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Abstract
In this paper, two types of helical gear pairs are defined based on the relationship between the transverse contact ratio and

overlap contact ratio. An improved analytical model using the slicing principle is proposed for the calculation of the single

mesh stiffness of helical gears. The main improvement in this model against traditional models, that assume no coupling

effects between neighbouring sliced tooth pieces, is that a parabola-like weighting factor distribution along the tooth face

width is assigned on the sliced tooth pieces for the consideration of the coupling effect. This allows each tooth piece to be

associated with a weighting factor and therefore have a different influence on the total mesh stiffness. The calculation

results for the single mesh stiffness of two types of helical gear pairs obtained from various methods are compared and

discussed. It was found that, compared with the traditional analytical method, the proposed analytical method yields more

accurate results in terms of the shape of the single mesh stiffness curve and maximum value of the single mesh stiffness,

especially for helical gears with a wide face and large helix angle.
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1 Introduction

The fluctuation of the time-varying mesh stiffness is one of

the main excitations leading to vibration and noise prob-

lems of gear transmission systems (Kiekbusch et al. 2011;

Chang et al. 2015). Localized tooth defects may also affect

gear dynamic responses by reducing tooth flexibility and

gear mesh stiffness (Chen and Shao 2011). Therefore, the

determination of gear mesh stiffness should be one of the

priority issues in gear dynamic analysis. Many researchers

have considered gear mesh stiffness as an important indi-

cation of the conditions of tooth engagement and used it to

reflect the working conditions of gear transmission systems

in the presences of some localized defects (Wan et al.

2015; Yu et al. 2015; Han et al. 2017; Liu et al. 2012, 2017;

Liu and Shao 2017a, b; Ma et al. 2014).

The calculation methodologies for the mesh stiffness of

spur gears are abundant in the literature, which can be

summarized as finite element (FE) methods (Kiekbusch

et al. 2011; Ma et al. 2016a, 2016b; Vijayakar 1991),

analytical methods based on the potential energy principle

(Wan et al. 2015; Yu et al. 2015; Han et al. 2017), FE-

analytical hybrid methods (Chang et al. 2015; Vijayakar

1991), empirical formula (Umezawa and Suzuki 1985;

Umezawa et al. 1986; Cai 1995) and approximations based

on ISO 6336-1 standard (Velex 2012; ISO 6336-1 2006).

The literature also reports a few investigations using

experimental method to calculate the gear mesh stiffness.

However, these experimental studies are rare due to the

difficulty in correctly measuring the tooth deformation (Ma

et al. 2015). Munro et al. (2001) have tried using high-

resolution (360 000 line per rotation) encoders to obtain the

mesh stiffness of a single spur gear tooth pair through the

measurement of the gear transmission error. However, the

accuracies were limited. One of the challenges in the

measurement was that the large force needed to deflect the

teeth by a significant amount will also deflect other com-

ponents (shafts, bearings) in the test rig, which will cause

non-tooth deflections in the measurement. Some other

indirect measurement techniques, such as the modal anal-

ysis on the vibration signal (Yesilyurt et al. 2003) and the
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digital photoelasticity analysis (Pandya and Parey 2013),

were also reported. To the authors’ knowledge, the appli-

cations of these experimental techniques still face signifi-

cant challenges in accurately measuring the gear tooth

stiffness. Thus, FE methods and analytical methods are still

the two main tools to accurately calculate the gear mesh

stiffness up till now.

Although the calculation methodologies for the mesh

stiffness of spur gears are abundant in the literature, studies

about the mesh stiffness calculation of helical gears are

comparatively limited. FE methods are still the primary

tool used to yield the mesh stiffness of helical gears

(Hedlund and Lehtovaara 2008), which requires a three-

dimensional (3D) helical gear model with refined nonlinear

contact elements near contact regions, making the calcu-

lation time-consuming. ISO 6336-1 (2006) provides

equivalent formula to transform the mesh stiffness values

of the spur gear case into those of helical gear case.

