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Abstract
This paper presents a unified higher-order shear deformable plate model to numerically examine the nonlinear vibration

behavior of thick and moderately thick polymer nanocomposite rectangular plates reinforced by graphene platelets (GPLs).

Four distribution patterns of graphene nanoplatelet nanofillers across the plate thickness are considered. The effective

material properties of graphene platelet-reinforced polymer (GPL-RP) nanocomposite plate are approximately calculated

by employing the modified Halpin–Tsai model and rule of mixture. Using a generalized displacement field, a unified

mathematical formulation is derived based on Hamilton’s principle in conjunction with von Kármán geometrical non-

linearity. By selecting appropriate shape functions, the proposed unified nonlinear plate model can be reduced to that on the

basis of Mindlin, Reddy, parabolic, trigonometric and exponential shear deformation plate theories. The investigation of

nonlinear vibration behavior is performed by employing a multistep numerical solution approach. In this regard, the

discretization process is done through the generalized differential quadrature method. Then, the discretized governing

equations are solved by employing the numerical-based Galerkin technique, periodic time differential operators and

pseudo-arc length continuation algorithm. A detailed parametric study is carried out to examine the effect of GPL

distribution pattern, weight fraction, geometry of GPL nanofillers and boundary constraints on the nonlinear vibration

characteristics of the GPL-RP nanocomposite rectangular plates.

Keywords Graphene nanoplatelets � Thick and moderately thick GPL-RP nanocomposite rectangular plates �
Unified higher-order shear deformable plate model � Nonlinear vibration � Multistep numerical approach

1 Introduction

New advanced materials with improved properties play a

key role in developing various fields of technology. Poly-

mer nanocomposites have been recognized as excellent

materials that can be used in novel devices and systems for

applications in industrial and engineering fields (Hule and

Pochan 2007; Zhang et al. 2012; Lee et al. 2013; Kurahatti

et al. 2010). The discovery of fullerene in 1985 by Kroto

et al. (1985) and then carbon nanotubes (CNTs) in 1991 by

Iijima (1991), graphene by Novoselov et al. (2004) and its

associated allotropes (Fennimore et al. 2003) resulted in the

revolutionary changes in the area of polymer nanocom-

posites. Because of the outstanding mechanical, electrical,

chemical and physical properties of graphene and CNTs

(Allen et al. 2007; Bianco et al. 2005; Ji et al. 2010;

Stankovich et al. 2006; Qiu et al. 2015), these discoveries

led to focusing both the scientific and industrial commu-

nities on the CNTs and graphenes (Kiani 2014, 2015a, b;

Ansari et al. 2018) as well as the carbon nanotubes- and

graphenes-reinforced polymer nanocomposites. For

instance, these advanced materials are among the best

candidates to employ in manufacturing the wind turbines,

medical implants and light gasoline tanks (Du and Cheng

2012; Das and Prusty 2013) and temperature sensors (Das

and Prusty 2013; Potts et al. 2011). However, some
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problems such as bundling of CNTs caused by the van der

Waals interaction between the nanotubes and walls, and

difficulty in uniformly dispersing the CNTs in polymer

matrices resulted in increasing use of the two-dimensional

allotropes of carbon such as graphenes as reinforcements

within the polymers. This considerable attention is due to

their relatively low fabrication cost, excellent dispersion,

superior mechanical properties and large surface area as

well as the stronger bonding between the polymers and

graphene nanofillers (Fu et al. 2008; Terrones and Terrones

2003).

The investigations on the polymer nanocomposite

structures can be categorized mainly into two classes of

analyses. In the first group, many studies have been carried

out on both static and dynamic behaviors of various

structures such as beams, plates and shells reinforced by

CNTs on the basis of the linear and nonlinear models

(Tornabene et al. 2016; Zhu et al. 2012; Rafiee et al. 2013;

Alibeigloo 2013; Ke et al. 2013; Ansari et al. 2014a; Jam

and Kiani 2015; Wattanasakulpong and Ungbhakorn 2013;

Moradi-Dastjerdi et al. 2013; Ansari et al. 2016a, b). The

number of investigations fitting to the first class is quite

large. The second group is concerned with the analysis of

the linear and nonlinear mechanical behaviors of polymer

nanocomposite structures reinforced by graphene nano-

platelets. Compared to the first class, the second class of

analysis, associated with the analysis of graphene nano-

platelet-reinforced structures, is not large. Herein, the paper

reviews a few studies belonging to the aforementioned two

classes of analysis.

Starting with the first class of analyses, by employing

the Timoshenko beam model, Ritz method and a direct

iterative approach, the nonlinear free vibration of FG-

CNTRC beams was examined by Ke et al. (Ke et al. 2010).

On the basis of the first-order shear deformation theory and

element-free IMLS-Ritz method, the postbuckling of

functionally graded carbon nanotube-reinforced composite

(FG-CNTRC) rectangular plates with edges elastically

restrained against translation and rotation was examined by

Zhang et al. (2016). Gholami et al. (2017) employed the

higher-order shear deformation beam theory and an effi-

cient multistep numerical solution approach in order to

examine the imperfection sensitivity on the nonlinear res-

onant dynamics of imperfect FG-CNTRC beams with dif-

ferent edge supports. Zhang et al. (2014) contributed to the

field by examining the nonlinear bending of FG-CNTRC

cylindrical panels, employing the kp-Ritz method with

kernel particle function. Ansari et al. (2015) utilized a

numerical solution strategy to analyze the forced vibration

of FG-CNTRC plates under the harmonic transverse

loading. Fan and Wang (2016) employed the higher-order

shear deformation theory and two-step perturbation tech-

nique so as to investigate the nonlinear bending and

postbuckling of matrix cracked hybrid-laminated FG-

CNTRC rectangular plates. Based on the third-order shear

deformation plate theory and von Kármán hypothesis,

Ansari and Gholami (2016) numerically investigated vari-

ous parameters such as volume fraction of CNTs, distri-

bution pattern of CNTs and boundary conditions on the

frequency- and force-response curve of thick and moder-

ately thick FG-CNTRC rectangular plates. Wu et al. (2017)

contributed to the field by analyzing the effect of geometric

imperfection on the postbuckling equilibrium path of FG-

CNTRC beams.

A limited research work has been dedicated to the sec-

ond class of analysis, conserved with the mechanical

behaviors of polymer nanocomposite structures reinforced

by graphene platelets (Shen et al. 2017a, b; c; d). In this

regard, the buckling and postbuckling of graphene platelet-

reinforced polymer (GPL-RP) nanocomposite Timoshenko

beams was analyzed by Yang et al. (2017). Kitipornchai

et al. (2017) contributed to the field by examining the

influences of porosity distributions on the free vibration

and elastic buckling of GPL-RP nanocomposite porous

beams. The dynamic stability of GPL-RP Timoshenko

beams in thermal environments was investigated by Wu

et al. (2017). Furthermore, Chen et al. (2017) investigated

the geometrically nonlinear free vibration and postbuckling

of GPL-RP nanocomposite porous beams. By proposing a

linear first-order shear deformable plate model, Song et al.

(2017) analyzed the free and forced vibration of GPL-RP

nanocomposite rectangular plates using Navier solution

technique. Feng et al. (2017) used the Timoshenko beam

theory and Ritz method to investigate the nonlinear bend-

ing of GPL-RP nanocomposite beams. Within the frame-

work of the first-order shear deformation theory, Wu et al.

(2017) used a differential quadrature-based iteration tech-

nique to study the thermal buckling and postbuckling of

GPL-RP nanocomposite rectangular plates. On the basis of

the three-dimensional elasticity theory, an analytical solu-

tion approach was provided by Yang et al. (2017a; b) in

order to examine the thermoelastic bending of GPL-RP

nanocomposite rectangular, circular annular plates under

the uniform transverse load in the thermal environment.

Gholami and Ansari (2017) developed a sinusoidal shear

deformable plate model to numerically investigate the

nonlinear bending of GPL-RP nanocomposite rectangular

plates with various boundary conditions. Moreover, Feng

et al. (2017) utilized the Ritz method in conjunction with a

direct iterative scheme to study the nonlinear free vibration

of GPL-RP nanocomposite Timoshenko beams.

