwa
1Lbðx3Þdwb

1Þdx‘dx2dx3
ð24Þ

Let

Rab ¼ Rba ¼
Z h

2

�h
2

qLaðx3ÞLbðx3Þdx3 ð25Þ

Therefore, Eq. (24) is simplified as

dK ¼
Z
X
Rab _va1d _v

b
1 þ _va2d _v

b
2 þ _wad _wb

� �
dx1dx2 ð26Þ

By substituting Eqs. (18), (21) and (26) into Eq. (14)

and integrating by parts, the following equations of motion

for FG micro-plates based on the HOSNDPT and modified

couple stress theory are determined:

dva1 : Rba€v
b
1 þ Tb

1Dab þ
1

2
sc2DabDbc þ Fa

1 þ
1

2
cb2Dab

�

� oMa
11

ox1
� 1

2

oMb
12

ox1
Dab �

oMa
12

ox2
� 1

2

oMb
22

ox2
Dab

þ 1

2

osb3
ox2

Dab þ
1

2

oca3
ox2

� 1

2

o

ox2

osa1
ox1

� �
� 1

2

o

ox2

osa2
ox2

� ��
¼ 0

ð27aÞ

dva2 : Rba€v
b
2 þ Tb

2Dab �
1

2
sc1DabDbc þ Fa

2 �
1

2
cb1Dab

�

� oMa
12

ox1
þ 1

2

oMb
11

ox1
Dab �

oMa
22

ox2
þ 1

2

oMb
12

ox2
Dab

� 1

2

osb3
ox1

Dab �
1

2

oca3
ox1

þ 1

2

o

ox1

osa1
ox1

� �
þ 1

2

o

ox2

osa2
ox1

� ��
¼ 0

ð27bÞ

dwa : Rba €w
b þ Tb

3Dab þ Fa
3 þ

1

2

osb2
ox1

Dab �
1

2

osb1
ox2

Dab

�

þ 1

2

oca2
ox1

� 1

2

oca1
ox2

� oTa
1

ox1
� oTa

2

ox2
� 1

2

o

ox1

oMa
12

ox1

� �

þ 1

2

o

ox2

oMa
11

ox1

� �
� 1

2

o

ox2

oMa
22

ox1

� �
þ 1

2

o

ox2

oMa
12

ox2

� ��
¼ 0

ð27cÞ

For an FG micro-plate without body forces, body cou-

ples and surface tractions, equations of motion are reduced

to

dW ¼
Z

X

Zh=2

�h=2

�f1Laðx3Þdva1 þ �f2Laðx3Þdva2 þ �f3Laðx3Þdwa
� �

þ 1

2
�c1 Laðx3Þdwa

;2 � DabLbðx3Þdva2
� ��

þ 1

2
�c2 DabLbðx3Þdva1 � Laðx3Þdwa

;1

� �
þ 1

2
�c3 Laðx3Þdva2;1 � Laðx3Þdva1;2
� ��

dx1dx2dx3

þ
Z
X

qt1La
h

2

� �
dva1 þ qt2La

h

2

� �
dva2 þ qt3La

h

2

� �
dwa þ qb1La � h

2

� �
dva1 þ qb2La � h

2

� �
dva2

�

þ qb3La � h

2

� �
dwa

�
dx1dx2 þ

Z
s

�t1Laðx3Þdva1 þ �t2Laðx3Þdva2 þ �t3Laðx3Þdwa
� �

ds

ð20Þ
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dva1 : Rba€v
b
1 þ Tb

1Dab þ
1

2
sc2DabDbc �

oMa
11

ox1
� 1

2

oMb
12

ox1
Dab

�

� oMa
12

ox2
� 1

2

oMb
22

ox2
Dab þ

1

2

osb3
ox2

Dab

� 1

2

o

ox2

osa1
ox1

� �
� 1

2

o

ox2

osa2
ox2

� ��
¼ 0

ð28aÞ

dva2 : Rba€v
b
2 þ Tb

2Dab �
1

2
sc1DabDbc

�

� oMa
12

ox1
þ 1

2

oMb
11

ox1
Dab �

oMa
22

ox2
þ 1

2

oMb
12

ox2
Dab �

1

2

osb3
ox1

Dab

þ 1

2

o

ox1

osa1
ox1

� �
þ 1

2

o

ox2

osa2
ox1

� ��
¼ 0

ð28bÞ

dwa : Rba €w
b þ Tb

3Dab þ
1

2

osb2
ox1

Dab �
1

2

osb1
ox2

Dab

�

� oTa
1

ox1
� oTa

2

ox2
� 1

2

o

ox1

oMa
12

ox1

� �
þ 1

2

o

ox2

oMa
11

ox1

� �

� 1

2

o

ox2

oMa
22

ox1

� �
þ 1

2

o

ox2

oMa
12

ox2

� ��
¼ 0

ð28cÞ