However, this standard only provides the maximum value

of the single mesh stiffness (mesh stiffness of a single tooth

pair) and mean value of the gear mesh stiffness. Currently,

analytical methods based on the potential energy principle

and the ‘‘thin-slice’’ approach (or slicing principle) are

becoming popular. The basic idea is that a cylindrical gear

can be considered as a series of staggered infinitesimal

(thin) spur gears along the face width direction and the

contact line between a meshing tooth surface is sliced

accordingly. The mesh stiffness of the cylindrical gear pair

can, thus, be obtained by integrating the individual stiffness

of each staggered spur gear pair along the face width

direction. This methodology has been adopted by Chen and

Shao (2011, 2013), Chen et al. (2016), Wan et al. (2015),

Yu et al. (2015), Han et al. (2017) and Wang et al. (2014),

to evaluate the mesh stiffness of helical gears or spur gears

with friction, misalignment, tooth profile error and local-

ized crack defects. Recently, Feng et al. (2017) proposed

an improved analytical method for calculating the mesh

stiffness of helical gears based on the slicing principle by

considering the fillet-foundation correction effect and

nonlinear Hertzian contact effect, which were first intro-

duced by Ma et al. (2016a, b) for a more accurate mesh

stiffness calculation of spur gears with tip relief. In almost

all the above-reviewed work, the tooth fillet-foundation

stiffness is derived based on the formula proposed by

Sainsot and Velex (2004). Chen et al. (2017) recently

proposed a more general method to calculate the tooth

fillet-foundation stiffness even in the presence of tooth root

crack.

The first limitation in the current analytical method-

ologies based on the slicing principle for the mesh stiffness

calculation of helical gears is that most research work

considers only one type of helical gear pair, i.e. the helical

gear pair with a transverse contact ratio larger than its

overlap ratio (Type I) so that the maximum effective

contact face width is always the tooth face width for

whatever the helix angle. However, for the helical gear pair

with a transverse contact ratio smaller than its overlap ratio

(Type II), its maximum effective contact face width will be

smaller than the tooth face width, and will be reduced for

increased helix angle. More importantly, the convective

effect (or elastic coupling effect) between sliced tooth

pieces can be influential for this type of gear.

Besides, there is confusion and inconsistency in evalu-

ating the total mesh stiffness based on the slicing principle.

One strategy yields the total mesh stiffness by integrating

the mesh stiffness of the staggered spur gear pair along the

face width (Feng et al. 2017; Ma et al. 2016a, b), and the

other is by combining individual stiffness components

(tooth beam stiffness, tooth fillet-foundation stiffness and

tooth contact stiffness), which are obtained through inte-

grating corresponding stiffness components of the stag-

gered spur pair along the face width (Chen and Shao 2011;

Wan et al. 2015; Yu et al. 2015; Han et al. 2017; Wang

et al. 2014). Comparisons and discussions about these two

strategies have not been made in the literature so far.

Finally, in most of the existing analytical methodologies

using the slicing principle, the sliced tooth pieces are

considered to be independent from each other, meaning

that the inter-tooth elastic couplings (or convective effects)

are neglected. This assumption is valid for Type I helical

gear pairs (normally narrow-faced, small helix angle) as

such effect is normally negligible (Wang et al. 2014).

However, for Type II helical gear pairs (normally wide

faced, large helix angle), Ajmi and Velex (2005), and

Umezawa (1973) have shown such coupling can be influ-

ential to the load distribution along the contact line. This

brings a challenge to the traditional analytical methodolo-

gies using the slicing principle, which assumes an even

load distribution along the contact line when calculating

the mesh stiffness for each sliced thin tooth piece.