There are various plate theories which can be employed

to provide the equations of motion of nanocomposite

plates. In this regard, one can mention the Kirchhoff or

classical plate theory, Mindlin or first-order shear defor-

mation plate theory and higher-order shear deformation
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plate theories. Each of these theories includes some

advantages and disadvantages. For instance, the Kirchhoff

plate theory, as the simplest plate theory, is established on

the basis of the Kirchhoff–Love’s assumptions. Applying

these assumptions results in neglecting the impacts of

transverse shear deformation and rotary inertia and makes

this theory suitable only for thin plates. Therefore, the

shear deformation plate theories are usually used in order

to describe the mechanical characteristics of the thick and

moderately thick plates. One can categorize the shear

deformation theories into the first- and higher-order theo-

ries. To accurately use the first-order shear deformation

plate theory, a shear correction factor which depends on

different quantities such as boundary, loading and

geometries should be used. Although the use of higher-

order shear deformation plate theories results in more

complicated equation, the need for any shear correction

factor is eliminated. Furthermore, unlike the first-order

shear deformation theory, these theories satisfy the zero

transverse shear stress conditions on the upper and lower

plate surfaces. Hence, the higher-order shear deformation

theories are quite interesting in analyzing the thick and

moderately thick plates. Some of the proposed higher-order

shear deformation theories existing in the literature include

the Reddy plate theory (Reddy 1984), parabolic shear

deformation plate theory, trigonometric shear deformation

plate theory (Touratier 1991) and exponential shear

deformation plate theory (Karama et al. 2003).

To the best of the authors’ knowledge, to date, no work

can be found in the open literature about the nonlinear free

vibration analysis of GPL-RP nanocomposite rectangular

plates with various edge conditions on the basis of the

higher-order shear deformation plate theory. Hence, in this

study, the nonlinear vibration of thick and moderately thick

GPL-RP nanocomposite rectangular plates with various

edge supports is numerically examined by proposing a

unified higher-order shear deformable plate model and

constructing the backbone curve as the nonlinear frequency

ratio versus the maximum vibration amplitude. Four dis-

tribution patterns of GPL nanofillers across the plate

thickness are considered. The effective material properties

of GPL-RP nanocomposite plate are computed using the

modified Halpin–Tsai model and rule of mixture. After-

ward, the GPL-RP nanocomposite rectangular plate is

modeled on the basis of a unified higher-order shear

deformation theory through use of the von Kármán geo-

metric nonlinearity taking into account the effects of rotary

inertia and transverse shear deformation. The nonlinear

governing equations and associated boundary conditions

are developed via the Hamilton’s principle. The proposed

plate model can be degenerated to that on the basis of

Mindlin, Reddy, parabolic, trigonometric and exponential

shear deformation plate theories. In the following, to solve

the nonlinear vibration problem, the achieved nonlinear

partial differential equations are transformed into a system

of nonlinear algebraic equations by employing a multistep

numerical solution approach including the generalized

differential quadrature (GDQ) method, Galerkin technique

and time periodic discretization and then solved via the

pseudo-arc length continuation algorithm to obtain the

backbone curve of GPL-RP nanocomposite. The influences

of GPL distribution pattern, weight fraction, geometry of

GPL nanofillers and boundary conditions on the natural

frequency and backbone curve of the GPL-RP nanocom-

posite rectangular plates are studied in detail.

This paper is organized as follows: in Sect. 2, first, the

effective material properties of GPL-RP nanocomposites

are calculated. Then, a unified nonlinear mathematical

formulation of FG GPL-RP nanocomposite rectangular

plates on the basis of a generalized higher-order shear

deformation plate theory is presented in Sect. 2. A

numerical multistep solution approach for geometrically

nonlinear vibration analysis of FG GPL-RP nanocomposite

plates is developed in Sect. 3. Numerical results and dis-

cussion are given in Sect. 4, and the final section discusses

the concluding remarks.

2 Unified Nonlinear Higher-Order Shear
Deformable Plate Model

Consider a FG GPL-RP nanocomposite plate with length a,

width b and thickness h made of the polymer matrix and

GPLs nanofillers as illustrated in Fig. 1. It is assumed that

the FG GPL-RP nanocomposite plate is made of even NL

layers with same thickness hL= h/NL. In each individual

layer, the uniform or random dispersion can be considered

for the GPLs. Furthermore, in order to have a FG distri-

bution, it is assumed that the GPL weight fraction changes

layer-wisely through the thickness of the GPL-RP

Fig. 1 Schematic view of a GPL-RP nanocomposite plate
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nanocomposite plate. Moreover, it should be remarked that

in general, no chemical bonding exists between a graphene

nanoplatelet and the surrounding polymer matrix. In this

case, only non-bonded electrostatic and van der Waals

(vdW) interactions are considered between a graphene

nanoplatelet and the surrounding polymer matrix. Elec-

trostatic interactions can be neglected in comparison with

vdW interactions, due to the fact that vdW interactions

contribute more significantly in three higher orders of

magnitude than electrostatic energy. Furthermore, the

nanofiller used in this study consists of graphene nano-

platelet and surrounding interphase generated due to non-

bonded van der Waals interaction between graphene and

polymer matrix (For more details, refer to Mahmoodi and

Vakilifard 2017; Shokrieh et al. 2017; Shokrieh and Rafiee

2010; Mortazavi et al. 2013).

In this section, first, the effective material properties of

GPL-RP nanocomposites are discussed and then the pro-

cess of development of a unified nonlinear higher-order

shear deformable plate model for FG GPL-RP nanocom-

posite rectangular plates is explained.

2.1 Effective Material Properties of the GPL-RP
Nanocomposites

In this subsection, the effective material properties of GPL-

RP nanocomposites are achieved. In this regard, it is

assumed that the GPL nanofillers can be distributed

through the thickness of plates as four distribution patterns,

namely U-GPLRC, X-GPLRC, O-GPLRC and A-GPLRC.

The schematic view of these four distribution patterns is

illustrated in Fig. 2. For the U-GPLRC pattern, the GPL

content in all layers is the same, while in the case of

X-GPLRC pattern, the highest GPL nanofillers located on

both top and bottom surfaces of the GPL-RP nanocom-

posite plate and the middle-plane includes the lowest GPL

contents. Furthermore, in the case of the A-GPLRC dis-

tribution pattern, the GPL weight fraction gradually

increases from the top surface so that the bottom surface

includes the highest GPL nanofillers. Also, for the

O-GPLRC distribution pattern, the middle-plane includes

the highest GPL weight fraction and both top and bottom

planes contain the minimum GPL contents.

For various GPL distribution patterns, the volume

fractions of GPLs of the kth layer can be considered as

follows Yang et al. (2017), Song et al. (2017):

U� GPLRC : V
kð Þ

GPL ¼ V�
GPL; ð1aÞ

X� GPLRC : V
kð Þ

GPL ¼ 2V�
GPL 2k � NL � 1j j=NL;

ð1bÞ

O� GPLRC : V
kð Þ

GPL ¼ 2V�
GPL 1� 2k � NL � 1j j=NLð Þ;

ð1cÞ

A� GPLRC : V
kð Þ

GPL ¼ V�
GPL 2k � 1ð Þ=NL; ð1dÞ

where k ¼ 1; 2; . . .;NL. Also, V
�
GPL signifies the total vol-

ume fraction of GPLs which can be calculated as

V�
GPL ¼ wGPL

wGPL þ 1� wGPLð Þ qGPL=qmð Þ ; ð2Þ

in which qm and qGPL stand for the mass densities of matrix

and GPLs, respectively. Also, wGPL is the GPL weight

fraction.

The material properties of nanocomposites reinforced

with a low content of GPLs can be achieved by the mod-

ified Halpin–Tsai model (Affdl and Kardos 1976; Hull and

Clyne 1996; Harris 1986). For nanocomposites reinforced

Fig. 2 Schematic view of various GPL distribution patterns
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with a low content of GPLs, the accuracy of this modified

micromechanics model for estimating the material prop-

erties of PLRCs is validated by the experimental results

provided by Rafiee et al. (2009). By utilizing the Halpin–

Tsai micromechanics technique, the effective Young’s

modulus of GPL-RP nanocomposites can be approximately

computed as follows Affdl and Kardos (1976), Hull and

Clyne (1996), Harris (1986):

Eeff ¼
3

8
EL þ

5

8
ET; ð3Þ

in which EL and ET stand for the longitudinal and trans-

verse moduli for a unidirectional lamina. The Halpin–Tsai

model can be utilized to approximately calculate these

moduli as follows Affdl and Kardos (1976):

EL ¼ 1þ nLgLVGPL

1� gLVGPL

Em;ET ¼ 1þ nTgTVGPL

1� gTVGPL

Em; ð4Þ

where the parameters gL and gT are computed as

gL ¼ EGPL=Em � 1

EGPL=Em þ nL
; gT ¼ EGPL=Em � 1

EGPL=Em þ nT
; ð5Þ

In Eq. (5), the Young’s modulus of the polymer matrix and

GPLs are denoted by Em and EGPL, respectively. Moreover,

the parameters nL and nT are obtained as

nL ¼ 2
aGPL

hGPL

� �
; nT ¼ 2

bGPL

hGPL

� �
; ð6Þ

where aGPL, bGPL and hGPL are, respectively, the average

length, width and thickness of GPLs.