Using the variational approach and Hamilton’s princi-

ple, boundary conditions are derived besides the equations

of motion. Hence, they are

ta1 þ Ma
11 þ

1

2
Mb

12Dab þ
1

2

osa1
ox1

� �
n1

� �

þ Ma
12 þ

1

2
Mb

22Dab �
1

2
sb3Dab �

1

2
ca3 þ

1

2

osa2
ox2

� �
n2

¼ 0

ð29aÞ

ta2 þ Ma
12 �

1

2
Mb

11Dab þ
1

2
sb3Dab þ

1

2
ca3 �

1

2

osa1
ox1

� �
n1

�

þ Ma
22 �

1

2
Mb

12Dab �
1

2

osa2
ox2

� �
n2

�
¼ 0

ð29bÞ

ta3 þ Ta
1 �

1

2
sb2Dab �

1

2
ca2 þ

1

2

oMa
12

ox1

� �
n1

� �

þ Ta
2 þ

1

2
sb1Dab þ

1

2
ca1 �

1

2

oMa
11

ox1
þ 1

2

oMa
22

ox1
� 1

2

oMa
12

ox2

� �
n2

¼ 0

ð29cÞ

where ðn1; n2;n3Þ are unit outward normal vectors in

(x1, x2, x3) directions, respectively.

Clearly, when the size effects are neglected, i.e., l = 0,

the present model is reduced to the relations for FG plate

shown by Sheikholeslami and Saidi (2013).

Further, considering harmonic motion, the solutions of

Eqs. (28) are assumed as

vaaðx1; x2; tÞ ¼ eixtVa
a ðx1; x2Þ ð30aÞ

waðx1; x2; tÞ ¼ eixtWaðx1; x2Þ ð30bÞ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and x is the frequency of motion.

Replacing Eqs. (30) in Eqs. (28), system homogenous

equations are determined where the Eigen values are the

natural frequency.

2.5 Analytical Solutions

In this section, an analytical solution for free vibration of

simply supported rectangular micro-plates is presented.

Based on the Navier approach, the displacement compo-

nents are approximated using double series solution as

Va
1 ðx1; x2Þ ¼

X1
m;n¼0

~Vamn
1 cos

mpx1
l1

� �
sin

npx2
l2

� �
ð31aÞ

Table 1 Comparison of dimensionless natural frequency �x for square homogeneous micro-plate

l/h l1/h = 5 l1/h = 20 l1/h = 100

Present study Yin et al. (2010) Diff. % Present study Yin et al. (2010) Diff. % Present study Yin et al. (2010) Diff. %

0 5.3036 5.9734 11.21 5.9219 5.9734 0.82 5.9713 5.9734 0.04

0.2 5.7561 6.4556 10.84 6.4016 6.4556 0.84 6.4535 6.4556 0.03

0.4 6.8966 7.7239 10.71 7.6587 7.7239 0.84 7.7213 7.7239 0.03

0.6 8.3932 9.4673 11.35 9.3801 9.4673 0.92 9.4638 9.4673 0.04

0.8 10.0214 11.4713 12.64 11.3494 11.4713 1.06 11.4663 11.4713 0.04

1 11.6544 13.6213 14.44 13.4498 13.6213 1.26 13.6143 13.6213 0.05
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Va
2 ðx1; x2Þ ¼

X1
m;n¼0

~Vamn
2 sin

mpx1
l1

� �
cos

npx2
l2

� �
ð31bÞ

Waðx1; x2Þ ¼
X1
m;n¼0

~Wamnsin
mpx1
l1

� �
sin

npx2
l2

� �
ð31cÞ

where m and n are integers that show the mode numbers

and ð ~Vamn
1 ; ~Vamn

2 ; ~WamnÞ are coefficients of the components

of the displacement field.