In this paper, two types of the helical gear pairs are first

defined based on the relationship between the transverse

contact ratio and overlap contact ratio. The two integration

strategies used to evaluate the total mesh stiffness based on

the slicing principle are mathematically expressed and

compared. An improved analytical model based on the

slicing principle is introduced for the consideration of the

convective effects among neighbouring tooth pieces. The

calculation results for the single mesh stiffness of two types

of helical gear pairs obtained from various methods are

compared and discussed, which validates the accuracy of

the proposed analytical model compared with the tradi-

tional analytical model, especially for the helical gears with

wide face and large helix angle.
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2 Mesh Stiffness Calculation

2.1 Analytical Methods

According to Weber (1949), three contributing factors need

to be considered when analytically calculating the tooth

deformation (or deflection) in the line of action (LOA) at

the contact point j subjected to a certain mesh force F: (1)

the local deformation caused by the Hertzian contact; (2)

the deflection caused by the tooth beam itself; and (3) the

deflection caused by the flexibility of the foundation (gear

body).

2.1.1 For Spur Gear Tooth Pair

The Hertzian contact deformation dh between the meshing

tooth surfaces of a mating tooth pair is generally nonlinear.

Some researchers (Feng et al. 2017; Ma et al.

2016a, 2016b) used the following nonlinear formula for the

evaluation of Hertzian contact stiffness kh of the ith spur

tooth pair:

kih ¼
E0:9
e L0:8i F0:1

i

1:275
ð1Þ

where L is the length of contact line between the meshing

tooth surfaces of the ith tooth pair, Fi is the meshing force

of the ith tooth pair, which can be obtained by:

Fi ¼ F � LSRi ð2Þ

where F is the total mesh force of the spur gear pair, and

LSRi is the load sharing ratio of the ith tooth pair. Ee in

Eq. (1) is the effective elastic modulus. According to (Feng

et al. 2017), its value can be expressed as:

Ee ¼ E= 1� m2ð Þ R� 5

E R\5

�
ð3Þ

where E and m are the Young’s modulus and the Poisson

ratio of the gear material, respectively. R = 2L/(pm)
determines whether the gear teeth are wide (R C 5) or

narrow (R\ 5), and m is the gear module.

For the tooth beam stiffness, the potential energy

method is usually used in the literature. The key idea of this

method is to divide the total energy stored in the tooth

beam subjected to a mesh force into three parts: bending

energy, shear energy and axial compressive energy.

Therefore, the tooth beam stiffness kt consists of three

parts: bending stiffness kb, shear stiffness ks and com-

pressive stiffness ka:

kt ¼
1

1
kb
þ 1

ks
þ 1

ka

ð4Þ

where

1

kb
¼

Z l

0

l� yð Þ cos ap � h sin ap
� �2

EIy
dy;

1

ks
¼

Z l

0

1:2 cos2 ap
GAy

dy;
1

ka
¼

Z l

0

sin2 ap
EAy

dy;

ð5Þ

where l, h, ap and y are shown in Fig. 1a. G is shear

modulus of the gear material, and:

Iy ¼
1

12
2hy
� �3

L; Ay ¼ 2hy
� �

L ð6Þ

are the effective area moment of inertia and area of the

integral section, respectively, as shown in Fig. 1b.

According to the geometry of the involute profile, d and h

are related to the mesh angle ap by:

l ¼ Rb cos ap þ ap þ a2
� �

� sin ap � cos a2
� �

;
h ¼ Rb ap þ a2

� �
� cos ap � sin ap

� �
;

ð7Þ

where Rb is the base radius, and a2 is the half base angle as
shown in Fig. 1b. Detailed discussions can be found in

(Chen and Shao 2011; Wan et al. 2015; Yu et al. 2015).

The tooth fillet-foundation stiffness kf can be acquired

based on the work of Sainsot and Velex (2004):

1

kf
¼ cos2 ap

LE
L�

uf

sf

� �2

þM� uf

sf

� �
þ P� 1þ Q� � tan2 ap

� �( )

ð8Þ

where uf and sf are shown in figure. The coefficients L*,

M*, P* and Q* can be obtained by polynomial functions

proposed by Sainsot and Velex (2004).

Therefore, the equivalent mesh stiffness of the ith tooth

pair in mesh can be expressed as:

ki ¼ 1
1
ki
t;1

þ 1
ki
t;2

þ 1
ki
h

þ 1
ki
f ;1

þ 1
ki
f ;2

ð9Þ

where kt, j
i and kf, j

i denote the tooth beam stiffness and tooth

fillet-foundation stiffness, respectively, and subscript j = 1,

2 represent the driving gear tooth and driven gear tooth of

the ith tooth pair in mesh, respectively.