Furthermore, by implementing the rule of mixture, the

effective mass density qef and effective Poisson’s ratio meff
are achieved as follows:

qeff ¼ qmVm þ qGPLVGPL; ð7aÞ
meff ¼ mmVm þ mGPLVGPL; ð7bÞ

in which qm, mm, qGPL and mGPL are, respectively, the mass

density and Poisson’s ratio corresponding to the polymer

matrix and GPLs. It is remarked that in present investiga-

tion, the subscripts ‘‘m’’ and ‘‘GPL’’ refer to the matrix and

GPLs, respectively.

2.2 Geometrically Nonlinear Governing
Equations

In this subsection, a unified geometrically nonlinear higher-

order shear deformable plate model for the GPL-RP

nanocomposite rectangular plates is developed. The GPL-

RP nanocomposite rectangular plate is defined in a Carte-

sian coordinate system 0� x1 � a; 0� x2 � b;�h=2� x3ð
� h=2Þ where x1 and x2 are the direction along with the

length and width of plate, respectively, and x3 is

perpendicular to the in-plane surface and points outwards.

The displacement vector of a given point located on the

GPL-RP nanocomposite rectangular plate is considered as

the following unified form:

u t; x1; x2; x3ð Þ ¼ ~uiei ¼ ua � x3w;a þ v x3ð Þ wa þ w;a
� �� �

ea þ we3:

ð8Þ

in which ~ui; i ¼ 1; 2; 3ð Þ indicate the elements of an arbi-

trary point through the axes xi; i ¼ 1; 2; 3ð Þ, respectively,
and t is the time. It is remarked that in present analysis,

i; j ¼ 1; 2; 3 and a; b ¼ 1; 2. Furthermore, u1, u2 and w are

the displacements along x1, x2 and x3 axes, respectively.

Moreover, w1 and w2 are, respectively, the rotations about

x2 and x1 axes. Furthermore, v(x3) indicates the generalized
shape function illustrating the stress distribution and

transverse shear deformation across the thickness of the

GPL-RP nanocomposite plate. In order to achieve the

displacement filed of different shear deformation plate

theory, one can consider the shape function as the fol-

lowing form:

Mindlin plate theory MPTð Þ : v x3ð Þ ¼ x3;

Reddy plate theory RPTð Þ : v x3ð Þ ¼ x3 1� 4x23
3h2

� �
;

Parabolic shear deformable plate theory PSDPTð Þ :

v x3ð Þ ¼ x3
5

4
� 5x23
3h2

� �
;

Trigonometric shear deformable plate theory TSDPTð Þ :

v x3ð Þ ¼ h

p
sin

px3
h

� �
;

Exponential shear deformable plate theory ESDPTð Þ :

v x3ð Þ ¼ x3e
�2 x3=hð Þ2

ð9Þ

By assuming the von Kármán nonlinear strain–displace-

ments relation for the unified displacement field defined in

Eq. (8), one can express the nonzero components of strain

tensor in terms of displacement gradients as follows:

eab ¼ e0ab þ v1e
1
ab þ v2e

2
ab; ca3 ¼ 2ea3 ¼ v3c

0
a3; ð10Þ

where

e0ab ¼
1

2
ua;b þ ub;a þ w;aw;b

� �
; e1ab ¼ w;ab; e

2
ab ¼ 1

2
wa;b þ wb;a

� �
;

c0a3 ¼ wa þ w;a; v1 ¼ v x3ð Þ � x3; v2 ¼ v x3ð Þ; v3 ¼
dv x3ð Þ
dx3

:

ð11Þ

where in mathematical formulation, the symbol comma

indicates the partial differentiation with respect to the

geometric coordinates.

Iran J Sci Technol Trans Mech Eng (2019) 43 (Suppl 1):S603–S620 S607

123



Furthermore, the stress–strain relations corresponding to

the kth layer of GPL-RP nanocomposite plate can be

expressed as

r11
r22
r12
r13
r23

8>>>><
>>>>:

9>>>>=
>>>>;

kð Þ

¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q55 0

0 0 0 0 Q44

2
66664

3
77775

kð Þ e11
e22
c12
c13
c23

8>>>><
>>>>:

9>>>>=
>>>>;

kð Þ

ð12Þ

in which r11 and r22 are the normal stress components; r12,
r13 and r23 represent the shear stresses and c12 ¼ 2e12.

Furthermore, Q
kð Þ
ij . indicates the reduced material stiffness

coefficients compatible with the plane-stress conditions for

the kth layer, which are computed as follows:

Q
kð Þ
11 ¼ Q

kð Þ
22 ¼ Eeff

1� m2eff
;Q12 ¼

meffEeff

1� m2eff
;Q

kð Þ
44 ¼ Q

kð Þ
55 ¼ Q

kð Þ
66

¼ Eeff

2 1þ meffð Þ : ð13Þ

Then, the in-plane force resultants (Nab) and bending

moment resultants (Mab) as well as the higher-order

bending moments (Pab) and transverse forces (Qa) caused

by the stress components rab and ra3 can be defined as

Nab;Mab;Pab;Qa
� 	

¼
XNL

l¼1

Zx3lþ1

x3l

r lð Þ
ab; c1r

lð Þ
ab; c2r

lð Þ
ab; jsc3r

lð Þ
a3

n o
dx3

ð14Þ

where js represents the shear correction factor and equals

5/6 for MPT and 1 for higher-order shear deformation plate

theories.

These quantities defined in Eq. (14) can be expressed in

the following matrix form

Q1

Q2


 �
¼ A55 0

0 A44

� 

c013
c023


 �
ð15bÞ

in which the parameters Aij, Bij, Cij, Dij, Fij and Hij are

defined as

AIJ ;BIJ ;CIJ ;DIJ ;FIJ ;HIJf g

¼
XNL

l¼1

Zx3lþ1

x3l

Q
lð Þ
IJ 1;� 1;� 2;�

2
1;� 1� 2;�

2
2

� 	
dx3; I;J¼ 1;2;6ð Þ;

Aij ¼ js
XNL

l¼1

Zx3lþ1

x3l

Q
lð Þ
IJ �

2
3dx3; I;J¼ 4;5ð Þ: ð16Þ

Now, the variation of the potential strain energy expression

of the thick and moderately thick GPL-RP nanocomposite

rectangular plates is given below:

dPs ¼
Z
A

Zh
2

�h
2

rijdeijdx3dA ¼
XNL

l¼1

Z
A

Zx3lþ1

x3l

r lð Þ
ij deijdx3

¼
Z
A

Nabde
0
ab þMabde

1
ab þ Pabde

2
ab þ Qadc

0
a3

n o
dA;

ð17Þ

where A signifies the surface area of the GPL-RP

nanocomposite plate.

Also, the variation of kinetic energy of shear deformable

GPL-RP nanocomposite plates can be given as

dPT ¼
Z
A

Z h
2

�h
2

q _~uid _~uidzdA ¼
XNL

l¼1

Z
A

Zx3lþ1

x3l

q lð Þ _~uid _~uidx3

¼
Z
A

I0 _uad _ualpha þ _wd _w
� �

þ I1 _uad _w;a þ I1 _w;ad _ua þ I2 _wad _ua
n

þ I2 _uad _wa þ I3 _w;ad _wa þ I3 _wad _w;a þ I4 _w;ad _w;a þ I5 _wad _wa

o
dA;

ð18Þ

N11

N22

N12

M11

M22

M12

P11

P22

P12

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

A11 A12 0 B11 B12 0 C11 C12 0

A12 A22 0 B12 B22 0 C12 C22 0

0 0 A66 0 0 B66 0 0 C66

B11 B12 0 D11 D12 0 F11 F12 0

B12 B22 0 D12 D22 0 F12 F22 0

0 0 B66 0 0 D66 0 0 F66

C11 C12 0 F11 F12 0 H11 H12 0

C12 C22 0 F12 F22 0 H12 H22 0

0 0 C66 0 0 F66 0 0 H66

2
6666666666664

3
7777777777775

e011
e022
c012
e111
e122
c112
e311
e322
c312

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; ð15aÞ
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where the differentiation with respect to the time is denoted

by symbol dot. Also, IJ ; J ¼ 0; . . .; 5ð Þ can be calculated as

I0; I1; I2; I3; I4; I5f g ¼
XNL

l¼1

Zx3lþ1

x3l

q lð Þ 1; c1; c2; c1c2; c
2
1; c

2
2

� 	
dx3;

ð19Þ

Now, substituting Eqs. (11) into (17) and employing the

chain rule and divergence theorem results in the following

expression for the variation of strain potential energy of

GPL-RP nanocomposite rectangular plates

dPs ¼
Z
A

�Nab;adub þ �Qa;a þMab;ab � Nabw;b
� �

;a

h i
dw

n

þ �Pab;a þ Qb
� �

dwb

	
dAþ

I
S

Nnndgnð

þNnsdgs þ Qn � Vnð Þdw

þPnndhn þ Pnsdhs þMnnd
ow

on

�
dS ð20Þ

where

gn ¼ naua; gs ¼ �n2u1 þ n1u2;

Nnn ¼ Nabnanb;Nns ¼ N22 � N11ð Þn1n2 þ N12 n21 � n22
� �

;

Mnn ¼ Mabnanb;Mns ¼ M22 �M11ð Þn1n2 þM12 n21 � n22
� �

;

Pnn ¼ Pabnanb;Pns ¼ P22 � P11ð Þn1n2 þ P12 n21 � n22
� �

;

Qn ¼ na Nabwb þ Qa
� �

;Vn ¼ na Mab;b
� �

þMns;s;

ð21Þ

Also, na is the direction cosines of the outward unit normal

to the boundary of the middle-plane.