According to the Navier solution, the components of the

displacement field are extended using double trigonometric

Table 2 Comparison of dimensionless natural frequency �x for square homogeneous micro-plate

l/h l1/h = 5 l1/h = 20 l1/h = 100

Present

study

Thai and Kim

(2013)

Diff.

%

Present

study

Thai and Kim

(2013)

Diff.

%

Present

study

Thai and Kim

(2013)

Diff.

%

0 5.3036 5.2813 0.42 5.9219 5.9199 0.03 5.9713 5.9712 0.00

0.2 5.7561 5.7699 - 0.24 6.4016 6.4207 - 0.30 6.4535 6.4535 0.00

0.4 6.8966 7.0330 - 1.98 7.6587 7.6708 - 0.16 7.7213 7.7217 - 0.01

0.6 8.3932 8.7389 - 4.12 9.3801 9.4116 - 0.34 9.4638 9.4651 - 0.01

0.8 10.0214 10.6766 - 6.54 11.3494 11.4108 - 0.54 11.4663 11.4689 - 0.02

1 11.6544 12.7408 - 9.32 13.4498 13.5545 - 0.78 13.6186 13.6189 - 0.03

Table 3 Comparison of dimensionless natural frequency �x for square FG micro-plate

l1/h l/h N = 0.5 N = 1 N = 2

Present

study

Thai and Kim

(2013)

Diff.

%

Present

study

Thai and Kim

(2013)

Diff.

%

Present

study

Thai and Kim

(2013)

Diff.