2.1.2 For Helical Gear Tooth Pair

For helical gear tooth pair, the contact line between the

meshing surfaces of a mating tooth pair inclines by the

helix angle b. Besides, the length of contact line changes

gradually as shown in Fig. 2. The classic ‘‘thin-slice’’

approach (slicing principle) is usually applied. This is

achieved by slicing the helical gear into a series of thin

gear pieces with equal width dz along the tooth face width

direction (Z-direction as shown in Fig. 2), so that each thin

gear piece can be treated as spur gear. Therefore, the
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stiffness of the ith helical tooth pair Ki can be calculated by

integration along the face width (Wan et al. 2015):

Ki ¼
ZW

0

ki zð Þ ð10Þ

where ki (z) is the stiffness of the spur tooth pair piece at

coordinate z. It can be obtained from Eqs. (1)–(9) by

changing the contact length L with dz. W is the face width

of gear meshing. Besides, l, h and ap in Eqs. (1)–(5) are

also z-coordinate dependent, i.e. l(z), h(z) and ap(z) (or lz,
hz, and apz shown in Fig. 3), as these three parameters are

changing for different helical gear tooth thin pieces along

the face width. Besides,

l zð Þ ¼ Rb cos ap zð Þ þ ap zð Þ þ a2
� �

� sin ap zð Þ � cos a2
� �

ð11Þ

h zð Þ ¼ Rb ap zð Þ þ a2
� �

� cos ap zð Þ � sin ap zð Þ
� �

ð12Þ

where ap(z) is assumed as a linear change (Wan et al.

2015):

ap zð Þ ¼ ap1 þ ap2 � ap1
� �

� z

We

ð13Þ

where ap1 and ap2 are the mesh angles of the two tooth

pieces at the two ends of the contact line, as shown in

Fig. 2. The effective contact face widthWe is defined as the

length of line along the face width direction where the

contact happens (as illustrated in Fig. 4). Depending on the

relationship between the transverse contact ratio ea and

overlap contact ratio eb, a helical gear pair can be classified

as two types: Type I where the transverse contact ratio ea is
larger than the overlap contact ratio eb, and Type II where

the transverse contact ratio ea is smaller than the overlap

contact ratio eb, as described in Fig. 3.

For these two types of helical gear pair, the variations of

the We are different as the contact line moves along the

plane of action as shown in Fig. 4. It can be expressed as:

� For Type I Helical gear pair (ea[ eb)

(a) (b)

Fig. 1 Model of spur gear tooth

a geometric parameters for gear

body, b geometric parameters

for single tooth
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Fig. 2 Helical gear tooth model
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Fig. 3 Classification of helical gear pairs
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We ¼
l cot bb l\Lb
W Lb � l� La
W � l� Lað Þ cot bb La\l

8<
:

ð14Þ

` For Type II Helical gear pair (ea\ eb)

We ¼
l cot bb l\Lb
La cot bb La � l� Lb
W � l� Lað Þ cot bb Lb\l

8<
:

ð15Þ

where l is the distance between the mesh point on the back

face and the initial mesh point F0, La is the length of line of

action (LOA) in the transverse plane of helical gear pair,

and Lb is the length of LOA due to the overlap of tooth

action in the axial direction, and:

La ¼ eaPbt; Lb ¼ ebPbt; tan bb ¼ tan b � cos at;
tan at ¼ tan an= cos b; mt ¼ mn= cos b;

ð16Þ

where Pbt is the base pitch in the transverse plane, bb is the
base helix angle, at and an are the transverse and normal

pressure angles, respectively, mt and mn are the transverse

and normal gear modules, respectively.

Based on Eqs. (11)–(15), the stiffness of each thin tooth

piece can be obtained, and the mesh stiffness of the helical

tooth pair can be evaluated through integration along the

face width as shown in Eq. (12).