Now, using the Hamilton’s principle and implementa-

tion of the fundamental lemma of the calculus of variations

results in the following geometrically nonlinear mathe-

matical formulation of governing equations of motion for

the GPL-RP nanocomposite rectangular plates

Nab;a ¼ I0€ub þ I1 €w;b þ I2 €wb; ð22aÞ

Qa;a �Mab;ab þ Nabw;b
� �

;a¼ I0 €w� I1€ua;a � I3 €wa;a

� I4 €w;aa; ð22bÞ

Pab;a � Qb ¼ I2€ub þ I3 €w;b þ I5 €wb; ð22cÞ

Furthermore, the essential and natural boundary conditions

associated with the governing Eq. (22) are achieved as

dgn ¼ 0 or Nnn ¼ 0 ð23aÞ
gs ¼ 0 or Nns ¼ 0 ð23bÞ
dw ¼ 0 or Qn � Vnð Þ ¼ 0 ð23cÞ
dhn ¼ 0 or Pnn ¼ 0 ð23dÞ

dhs ¼ 0 or Pns ¼ 0 ð23eÞ

d
ow

on
¼ 0 or Mnn ¼ 0 ð23fÞ

One can express the geometrically nonlinear governing

Eq. (22) in terms of components of displacement field by

substituting the relations defined in (11) and (15) into (22)

as the following form:

A11u1;11 þ A12 þ A66ð Þu2;12 þ A66u1;22

þ B11w;111 þ B12 þ 2B66ð Þw;122

þ C11w1;11 þ C12 þ C66ð Þw2;12 þ C66w1;22 þ Z1 ¼
I0€u1 þ I1 €w;1 þ I2 €w1; ð24aÞ

A66u2;11 þ A12 þ A66ð Þu1;12 þ A22u2;22

þ B12 þ 2B66ð Þw;112 þ B22w;222

þ C12w1;12 þ C22w2;22 þ C66 w1;12 þ w2;11

� �
þ Z2 ¼

I0€u2 þ I1 €w;2 þ I2 €w2; ð24bÞ

A55 w1;1 þ w;11

� �
þ A44 w2;2 þ w;22

� �
� B11u1;111 � B12 þ 2B66ð Þu2;112 � B12 þ 2B66ð Þu1;122
� B22u2;222 � D11w;1111 � 2 D12 þ 2D66ð Þw;1122

� D22w;2222 � F11w1;111 � F12 þ 2F66ð Þ w2;112 þ w1;122

� �
� F22w2;222 þ Z3 ¼

I0 €w� I1 €u1;1 þ €u2;2
� �

� I3 €w1;1 þ €w2;2

� �
� I4 €w;11 þ €w;22

� �
;

ð24cÞ

C11u1;11 þ C12 þ C66ð Þu2;12 þ C66u1;22 þ F11w;111

þ F12 þ 2F66ð Þw;122 þ H11w1;11

þ H12 þ H66ð Þw2;12 þ H66w1;22 � A55 w1 þ w;1

� �
þ Z4 ¼

I2€u1 þ I3 €w;1 þ I5 €w1; ð24dÞ

C66u2;11 þ C12 þC66ð Þu1;12 þC22u1;22 þ F12 þ 2F66ð Þw;112

þF22w;222 þH12w1;12

þH22w2;22 þH66 w1;12 þw2;11

� �
�A44 w2 þw;2

� �
þ Z2 ¼

I2€u2 þ I3 €w;2 þ I5 €w2; ð24eÞ

where

Z1 ¼ A11w;1w;11 þ A12w;12w;2 þ A66 w;12w;2 þ w;1w;22

� �
; ð25aÞ

Z2 ¼ A12w;1w;12 þ A22w;2w;22 þ A66 w;2w;11 þ w;1w;12

� �
; ð25bÞ

Z3 ¼ �B11 w2
;11 þ w;1w;111

� �
� B12 w;112w;2 þ w2

;12

� �

� 2B66 w;112w;2 þ w;11w;22 þ w2
;12 þ w;1w;122

� �

� B12 w;11w;12 þ w;1w;122

� �
� B22 w;222w;2 þ w2

;22

� �

þ N11w;1

� �
;1
þ N22w;2

� �
;2
þ N12w;2

� �
;1
þ N12w;1

� �
;2
;

ð25cÞ
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Z4 ¼ C11w;1w;11 þ C12w;12w;2 þ C66 w;12w;2 þ w;1w;22

� �
;

ð25dÞ

Z5 ¼ C12w;1w;12 þ C22w;22w;2 þ C66 w;11w;2 þ w;1w;12

� �
:

ð25eÞ

In a similar way, one can express the natural boundary

conditions in terms of the components of displacement

field.

In the current investigation, the nonlinear free vibration

of GPL-RP nanocomposite plates with three types of edge

supports, namely all edges simply supported (SSSS), all

edges clamped (CCCC) and two opposite edges clamped—

the remaining edges simply supported (CSCS), will be

studied. In the case of MPT (i.e., first-order shear defor-

mation plate theory), the associated boundary conditions

can be mathematically written as follows:

a. SSSS edge supports

u1 ¼ u2 ¼ w ¼ w2 ¼ P11 ¼ 0 at edges x1 ¼ 0; a

u1 ¼ u2 ¼ w ¼ w1 ¼ P22 ¼ 0 at edges x2 ¼ 0; b

ð26aÞ

b. CCCC edge supports

u1 ¼ u2 ¼ w ¼ w1 ¼ w2 ¼ 0 at edges x1 ¼ 0; a

u1 ¼ u2 ¼ w ¼ w1 ¼ w2 ¼ 0 at edges x2 ¼ 0; b

ð26bÞ

c. CSCS edge supports

u1 ¼ u2 ¼ w ¼ w1 ¼ w2 ¼ 0 at edges x1 ¼ 0; a

u1 ¼ u2 ¼ w ¼ w1 ¼ P22 ¼ 0 at edges x2 ¼ 0; b
:

ð26cÞ

Moreover, for the higher-order shear deformation plate

theories, one can mathematically express the edge condi-

tions as the following form:

a. SSSS edge supports

u1 ¼ u2 ¼ w ¼ w2 ¼ P11 ¼ M11 ¼ 0 at edges x1 ¼ 0; a

u1 ¼ u2 ¼ w ¼ w1 ¼ P22 ¼ M22 ¼ 0 at edges x2 ¼ 0; b

ð27aÞ

b. CCCC edge supports

u1 ¼ u2 ¼ w ¼ w1 ¼ w2 ¼ w;1 ¼ 0 at edges x1 ¼ 0; a

u1 ¼ u2 ¼ w ¼ w1 ¼ w2 ¼ w;2 ¼ 0 at edges x2 ¼ 0; b

ð27bÞ

c. CSCS edge supports

u1 ¼ u2 ¼ w ¼ w1 ¼ w2 ¼ w;1 ¼ 0 at edges x1 ¼ 0; a

u1 ¼ u2 ¼ w ¼ w1 ¼ P22 ¼ M22 ¼ 0 at edges x2 ¼ 0; b

ð27cÞ

3 Solution Approach

An efficient multistep numerical solution methodology

including the GDQ method (Shu 2000), numerical-based

Galerkin approach, time periodic differential scheme,

pseudo-arc length continuation algorithm (Keller 1977; De

Borst et al. 2012) and modified Newton–Raphson method

is utilized for the geometrically nonlinear free vibration

analysis of GPL-RP nanocomposite plates with different

edge conditions. The basic idea is that applying the GDQ

method results in converting the nonlinear partial differ-

ential governing equations of motion and edge conditions

into a set of nonlinear algebraic equations. Then, the dis-

cretized governing equations are transformed into a

reduced form of time-dependent Duffing-type equations by

applying the numerical-based Galerkin approach. Applying

the time periodic differential scheme results in discretizing

the set of Duffing-type equations in the time domain, from

which the backbone curve of GPL-RP nanocomposite plate

as the nonlinear frequency ratio versus the maximum

vibration amplitude is then obtained by the simultaneous

use of the pseudo-arc length continuation technique in

conjugation with the modified Newton–Raphson method.