%

5 0 4.5394 4.5180 0.47 4.0989 4.0781 0.51 3.6961 3.6805 0.42

0.2 4.9671 4.9715 - 0.09 4.5078 4.5094 - 0.04 4.0697 4.0755 - 0.14

0.4 6.0373 6.1339 - 1.60 5.5234 5.6071 - 1.52 4.9905 5.0763 - 1.72

0.6 7.4255 7.6895 - 3.56 6.8307 7.0662 - 3.45 6.1705 6.4011 - 3.74

0.8 8.9221 9.4456 - 5.87 8.2331 8.7058 - 5.74 7.4348 7.8861 - 6.07

1 10.4138 11.3086 - 8.59 9.6263 10.4397 - 8.45 8.6907 9.4536 - 8.78

10 0 4.9074 4.9014 0.07 4.4258 4.4192 0.15 4.0136 4.0090 0.11

0.2 5.3558 5.3571 - 0.02 4.8520 4.8526 - 0.01 4.3983 4.4006 - 0.52

0.4 6.5048 6.5361 - 0.48 5.9393 5.9664 - 0.46 5.3787 5.4071 - 0.53

0.6 8.0421 8.1295 - 1.09 7.3841 7.4619 - 1.05 6.6811 6.7580 - 1.15

0.8 9.7361 9.9368 - 1.81 8.9943 9.1537 - 1.77 8.1330 8.2863 - 1.88

1 11.5596 11.8682 - 2.67 10.6706 10.9511 - 2.63 9.6451 9.9101 - 2.75

20 0 5.0198 5.0180 0.04 4.5245 4.5228 0.04 4.1113 4.1100 0.03

0.2 5.4740 5.4744 - 0.01 4.9566 4.9566 0.00 4.4999 4.5006 - 0.02

0.4 6.6500 6.6585 - 0.13 6.0682 6.0756 - 0.12 5.5004 5.5082 - 0.14

0.6 8.2393 8.2630 - 0.29 7.5606 7.5817 - 0.28 6.8451 6.8661 - 0.31

0.8 10.0410 10.0895 - 0.48 9.2450 9.2887 - 0.47 8.3640 8.4062 - 0.50

1 11.9517 12.0372 - 0.72 11.0266 11.1042 - 0.71 9.9715 10.0450 - 0.74

100 0 5.0576 5.0575 0.00 4.5580 4.5579 0.00 4.1445 4.1445 0.00

0.2 5.5142 5.5142 0.00 4.9922 4.9922 0.00 4.5346 4.5346 0.00

0.4 6.6996 6.7000 - 0.01 6.1123 6.1126 0.00 5.5422 5.5425 - 0.01

0.6 8.3074 8.3084 - 0.01 7.6215 7.6224 - 0.01 6.9019 6.9027 - 0.01

0.8 10.1382 10.1402 - 0.02 9.3326 9.3344 - 0.02 8.4450 8.4467 - 0.02

1 12.0908 12.0944 - 0.03 11.1528 11.1560 - 0.03 10.0874 10.0904 - 0.03
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series so that the boundary conditions of the plate (Eqs. 29)

are satisfied.

Using Eqs. (31), a homogenous system of equations is

obtained. Solving the resulted characteristic equation leads

to determining the natural frequencies.

3 Numerical Results and Discussions

In order to validate the results, a comparison is made with

the available results in the literature. Hence, consider a

simply supported micro-plate made of epoxy with the

following properties (Reddy 2011):

E ¼ 14:4 GPa; q ¼ 1220 kg/m3; m ¼ 0:3; l

¼ 17:6� 10�6 m ð32Þ

In Tables 1 and 2, dimensionless natural frequency �x ¼
x l2

1

h

ffiffiffiq
E

p
of simply supported homogeneous square micro-

plate is compared with the shown natural frequencies by

Yin et al. (2010) (based on classical plate theory (CPT))

and by Thai and Kim (2013) (based on third-order shear

deformable plate theory (TSDT)), respectively. Also, in

Table 3 the non-dimensional natural frequencies ~x ¼

xh
ffiffiffiffi
qc
Ec

q
obtained from HOSNDPT and the results based on

the TSDT (Thai and Kim 2013) are compared, while the

order of Legendre polynomial is 5. According to these

tables, it is clear that there is a good agreement between the

presented results and those shown in the literature.

In order to have a numerical study, it is assumed that FG

micro-plate is made of alumina and aluminum with the

following material properties (Salamat-Talab et al. 2012):