� Traditional analytical (TA) method

In the traditional analytical method, the helical gear is

considered as a series of independent staggered spur gears

with no elastic coupling among them (Feng et al. 2017; Ma

et al. 2016a, b). The mesh stiffness of the helical gear pair

is evaluated through the integration of the mesh stiffness of

the staggered spur gears along the face width. This strategy

is mathematically expressed as:

ki ¼
XNc
j¼1

ki;j ¼
XNc
j¼1

1
1

k
i;j
t;1

þ 1

k
i;j
t;2

þ 1

k
i;j
h

þ 1

k
i;j
f ;1

þ 1

k
i;j
f ;2

ð17Þ

where Nc is the total number of staggered spur gears. kj
i is

the mesh stiffness of the jth staggered spur tooth pair. k
i;j
t;1

and k
i;j
t;2 are the tooth beam stiffness of the jth staggered

driving gear and driven gear, respectively. k
i;j
f ;1 and k

i;j
f ;2 are

the tooth foundation stiffness of the jth staggered driving

gear and driven gear, respectively. k
i;j
h is the contact stiff-

ness between the jth staggered spur tooth pair. There is a

slight difference in this strategy compared with that used

by Ma et al. (2016a, b), which used Ee = E/(1- l2) to

calculate the contact stiffness kh
i of the staggered spur tooth

pair for a wide-faced helical gear pair. However, since the

staggered spur teeth are naturally narrow, the effective

elastic modulus Ee should always be E no matter if the

helical gear pair considered is wide or narrow.

It should be mentioned that there is another integration

strategy in some literature (Chen and Shao 2011; Wan et al.

2015; Yu et al. 2015; Han et al. 2017; Wang et al. 2014),

where the mesh stiffness of the helical gear pair is evalu-

ated through Eq. (9), and each stiffness component (tooth

beam stiffness, tooth fillet-foundation stiffness and tooth

contact stiffness) is obtained through the integration of that

stiffness component of the spur tooth pieces along the face

width. This strategy is mathematically expressed as:

ki ¼ 1
1
ki
t;1

þ 1
ki
t;2

þ 1
ki
h

þ 1
ki
f ;1

þ 1
ki
f ;2

ð18Þ

where

kit;1 ¼
XNc

j¼1

k
i;j
t;1; kit;2 ¼

XNc

j¼1

k
i;j
t;2; kih ¼

XNc

j¼1

k
i;j
h ;

kif ;1 ¼
XNc

j¼1

k
i;j
f ;1; kif ;2 ¼

XNc

j¼1

k
i;j
f ;2

ð19Þ

Note the difference between these two integration

strategies.

` Improved analytical (IA) method

In the traditional method using the slicing principle, it is

assumed that the effect of elastic couplings (or convective

F0

Driving
Gear

Driven
Gear

Back

Front

F2 F3

B0 B2

W
Pbt Pbt

μ 
Lα Lβ  

We βbL

Z

U
F0

Driving
Gear

Driven
Gear

Back

Front

F2 F3

B0 B2

W

Pbt Pbt

μ
Lα Lβ  

We

βb

L

Z

U

(a)                                 (b)

Fig. 4 Variation of contact line in the plane of action a Type I, b Type II
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effects) among adjacent spur gear pieces after slicing the

helical gear can be neglected. This assumption may be

valid for narrow-faced gears. For wide-faced gears, Ajmi

and Velex (2005) proposed a Pasternak’s elastic foundation

model which is made of the superposition of bending and

shearing elements lying on independent springs (i.e. spur

tooth pieces in the traditional method). The bending and

shearing elements couple the spring stiffnesses and convey

deflections from any loaded point to the neighbouring

points. Based on this model, Ajmi and Velex (2005)

obtained the tooth structural deflection curves of contact

lines across the face width when submitted to a point load

at various positions on the tooth flank. One example is

shown in Fig. 5. It should be noted that the tooth structural

deflection includes components due to the tooth bending,

shearing and tooth foundation effects, which is normally

linear with the point load.