On the basis of the GDQ method, the discretized form of

a two-variable function f(x1, x2) with its pth- and qth-order

derivatives with respect to the x1 and x2 can be written as

opþqf x1; x2ð Þ
ox

p
1ox

q
2

¼ D qð Þ
x2

� D pð Þ
x1

� �
f: ð28Þ

in which the weighting coefficients matrices of the pth- and

qth-order derivatives in the x1 and x2 directions are denoted

by D pð Þ
x1

and D qð Þ
x2
, respectively. Furthermore, the symbol �

signifies the Kronecker product (see ‘‘Appendix 1’’). Also,

f is the discretized form of two-variable function which is

expressed in the form of the column vector as follows:

f ¼ f x11; x21ð Þ; . . .; f x1N ; x21ð Þ; f x11; x22ð Þ; . . .; f x1N ; x22ð Þ;½
. . .; f x11; x2Mð Þ; . . .; f x1N ; x2Mð Þ�T; ð29Þ

where x1i and x2i are the grid point through the x1- and x2-

axes, respectively. Due to the most convergence and sta-

bility (Tornabene 2009), the shifted Chebyshev–Gauss–

Lobatto distribution is used to generate these grid points as

follows:

x1i ¼
a

2
1� cos

i� 1

N � 1
p

� �
; i ¼ 1; 2; 3; . . .;N

x2i ¼
b

2
1� cos

j� 1

M � 1
p

� �
; i ¼ 1; 2; 3; . . .;M

ð30Þ

Moreover, N and M are the number of gird points through

the x1- and x2-directions, respectively.
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Also, the weighting coefficients matrix D rð Þ ¼ D
rð Þ
ij ¼

W
rð Þ

ij is obtained via a recursive method as follows:

D
rð Þ
ij ¼

Iij;where Iijis aN � N identitymatrix r ¼ 0

P xið Þ
xi � xj
� �

P xj
� � ; i; j ¼ 1; . . .;N and i 6¼ j and r ¼ 1

r W
1ð Þ
ij W

r�1ð Þ
ii �

W
r�1ð Þ

ij

xi � xj

" #
; i 6¼ j and

�
XN
k ¼ 1

k 6¼ i

W
rð Þ

ik ; i ¼ j i; j ¼ 1; . . .;N and r	 2

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð31Þ

where P xið Þ ¼
QN

k¼1;i6¼k xi � xkð Þ. Applying the GDQ

method on the governing equations, (24) gives a set of

time-dependent ordinary differential equations which can

be expressed in a matrix form as follows:

M €XþKXþKnl Xð Þ ¼ 0 ð32Þ

where X ¼ uT1 ; u
T
2 ;w

T;wT
1 ;w

T
2

� 	T
signifies the vector

associated with the 5 NM unknown generalized coordi-

nates; K and M are, respectively, the stiffness and mass

matrices. Moreover, Knl Xð Þ is the nonlinear stiffness vec-

tor. K, M and Knl Xð Þ can be expressed as

K ¼

K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

2
66664

3
77775; M

¼

M11 0 M13 M14 0
0 M22 M23 0 M25

M31 M32 M33 M34 M35

M41 0 M43 M44 0
0 M52 M53 0 M55

2
66664

3
77775; ð33aÞ

Knl Xð Þ ¼ Ku1 Xð ÞT;Ku2 Xð ÞT;Kw Xð ÞT;Kw1
Xð ÞT;Kw2

Xð ÞT
h iT

;

ð33bÞ

The discretized components of Kij, Mij and Knl Xð Þ are

provided in ‘‘Appendix 2’’.

Now, to reduce the dimensions of discretized Eq. (32)

and consequently decrease the computational cost, the

numerical-based Galerkin approach (Gholami and Ansari

2016) is employed. In this regard, first, the nonlinear terms

of Eq. (32) are neglected and the solution of linear free

vibration problem is assumed as X ¼ ~Xej ~xLt. After

imposing the discretized form of boundary conditions into

the stiffness matrix and inserting the assumed solution into

the linearized equation, a generalized eigenvalue problem

is achieved as the following form:

K ~X ¼ ~x2
LM

~X; ~X ¼ ~uT1 ; ~u
T
2 ; ~w

T; ~w
T

1 ;
~w
T

2

h iT
ð34Þ

where ~xL is the linear frequency. By solving Eq. (34), one

can achieve the linear frequencies of the GPL-RP

nanocomposite plate and related mode shapes. By choosing

the first m mode shapes, the solution of Eq. (34) can be

expressed as follows:

X ¼ Uq ð35Þ

where the reduced unknown generalized displacement

vector and a sparse matrix are specified by q and U,
respectively, and can be written as

qT5mð Þ�1 ¼ q 1ð Þ
u1
; q 2ð Þ

u1
; . . .; q mð Þ

u1
; q 1ð Þ

u2
; q 2ð Þ

u2
; . . .; q mð Þ

u2
;

h

q 1ð Þ
w ; q 2ð Þ

w ; . . .; q mð Þ
w ; q

1ð Þ
w1
; q

2ð Þ
w1
; . . .; q

mð Þ
w1

; q
1ð Þ
w2
; q

2ð Þ
w2
; . . .; q

mð Þ
w2

iT
;

ð36aÞ

U ¼

Uu1 0 0 0 0
0 Uu2 0 0 0
0 0 Uw 0 0
0 0 0 Uw1

0
0 0 0 0 Uw2

2
66664

3
77775; ð36bÞ

in which

Uu1 ¼ ~u
ð1Þ
1NM�1

; . . .; ~u
ðmÞ
1NM�1

h i
;Uu2 ¼ ~u

ð1Þ
2NM�1

; . . .; ~u
ðmÞ
2NM�1

h i
;

Uw ¼ ~w
1ð Þ
NM�1; . . .; ~w

mð Þ
NM�1

h i
;

Uw1
¼ ~w

ð1Þ
1NM�1

; . . .; ~w
ðmÞ
1NM�1

h i
;Uw2

¼ ~w
ð1Þ
2NM�1

; . . .; ~w
ðmÞ
2NM�1

h i
:

ð37Þ

The matrix U including the first m mode shapes can be

regarded as the Galerkin basis functions. By substituting

relation (35) into (32), one can obtain the residual vector as

follows:

R ¼ MU€qþKUqþKnl Uqð Þ ð38Þ

According to the numerical-based Galerkin technique, one

can define a matrix operator as the following form to

multiply each equation by the associated mode shape and

then integrate over the space domain

Gm�5NM ¼ UT

S1 � S2 0 0 0 0

0 S1 � S2 0 0 0

0 0 S1 � S2 0 0

0 0 0 S1 � S2 0

0 0 0 0 S1 � S2

2
66664

3
77775;

ð39Þ
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where S1 and S2 represent the integral matrix operators

defined in ‘‘Appendix 1’’. Equation (39) is multiplied by

(38), which gives the following relation:

~M€qþ ~Kqþ ~Knl qð Þ ¼ 0 ð40Þ

in which ~M and ~K signify the reduced mass and stiffness

matrices, respectively, and

~M ¼ GMU; ~K ¼ GKU; ~Knl qð Þ ¼ GKnl Uqð Þ; ð41Þ

Equation (41) represents the Duffing-type equation.