Em ¼ 70 GPa; qm ¼ 2702 kg/m3;Ec ¼ 380 GPa; qc
¼ 3800 kg/m3; m ¼ 0:3 ð33Þ

Also, the material length scale parameter is

17.6 9 10-6 m (Lam et al. 2003). In Table 4, the con-

vergence of results versus different orders of Legendre

polynomial is tabulated. Based on the table, it is clear that

for thin micro-plates results converge for small values of k,

but for thick micro-plates, they converge for bigger values

Table 4 Convergence of natural frequency �x versus variation of

Legendre polynomial order

l1/h l/h Legendre polynomial order, k

1 2 3 4 5

5 0 5.8338 5.3576 5.3042 5.3036 5.3036

0.2 6.2262 5.7947 5.7581 5.7579 5.7561

0.4 7.2569 6.9202 6.8982 6.8981 6.8966

0.6 8.6527 8.4096 8.3939 8.3938 8.3932

0.8 10.2015 10.0340 10.0216 10.0216 10.0214

1 11.7747 11.6644 11.6545 11.6545 11.6544

10 0 6.3820 5.7950 5.7770 5.7769 5.7769

0.2 6.8055 6.2628 6.2502 6.2502 6.2495

0.4 7.9343 7.4851 7.4771 7.4771 7.4765

0.6 9.5025 9.1456 9.1393 9.1393 9.1389

0.8 11.3045 11.0226 11.0169 0.0169 11.0167

1 13.2172 12.9937 12.9882 12.9882 12.9881

30 0 6.5843 5.9525 5.9503 5.9503 5.9503

0.2 7.0212 6.4331 6.4315 6.4315 6.4314

0.4 8.1924 7.6957 7.6947 7.6947 7.6946

0.6 9.8367 9.4290 9.4282 9.4282 9.4281

0.8 11.7540 11.4172 11.4164 11.4164 11.4164

1 13.8274 13.5447 13.5439 13.5439 13.5439

100 0 6.6088 5.9715 5.9713 5.9713 5.9713

0.2 7.0475 6.4536 6.4535 6.4535 6.4535

0.4 8.2240 7.7213 7.7213 7.7213 7.7212

0.6 9.8781 9.4639 9.4638 9.4638 9.4638

0.8 11.8104 11.4664 11.4664 11.4664 11.4663

1 13.9051 13.6144 13.6143 13.6143 13.6143

Table 5 Dimensionless natural frequency �x of square FG micro-plate

l1/h l/h Power law index, N

0.5 1 2 5 10

5 0 4.5394 4.0989 3.6961 3.4047 3.2643

0.2 4.9671 4.5078 4.0697 3.7141 3.5335

0.4 6.0373 5.5234 4.9905 4.4700 4.1898

0.6 7.4255 6.8307 6.1705 5.4443 5.0459

0.8 8.9221 8.2331 7.4348 6.4982 5.9812

1 10.4138 9.6263 8.6907 7.5536 6.9245

10 0 4.9074 4.4258 4.0136 3.7716 3.6414

0.2 5.3558 4.8520 4.3983 4.0808 3.9087

0.4 6.5048 5.9393 5.3787 4.8772 4.6020

0.6 8.0421 7.3841 6.6811 5.9528 5.5502

0.8 9.7631 8.9943 8.1330 7.1674 6.6312

1 11.5596 10.6706 9.6451 8.4430 7.7738

20 0 5.0198 4.5245 4.1113 3.8893 3.7635

0.2 5.4740 4.9566 4.4999 4.1986 4.0302

0.4 6.6500 6.0682 5.5004 5.0090 4.7366

0.6 8.2393 7.5606 6.8451 6.1204 5.7181

0.8 10.0410 9.2450 8.3640 7.3937 6.8537

1 11.9517 11.0266 9.9715 8.7531 8.0737

100 0 5.0576 4.5580 4.1445 3.9300 3.8059

0.2 5.5142 4.9922 4.5346 4.2393 4.0724

0.4 6.6996 6.1123 5.5422 5.0548 4.7835

0.6 8.3074 7.6215 6.9019 6.1789 5.7771

0.8 10.1382 9.3326 8.4450 7.4736 6.9326

1 12.0908 11.1528 10.0874 8.8641 8.1815
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of k; thus, in the following, fifth-order theory of HOSNDPT

is used.

In Tables 5, 6 and 7, non-dimensional natural frequen-

cies are presented where variations of different parameters

are considered. Based on the tables, it is clear that con-

sidering material length scale parameter leads to increasing

the stiffness of micro-plate; therefore, dimensionless nat-

ural frequencies increase as the material length scale

parameter increases. Also, it is inferred that increasing the

power law index, N, leads to decreasing the dimensionless

natural frequencies. According to the tables, aspect ratio of

the micro-plate, l1/l2, affects the responses. As shown in

Table 7, the natural frequency is influenced by the side-to-

thickness ratio (l1/h).

Figure 2 shows the effect of the material length scale

parameter l on dimensionless natural frequency �x of a

square micro-plate. According to this figure, increasing the

material length scale parameter increases the dimensionless

natural frequency. Also, as the length of micro-plate

increases, the dimensionless natural frequency increases.

According to this figure, variation of results is more

apparent for plates with thickness near to the material

length scale parameter.