As can be found in Fig. 5, a point load will deflect the

loaded point, as well as the its neighbouring unloaded

points, which demonstrates the convective effect between

neighbouring thin tooth pieces. The deflection curves look

like normal distribution curves. Besides, the peak ampli-

tude when the loaded point is on the tooth edge is larger

than that on the middle of the tooth face width, which is

due to the edge effect (Ajmi and Velex 2005). These

shapes agree coincidentally well with the effect functions

of bending moments along the fillet when a concentrated

load acts on the middle and free edge of a tooth provided

by Umezawa (1973). Ajmi and Velex (2005) also obtained

the tooth contact deflection curves and found that the

contact deflections are far less convective than the struc-

tural ones. Thus, it can be assumed that the contact

deflections are nonlinear, and non-convective compared

with the structural ones. The total tooth deflection is the

combination of the structural deflection and contact

deflection and should still be nonlinear and convective.

In order to quantify these effects on the calculation of

mesh stiffness based on the slicing principle, we assign a

non-uniform weighting distribution on the sliced tooth

pieces along the face width direction, and the stiffness of

each tooth piece is associated with a weighting factor WF

between 0 and 1. The non-uniform weighting distribution

can be approximated by summing all the normal distribu-

tion curves when a point load is applied on each tooth

piece, and normalizing the result within the region between

0 and 1. It should be noted that the peak amplitude of the

normal curve at the tooth edge should be larger than that at

the middle.

Figure 6 shows a simulated summation of all the normal

distribution curves (the blues lines in Fig. 6) based on the

above requirements. It can be found that the resulting

summation line (the red line in Fig. 6) along the tooth face

width resembles a parabolic-like curve with the maximum

value at the middle, and minimum value at the tooth edges.

This means when an uniform-distributed mesh force is

applied along the tooth contact line (equivalent to point

loads applied on tooth pieces with the same amplitude), the

tooth deformation curve along the contact line is parabolic

meaning the deformations at the tooth edges are small

whereas the deformation at the tooth middle is large,

instead of having the same deformations as assumed by the

traditional model without considering the convective

effect. Thus, we assume that the weighting factor distri-

bution along the contact line is also parabolic-like, and the

weighting factor WFj for the jth tooth piece at zj can be

approximated as:

Fig. 5 Tooth structural deflection curves (Ajmi and Velex 2005) Fig. 6 Simulated weighting factor distribution
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WF j ¼ 4 WFmin �WFmaxð Þ
W2

� zj �
W

2

� �2

þWFmax ð20Þ

where WFmin is the minimum weighting factor at the tooth

edge, and WFmax is the maximum weighting factor at the

tooth middle. Therefore, the improved equation for the

calculation of the mesh stiffness of the ith helical tooth pair

is:

ki ¼ CF �
XNc
j¼1

ki;jWFi;j ¼
XNc
j¼1

CF �WFi;j

1

k
i;j
t;1

þ 1

k
i;j
t;2

þ 1

k
i;j
h

þ 1

k
i;j
f ;1

þ 1

k
i;j
f ;2

ð21Þ

where CF is a correction factor slightly larger than 1 in

order to raise the value of mesh stiffness to account for the

decrease in the mesh stiffness caused by the weighting

factor being always smaller than 1. Normally we make

WFmax = 1, and 0 B WFmin B 1, which should be depen-

dent on the helix angle and tooth face width. The higher the

helix angle and the tooth face width, the smaller theWFmin.

The correction factor CF can be approximated by assuming

that the area under the weighting factor distribution curve

is always constant and the same with the area under a

constant line WFj = 1. For instance, the area under a con-

stant line WFj = 1 is:

A ¼ WF j �W ¼ W ð22Þ

where W is the face width. For a parabolic curve described

by Eq. (20) at a given WFmin, the area under the parabolic

curve is:

A0 ¼
ZW

0

WF j � dW ¼ 2

3
þ 1

3
WFmin

� �
�W ð23Þ

where WFj is described by Eq. (20). In order to make the

area under the parabolic curve A0 equal with the A, the

parabolic curve should be raised by a factor of:

CF ¼ A

A0

¼ 1
	

2
3
þ 1

3
WFmin

� � ð24Þ

Comparing Eqs. (17) and (21), it can be concluded that in

the traditional analytical method using the slicing principle,

each tooth piece is considered as being associated with an

equal weighting factor (WFj = 1), and has equal influence

on the total mesh stiffness. In the proposed analytical

method, a parabolic weighting factor distribution is

assigned to the tooth pieces, and the central tooth pieces

have higher influences on the total mesh stiffness, whereas

the tooth pieces at the edges have lower influences.