Now, after applying s ¼ t=T and ~xNL ¼ 2p=T ( ~xNL

denotes the nonlinear frequency) and selecting the discrete

points in the time domain

si ¼
i

Nt

; 0\si � 1; i ¼ 1; 2; . . .;Nt ¼ 2k ð42Þ

in which Nt represents the number of discrete points, the time

periodic discretization approach (Shojaei et al. 2014; Ansari

et al. 2014b) can be employed to achieve the discretized form

of Eq. (40), which can be expressed as follows:

xNL

2p

� �2
~MQD

2ð ÞT
s þ ~KQþ ~Knl Qð Þ ¼ 0 ð43Þ

where D 2ð Þ
s signifies the time differentiation matrix operator

defined as follows:

b11 ¼ �N2
t

12
� 1

6

bi;1 ¼
�1ð Þi�2

2 sin2
p i� 1ð Þ

Nt

b1;j ¼
�1ð ÞNt�j

2 sin2
p Nt � jþ 1ð Þ

Nt
biþ1;jþ1 ¼ bi;j

; i; j ¼ 2; 3; 4; . . .;Nt; D
2ð Þ
s ¼ 2pð Þ2 bi;j

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð44Þ

in which D 2ð Þ
s is Teoplitz matrix.Equation (43) can be

written as

~xNL

2p

� �2

D 2ð Þ
s � ~M

� �
þ Is � ~K
� � !

vec Qð Þ þ vec ~Knl Qð Þ
� �

¼ 0

ð45Þ

where Is is an Nt9 Nt identity tensor and vec(Q) indicates

the vectorization of the matrix Q.

Now, using the pseudo-arc length continuation algo-

rithm (Keller 1977) as an efficient approach for approxi-

mating the solution set of a system of nonlinear algebraic

equations, in conjugation with the modified Newton–

Raphson method enables us to solve the set of nonlinear

algebraic Eq. (45) and accordingly achieve the nonlinear

free vibration characteristics of the GPL-RP nanocompos-

ite rectangular plates with various edge conditions via

plotting frequency–response curves.

4 Numerical Results and Discussion

The developed unified nonlinear higher-order plate model

in conjunction with the multistep numerical solution

approach outlined in the previous sections is employed to

study the effect of distribution patterns of weight fraction,

geometries of GPL nanofillers and edge supports on the

nonlinear free vibration characteristics of the GPL-RP

nanocomposite rectangular plates through numerical

examples. To this end, epoxy with Young’s modulus of

EM= 3.0GPa and Poisson’s ratio of VM= 0.34 is considered

as the polymer matrix (Yasmin and Daniel 2004). Unless

otherwise specified, the material properties and geometries

of GPLs are considered as: Young’s modulus of EGPL-

= 1.01TPa, Poisson’s ratio of vGPL = 0.186, length of

aGPL = 2.5 lm, width of bGPL = 1.5 lm and thickness of

hGPL = 1.5 nm, as given in Rafiee et al. (2009), Liu et al.

(2007). Also, unless otherwise indicated, it is assumed that

the total thickness of the GPL-RP nanocomposite rectan-

gular plate is h = 0.045 m and the subsequent numerical

results are computed on the basis of PSDPT. Furthermore,

the total number of layers is considered NL= 10 (Song et al.

2017).

Defining the following nondimensional maximum

amplitude (Non. Dim. Max. Amplitude), i.e., wmax = Wmax/

h and nondimensional linear and nonlinear frequencies

xL;xNLf g ¼ ~xL; ~xNLf ga
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm 1� m2m
� �

=Em

q
( ~xL and ~xNL

are the dimensional linear and nonlinear frequencies,

respectively), the backbone curve indicating the nonlinear-

to-linear frequency ratio versus the maximum nondimen-

sional transverse vibration amplitude is provided.

In order to verify the correctness and accuracy of pre-

sented results predicted by the developed higher-order

shear deformable plate model, the first four fundamental

frequency parameters ~xLh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=Em

p
of GPL-RP

nanocomposite rectangular plate with simply supported

edge conditions achieved by the present model and

numerical solution approach are compared with those

given by Song et al. (2017), as provided in Table 1. Good

agreement can be seen between the present results and

those given by Song et al. (2017) which clearly demon-

strates the reliability of the proposed model and numerical

calculations for the analysis of GPL-RP nanocomposite

rectangular plates.

Figure 3 provides a comparison between the nonlinear

free vibration response of GPL-RP nanocomposite plates

associated with different plate theories. The nonlinear

frequency response of the GPL-RP nanocomposite rect-

angular plate is illustrated as the nonlinear frequency ratio

xNL=xL versus nondimensional maximum (i.e., Non. Dim.

Max.) amplitude curves for various boundary conditions. It

can be seen that the nonlinear-to-linear frequency ratios
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predicted by the higher-order shear deformation plate the-

ories are greater than those predicted by Mindlin plate

theory. It should be remarked that unlike the MPT, in

higher-order shear deformable plate models, the transverse

shear deformation and rotary inertia effects are taken into

formulation without needing the shear correction factor. It

is remarked that in following, the numerical results are

obtained on the basis of PSDPT.

Figure 4 illustrates the influence of GPL weight fraction

on the nonlinear frequency ratio xNL=xL versus nondi-

mensional maximum (i.e., Non. Dim. Max.) amplitude

curves for GPL-RP nanocomposite rectangular plate with

various boundary conditions. Note that the numerical

results in this example are provided for the X-GPLRC

distribution pattern. As displayed, for all considered

boundary conditions, a typical spring hardening behavior

(i.e., increasing the nonlinear frequency ratio with

increasing the maximum vibration amplitude) is exhibited.

An increase in the GPL weight fraction results in higher

linear and nonlinear frequencies but a smaller nonlinear

frequency ratio. Moreover, the increase in GPL weight

fraction leads to weaker hardening behavior. These are due

to the fact that adding more GPLs results in increasing the

stiffness of the GPL-RP nanocomposite rectangular plates

and hence an increase in the values of linear and nonlinear

frequencies and a reduction in the nonlinear frequency ratio

of system happen. Furthermore, it can be seen that the

effect of adding GPLs on the nonlinear frequency ratio is

more pronounced for small GPL weight fractions and it is

negligible for higher values of GPL weight fractions. Also,

the stronger end conditions such as fully clamped boundary

conditions show the lowest typical spring hardening

behavior.

In addition to the GPL weight fraction, the nonlinear

frequency response of GPL-RP nanocomposite plates is

strongly dependent on the GPL distribution pattern.

Graphically illustrated in Fig. 5 is the influence of GPL

distribution pattern on the nonlinear frequency response

curve and natural frequency of GPL-RP nanocomposite

rectangular plates. The results show that the plate with

X-GPLRC distribution pattern has the highest natural fre-

quency, but the lowest nonlinear frequency ratio among

various GPL distribution patterns. In contrast, the plates

made of pure epoxy and O-GPLRC distribution pattern

have the lowest linear natural frequency and the highest

nonlinear frequency ratios, respectively. Moreover, the

results confirm that the nonlinear frequency ratios of plates

made of pure epoxy and U-GPLRC and A-GPLRC distri-

bution patterns are the same. According to the provided

results, it can be concluded that more distribution of GPL

nanofillers near the upper and bottom surfaces of GPL-RC

nanocomposite plate results in the bending resistance of

system being more intense and consequently increasing the

total bending stiffness and natural frequencies and

decreasing the typical spring hardening behavior.

The effect of length-to-thickness ratio of GPLs nano-

fillers on the nonlinear free vibration response curve and

natural frequency of GPL-RP nanocomposite rectangular

plates with different boundary conditions is studied in

Fig. 6. The X-GPLRC distribution pattern is considered in

the numerical computations. Moreover, the thickness of

GPLs is assumed to be constant. It can be seen that a rise in

the length-to-thickness ratio of GPLs leads to the consid-

erable increase in natural frequency and decreasing the

nonlinear frequency ratio of system. In fact, because of

intensifying the bending rigidity and strength of GPL-RP

nanocomposite rectangular plates, the hardening spring

behavior of system decreases when the length-to-thickness

ratio of GPLs nanofillers increases. It is to be noted that

this behavior may be due to the better load transforming

from the matrix to the GPLs with the reinforcement of

polymer matrix by the GPLs with larger length-to-

Table 1 Comparison study of frequency parameters of GPL-RP nanocomposite plates with various GPL distribution patterns

a=h ¼ b=h ¼ 10;wGPL ¼ 0:1%ð Þ

Mode GPL distribution pattern

U-GPLRC O-GPLRC X-GPLRC Pure epoxy

Present Ref. Song et al.

(2017)

Present Ref. Song et al.

(2017)

Present Ref. Song et al.

(2017)

Present Ref. Song et al.