The effect of material properties on dimensionless nat-

ural frequency �x of a square FG micro-plate is depicted in

Fig. 3. Based on the figure, increasing the power law index

Table 6 Dimensionless natural frequency �x for rectangular homo-

geneous (N = 0) micro-plate

l1/h l/h l1/l2

0.25 0.5 1 2 4

5 0 2.9654 3.4513 5.3036 11.6454 29.1609

0.2 3.2118 3.7395 5.7561 12.7265 32.7436

0.4 3.8435 4.4759 6.8966 15.3460 40.7161

0.6 4.6880 5.4563 8.3932 18.6430 47.8915

0.8 5.6267 6.5409 10.0214 22.0568 52.8013

1 6.5932 7.6512 11.6544 24.1658 58.4783

10 0 3.1163 3.6548 5.7769 13.8050 40.7499

0.2 3.3696 3.9524 6.2495 14.9581 44.4555

0.4 4.0132 4.7282 7.4765 17.9037 53.5092

0.6 4.9333 5.7850 9.1389 21.8251 65.0061

0.8 5.9602 6.9858 11.0167 26.1635 77.0401

1 7.0486 8.2561 12.9881 30.6046 87.4886

20 0 3.1587 3.7131 5.9219 14.6194 47.4461

0.2 3.4142 4.0135 6.4016 15.8094 51.3882

0.4 4.0848 4.8018 7.6587 18.9130 61.4966

0.6 5.0047 5.8828 9.3801 23.1398 75.0082

0.8 6.0594 7.1215 11.3494 27.9433 90.0274

1 7.1873 8.4456 13.4498 33.0245 105.4909

Table 7 Dimensionless natural frequency �x for rectangular FG

micro-plate

N l1/

h

l/h l1/l2

0.25 0.5 1 2 4

1 5 0 2.2801 2.6566 4.0989 9.1072 23.3310

0.2 2.5025 2.9169 4.5078 10.0835 26.4963

0.4 3.0637 3.5715 5.5234 12.4176 33.3879

0.6 3.7996 4.4264 6.8307 15.2959 39.8118

0.8 4.6065 5.3592 8.2330 18.2260 43.9179

1 5.4302 6.3058 9.6264 20.0798 48.5757

20 0 2.4123 2.8359 4.5246 11.1853 36.4816

0.2 2.6424 3.1065 4.9566 12.2578 40.0399

0.4 3.2351 3.8033 6.0682 15.0054 49.0196

0.6 4.0322 4.7400 7.5606 18.6746 60.7938

0.8 4.9339 5.7992 9.2450 22.7888 73.7044

1 5.8902 6.9219 11.0266 27.1047 86.8823

5 5 0 1.9218 2.2319 3.4047 7.3433 18.0000

0.2 2.0860 2.4252 3.7141 8.1213 20.6906

0.4 2.4998 2.9087 4.4700 9.8927 25.9052

0.6 3.0477 3.5453 5.4444 12.0412 30.3257

0.8 3.6552 4.2473 6.4982 14.2358 33.4590

1 4.2804 4.9654 7.5536 15.5970 36.9570

20 0 2.0766 2.4406 3.8893 9.5718 30.7483

0.2 2.2410 2.6339 4.1986 10.3450 33.3768

0.4 2.6728 3.1417 5.0090 12.3528 39.9970

0.6 3.2665 3.8393 6.1204 15.0847 48.7638

0.8 3.9484 4.6403 7.3937 18.1910 58.4833

1 4.6785 5.4973 8.7531 21.4792 68.4858

Fig. 2 Effect of the material length scale parameter l on dimension-

less natural frequency �x for a square micro-plate
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reduces the dimensionless natural frequency of FG micro-

plate. Also, changes in dimensionless natural frequencies

are more considerable for micro-plates with thick-

ness/material length scale ratio less than 3.

Figure 4 shows the effect of the length-to-thickness ratio

on dimensionless natural frequency �x of a square micro-

plate. According to this figure, variation of natural fre-

quencies is more apparent for smaller values of length-to-

thickness ratio.

4 Conclusions

In the present paper, free vibration analysis of thick func-

tionally graded micro-plates was investigated. Higher-

order shear and normal deformable plate theory in con-

junction with modified couple stress theory with one length

scale parameter was used. Comparing the results with the

available results in the literature shows that the presented

model and solution have good agreement with the other

results. An analytical solution for free vibration of simply

supported FG micro-plate was presented. According to the

numerical results, it is inferred that the inclusion of micro-

structures affects the micro-plate behavior so that the

equivalent flexural rigidity increases. Thus, modeling

micro-plates with classical plate theories leads to inaccu-

rate results. Also, it is seen that increasing the material

length scale parameter increases the non-dimensional nat-

ural frequencies. In addition, increasing the power law

index reduces the dimensionless natural frequencies.

Numerical study indicates that while the thickness of

micro-plate is the same as the material length scale

parameter, variation of result is more apparent. This change

in results vanishes as the ratio of thickness to material

length scale parameter increases. As depicted in figures,

increasing the aspect ratio increases the dimensionless

natural frequencies.
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Akgöz B, Civalek Ö (2011) Strain gradient elasticity and modified

couple stress models for buckling analysis of axially loaded

micro-scaled beams. Int J Eng Sci 49:1268–1280
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