(2017)

1 0.121556 0.1216 0.097809 0.1020 0.136945 0.1378 0.057963 0.0584

2 0.289353 0.2895 0.236834 0.2456 0.323159 0.3249 0.138998 0.1391

3 0.443258 0.4436 0.367961 0.3796 0.485594 0.4939 0.213139 0.2132

4 0.539748 0.5400 0.451570 0.4645 0.584758 0.5984 0.258024 0.2595
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Fig. 3 Nonlinear free vibration response curve of GPL-RP nanocom-

posite plates with X-GPLRC distribution pattern corresponding to

various plate theories a=h ¼ b=h ¼ 10;wGPL ¼ 0:3%ð Þ

Fig. 4 Nonlinear free vibration response curve of GPL-RP nanocom-

posite plates with various GPL weight fractions and boundary

conditions a=h ¼ b=h ¼ 10ð Þ
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Fig. 5 Nonlinear free vibration response curve of GPL-RP nanocom-

posite plates with various GPL distribution patterns

a=h ¼ b=h ¼ 10;wGPL ¼ 0:2%ð Þ

Fig. 6 Nonlinear free vibration response curve of GPL-RP nanocom-

posite plates with various length-to-thickness ratio of GPL nanofillers

aGPL=hGPLð Þ a=h ¼ b=h ¼ 10;wGPL ¼ 0:3%ð Þ
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thickness ratios. Also, it can be found that this reduction in

the typical spring hardening behavior is more considerable

for the smaller length-to-thickness ratios of GPLs.

Figure 7 presents the effect of length-to-width ratio of

GPL nanofillers on the nonlinear free vibration curve and

natural frequency of GPL-RP nanocomposite rectangular

plates with X-GPLRC distribution pattern. The width of

GPLs is assumed to be constant. Although the increase in

length-to-width ratio of GPLs has a negligible effect on the

nonlinear frequency ratio and typical spring hardening

behavior of GPL-RP nanocomposite plates, for a given

amount of GPLs, due to increasing the surface contact area

between the polymer matrix and GPLs nanofillers and

consequently supplying better load transfer, it results in

increasing the structural stiffness. Therefore, the linear and

nonlinear frequencies of GPL-RP nanocomposite plates

increase with increasing the length-to-width ratio of GPL

nanofillers. It can be seen that increasing the length-to-

width ratio of GPLs results in decreasing the maximum

deflection and subsequently increasing the hardening-type

behavior. It indicates that the total stiffness of GPL-RP

nanocomposite plates increases when the length-to-thick-

ness ratio of GPLs increases.

5 Concluding Remarks

Nonlinear free vibration of thick and moderately thick

GPL-RP nanocomposite rectangular plates with various

edge supports was investigated by a multistep numerical

solution approach. The modified Halpin–Tsai model and

rule of mixture were used to estimate the effective material

properties of GPL-RP nanocomposites with four distribu-

tion patterns of graphene nanoplatelet nanofillers across the

plate thickness. Furthermore, by selecting a generalized

displacement field, a unified nonlinear mathematical for-

mulation was derived using Hamilton’s principle in con-

junction with von Kármán geometric nonlinearity. The

proposed unified nonlinear plate model has the capability

of being reduced to that on the basis of Mindlin, Reddy,

parabolic, trigonometric and exponential shear deformation

plate theories. Solving the nonlinear vibration problem was

performed using a multistep numerical solution method. In

this regard, after discretization process using the GDQ

method, a reduced form of Duffing-type equation was

achieved by applying the numerical-based Galerkin

method. Then, TPD scheme and pseudo-arc length con-

tinuation algorithm were utilized to obtain the backbone

curve of GPL-RP nanocomposite plates as the nonlinear

frequency ratio versus the maximum vibration amplitude.

A detailed parametric study was carried out to examine the

effects of GPL distribution pattern, weight fraction,

geometry of GPL nanofillers, length-to-thickness and

boundary constraints on nonlinear vibration of the GPL-RP

nanocomposite rectangular plates.

The nonlinear vibration analysis of higher-order shear

deformable GPL-RP nanocomposite rectangular plates

revealed:

(a) Due to increasing the stiffness of GPL-RP nanocom-

posite plates, adding further GPLs into polymer

results in increasing linear and nonlinear frequencies

and decreasing the typical spring hardening behavior

of system. However, the effect of adding GPLs on

Fig. 7 Nonlinear free vibration response curve of GPL-RP nanocom-

posite plates with various length-to-width ratio of GPL nanofillers

aGPL=wGPLð Þ a=h ¼ b=h ¼ 10;wGPL=hGPL ¼ 50;wGPL ¼ 0:3%ð Þ
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the nonlinear frequency ratio is more pronounced for

small GPL weight fractions.

(b) Distribution of GPL nanofillers near the upper and

bottom surfaces of GPL-RC nanocomposite plate

leads to further intensifying the bending resistance of

plate and consequently increasing the total bending

stiffness and natural frequencies and decreasing the

typical spring hardening behavior.

(c) Due to better load transformation capability to form

the matrix to GPLs, the hardening spring behavior of

nanocomposite plate decreases with increasing the

length-to-thickness ratio of GPLs nanofillers. How-

ever, this reduction in the typical spring hardening

behavior is more pronounced for the smaller length-

to-thickness ratios of GPLs.

(d) The effect of length-to-width ratio of GPL nanofil-

lers on the nonlinear frequency ratio of nanocom-

posite plate is negligible. However, increasing the

length-to-width ratio of GPL nanofillers increases

the linear and nonlinear frequencies.

Appendix 1

Definition If A is an m-by-n matrix and B is a p-by-q

matrix, the Kronecker product A� B is an mp-by-nq block

matrix and defined as

A� B ¼
a11B � � � a1nB

..

. . .
. ..

.

am1B � � � amnB

2
64

3
75
mp�nq

(b) Integral Matrix Operators

ZxN
x1

f xð Þdx ¼
XN�1

r¼0

~X
rð Þ
D rð Þ

x

 !
F ¼ SxF; Sx ¼ Sx½ �1�N

where D rð Þ
x denotes the GDQ differential operator, and

~X
rð Þ ¼ x2 � x1ð Þrþ1

2rþ1 r þ 1ð Þ! ; . . .;
xiþ1 � xið Þrþ1� xi�1 � xið Þrþ1

2rþ1 r þ 1ð Þ! ;

"

. . .;� xN�1 � xNð Þrþ1

2rþ1 r þ 1ð Þ!

#
;

Appendix 2

The discretized components of Kij, Mij and Knl Xð Þ are as

K11 ¼ A11Ix2 � D 2ð Þ
x1

þ A66D
2ð Þ
x2

� Ix1 ;

K12 ¼ A12 þ A66ð ÞD 1ð Þ
x2

� D 1ð Þ
x1
;

K13 ¼ B11Ix2 � D 3ð Þ
x1

þ B12 þ 2B66ð ÞD 2ð Þ
x2

� D 1ð Þ
x1
;

K14 ¼ C11Ix2 � D 2ð Þ
x1

þ C66D
2ð Þ
x2

� Ix1 ;

K15 ¼ C12 þ C66ð ÞD 1ð Þ
x2

� D 1ð Þ
x1
;

K21 ¼ A12 þ A66ð ÞD 1ð Þ
x2

� D 1ð Þ
x1
;

K22 ¼ A22D
2ð Þ
x2

� Ix1 þ A66Ix2 � D 2ð Þ
x1
;

K23 ¼ B12 þ 2B66ð ÞD 1ð Þ
x2

� D 2ð Þ
x1

þ B22D
3ð Þ
x2

� Ix1 ;

K24 ¼ C12 þ C66ð ÞD 1ð Þ
x2

� D 1ð Þ
x1
;

K25 ¼ C22D
2ð Þ
x2

� Ix1 þ C66Ix2 � D 2ð Þ
x1
;

K31 ¼ �B11Ix2 � D 3ð Þ
x1

� 2B66 þ B12ð ÞD 2ð Þ
x2

� D 1ð Þ
x1
;

K32 ¼ �B22D
3ð Þ
x2

� Ix1 � B12 þ 2B66ð ÞD 1ð Þ
x2

� D 2ð Þ
x1
;

K33 ¼ A55Ix2 � D 2ð Þ
x1

þ A44D
2ð Þ
x2

� Ix1 � D11Ix2 � D 4ð Þ
x1

� 2 D12 þ 2D66ð ÞD 2ð Þ
x2

� D 2ð Þ
x1

� D22D
4ð Þ
x2

� Ix1 ;

K34 ¼ A55Ix2 � D 1ð Þ
x1

þ F11Ix2 � D 3ð Þ
x1

þ F12 þ 2F66ð ÞD 2ð Þ
x2

� D 1ð Þ
x1
;

K35 ¼ A44D
1ð Þ
x2

� Ix1 þ F12 þ 2F66ð ÞD 1ð Þ
x2

� D 2ð Þ
x1

þ F22D
3ð Þ
x2

� Ix1 ;

K41 ¼ C11Ix2 � D 2ð Þ
x1

þ C66D
2ð Þ
x2

� Ix1K42 ¼ C12 þ C66ð ÞD 1ð Þ
x2

� D 1ð Þ
x1
;

K43 ¼ �A55Ix2 � D 1ð Þ
x1

þ F11Ix2 � D 3ð Þ
x1

þ F12 þ 2F66ð ÞD 2ð Þ
x2

� D 1ð Þ
x1
;

K44 ¼ H11Ix2 � D 2ð Þ
x1

� A55Ix2 � Ix1 þ H66D
2ð Þ
x2

� Ix1 ;

K45 ¼ H12 þ H66ð ÞD 1ð Þ
x2

� D 1ð Þ
x1
;

K51 ¼ C12 þ C66ð ÞD 1ð Þ
x2

� D 1ð Þ
x1
;K52 ¼ C22D

2ð Þ
x2

� Ix1 þ C66Ix2 � D 2ð Þ
x1
;

K53 ¼ �A44D
1ð Þ
x2

� Ix1 þ F12 þ 2F66ð ÞD 1ð Þ
x2

� D 2ð Þ
x1

þ F22D
3ð Þ
x2

� Ix1 ;

K54 ¼ H12 þ H66ð ÞD 1ð Þ
x2

� D 1ð Þ
x1
;K55 ¼ H22D

2ð Þ
x2

� Ix1

þ H66Ix2 � D 2ð Þ
x1

� A44Ix2 � Ix1 :

ð46Þ

M11 ¼ M22 ¼ I0Ix2 � Ix1 ;M33 ¼ I0Ix2 � Ix1

� I4 Ix2 � D 2ð Þ
x1

þ D 2ð Þ
x2

� Ix1

� �
;

M44 ¼ M55 ¼ I5Ix2 � Ix1 :M14 ¼ M41 ¼ M25 ¼ M52 ¼ I2Ix2

� Ix1 ;M13 ¼ �M31 ¼ I1Ix2 � D 1ð Þ
x1
;

M23 ¼ �M32 ¼ I1D
1ð Þ
x2

� Ix1 ;M34 ¼ �M43 ¼ �I3Ix2

� D 1ð Þ
x1
;M35 ¼ �M53 ¼ �I3D

1ð Þ
x2

� Ix1 ;

ð47Þ

Also, one can be written the components of the nonlinear

stiffness vector as follows
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Ku1 Xð Þ ¼ A11 Ix2 � D 1ð Þ
x1

� �
w

� �

 Ix2 � D 2ð Þ

x1

� �
w

� �

þ A12 þ A66ð Þ D 1ð Þ
x2

� Ix1

� �
w

� �

 D 1ð Þ

x2
� D 1ð Þ

x1

� �
w

� �

þ A66 Ix2 � D 1ð Þ
x1

� �
w

� �

 Ix2 � D 2ð Þ

x1

� �
w

� �
;

Ku2 Xð Þ ¼ A22 D 1ð Þ
x2

� Ix1

� �
w

� �

 D 2ð Þ

x2
� Ix1

� �
w

� �

þ A12 þ A66ð Þ Ix2 � D 1ð Þ
x1

� �
w

� �

 D 1ð Þ

x2
� D 1ð Þ

x1

� �
w

� �

þ A66 Ix2 � D 2ð Þ
x1

� �
w

� �

 D 1ð Þ

x2
� Ix1

� �
w

� �
;

Kw Xð Þ ¼ Ix2 � D 1ð Þ
x1

� �
N11 
 Ix2 � D 1ð Þ

x1

� �
w

� �� �

þ D 1ð Þ
x2

� Ix1

� �
N22 
 D 1ð Þ

x2
� Ix1

� �
w

� �� �

þ Ix2 � D 1ð Þ
x1

� �
N12 
 D 1ð Þ

x2
� Ix1

� �
w

� �� �

þ D 1ð Þ
x2

� Ix1

� �
N12 
 Ix2 � D 1ð Þ

x1

� �
w

� �� �

� B11 Ix2 � D 2ð Þ
x1

� �
w

� �

 Ix2 � D 2ð Þ

x1

� �
w

� ��

þ Ix2 � D 1ð Þ
x1

� �
w

� �

 Ix2 � D 3ð Þ

x1

� �
w

� ��

� B12 þ 2B66ð Þ D 1ð Þ
x2

� D 1ð Þ
x1

� �
w

� �

 D 1ð Þ

x2
� D 1ð Þ

x1

� �
w

� ��

þ D 1ð Þ
x2

� Ix1

� �
w

� �

 D 1ð Þ

x2
� D 2ð Þ

x1

� �
w

� ��

� B66 Ix2 � D 2ð Þ
x1

� �
w

� �

 D 2ð Þ

x2
� Ix1

� �
w

� ��

þ Ix2 � D 1ð Þ
x1

� �
w

� �

 D 2ð Þ

x2
� D 1ð Þ

x1

� �
w

� ��

� B12 D 1ð Þ
x2

� D 1ð Þ
x1

� �
w

� �

 D 1ð Þ

x2
� D 1ð Þ

x1

� �
w

� ��

þ Ix2 � D 1ð Þ
x1

� �
w

� �

 D 2ð Þ

x2
� D 1ð Þ

x1

� �
w

� ��

� B22 D 2ð Þ
x2

� Ix1

� �
w

� �

 D 2ð Þ

x2
� Ix1

� �
w

� ��

þ D 1ð Þ
x2

� Ix1

� �
w

� �

 D 3ð Þ

x2
� Ix1

� �
w

� ��
;

Kw1
Xð Þ ¼ C11 Ix2 � D 1ð Þ

x1

� �
w

� �

 Ix2 � D 2ð Þ

x1

� �
w

� �

þ C12 þ C66ð Þ D 1ð Þ
x2

� Ix1

� �
w

� �

 D 1ð Þ

x2
� D 1ð Þ

x1

� �
w

� �

þ C66 Ix2 � D 1ð Þ
x1

� �
w

� �

 Ix2 � D 2ð Þ

x1

� �
w

� �
;

Kw2
Xð Þ ¼ C22 D 1ð Þ

x2
� Ix1

� �
w

� �

 D 2ð Þ

x2
� Ix1

� �
w

� �

þ C12 þ C66ð Þ Ix2 � D 1ð Þ
x1

� �
w

� �

 D 1ð Þ

x2
� D 1ð Þ

x1

� �
w

� �

þ C66 Ix2 � D 2ð Þ
x1

� �
w

� �

 D 1ð Þ

x2
� Ix1

� �
w

� �
:

ð48Þ

where

N11 ¼ A11 Ix2 � D 1ð Þ
x1

� �
u1 þ

1

2
Ix2 � D 1ð Þ

x1

� �
w

� �

 Ix2 � D 1ð Þ

x1

� �
w

� �� 


þ A12 D 1ð Þ
x2

� Ix1

� �
u2 þ

1

2
D 1ð Þ

x2
� Ix1

� �
w

� �

 D 1ð Þ

x2
� Ix1

� �
w

� �� 


þ C11 Ix2 � D 1ð Þ
x1

� �
w1

þ C12 D 1ð Þ
x2

� Ix1

� �
w2 þ B11 Ix2 � D 2ð Þ

x1

� �
wþ B22 D 2ð Þ

x2
� Ix1

� �
w;

N22 ¼ A22 D 1ð Þ
x2

� Ix1

� �
u2 þ

1

2
D 1ð Þ

x2
� Ix1

� �
w

� �

 D 1ð Þ

x2
� Ix1

� �
w

� �� 


þ A12 Ix2 � D 1ð Þ
x1

� �
u1 þ

1

2
Ix2 � D 1ð Þ

x1

� �
w

� �

 Ix2 � D 1ð Þ

x1

� �
w

� �� 


þ C22 D 1ð Þ
x2

� Ix1

� �
w2

þ C12 Ix2 � D 1ð Þ
x1

� �
w1 þ B22 D 2ð Þ

x2
� Ix1

� �
wþ B12 Ix2 � D 2ð Þ

x1

� �
w;

N12 ¼ A66 D 1ð Þ
x2

� Ix1

� �
u1 þ Ix2 � D 1ð Þ

x1

� �
u2

h

þ Ix2 � D 1ð Þ
x1

� �
w

� �

 D 1ð Þ

x2
� Ix1

� �
w

� �i

þ C66 D 1ð Þ
x2

� Ix1

� �
w1 þ Ix2 � D 1ð Þ

x1

� �
w2

h i

þ B66 D 1ð Þ
x2

� Ix1

� �
w1 þ Ix2 � D 1ð Þ

x1

� �
w2 þ 2 D 1ð Þ

x2
� D 1ð Þ

x1

� �
w

� �
:

ð49Þ

where Ix1 and Ix2 are, respectively, N 9 N and

M 9 M identity tensors and � indicates the Hadamard

product.
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