2.2 ISO Standard

Sometimes, it is interesting to have orders of magnitude of

the approximate values of the mesh stiffness (Velex 2012;

Yu 2017). The ISO 6336-1 standard (2006) defined a single

stiffness, c’, as the maximum stiffness of a cylindrical tooth

pair in single pair contact. For gear made of steel, an

expression for c’ is provided as:

c0 ffi CMCRCB cos b
q

ð25Þ

where CM is the correction factor accounting for the dif-

ference between the measured values and the theoretical

calculated values, CR is the gear blank factor accounting

for the flexibility of gear rims and webs, CB is the basic

rack factor accounting for the deviations of the actual basic

rack profile of the gear from the standard basic rack profile.

Their values can be determined by expressions and graphs

provided by ISO 6336-1 standard (2006). In addition:

q ¼ C1 þ
C2

Zn1
þ C3

Zn2
þ C4x1 þ C5

x1

Zn1
þ C6x2 þ C7

x2

Zn2
þ C8x

2
1 þþC9x

2
2

ð26Þ

where Zni = Zi/(cos
3b), Zi are the number of teeth of the

driving gear (i = 1) and driven gear (i = 2), xi are the

profile shift coefficients on the driving gear and driven

gear. Coefficients C1, …, C9 have been tabulated and are

listed in Table 1.

It should be noted that the mesh stiffness formula

(Eq. (25)) in the ISO standard 6336 stems from Weber’s

analytical formulae (Weber 1949) which were modified to

bring the analytical results into closer agreement with the

experimental results.

It should also be mentioned that the ISO 6336-1 defined

the stiffness as ‘‘The requisite load over 1 mm face width,

directed along the line of action to produce, in line with the

load, the deformation amounting to 1 lm of one or more

pairs of deviation-free teeth in contact’’. Therefore, the unit

of c’ is N/(lm mm). Previous researchers got confused

when transforming the c0 (N/(lm mm)) into the mesh

stiffness ki (N/mm) of a tooth pair. Maatar and Velex

(1996), Ajmi and Velex (2005) and Gu et al. (2015) got the

ki by directly multiplying c’ with the time-varying length of

contact line (L in Fig. 4), whereas Chang et al. (2015), Wan

et al. (2015) and Feng et al. (2017) obtained the maximum

mesh stiffness kmax
i of a single tooth pair by multiplying c’

with the face width (W in Fig. 4), which is valid for Type I

gears, as the maximum mesh stiffness happens when the

contact line is along the whole tooth face width. However,

for Type II gears, only part of the tooth face width is in

contact when the maximum mesh stiffness happens.
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Therefore, the correct multiplying factor is the maximum

of the effective contact face width We:

kimax ¼ c0 �max Weð Þ ð27Þ

For Type I gear, max(We) = W. For Type II gear,

max(We) = Lacosbb.

2.3 FE Method

FE models are the primary tools used to obtain gear mesh

stiffness due to their significant advantage in representing

the crucial tooth contact behaviour (Vijayakar 1991).

Three-dimensional (3D) FE models were built in the

ANSYS Workbench for the helical gear pairs shown in

Table 2. Each gear has only one tooth in the FE models in

order to simulate the single stiffness of a helical tooth pair

during its mesh cycle. The inner hubs of the driven gears

are completely constrained from motion. The inner hubs of

the driving gears are only allowed rotation along its axis. In

addition, the end faces of the driving gear and driven gear

are constrained from motion in the axial direction. The

input torque T1 is applied on the inner hubs of the driving

gears. The contact behaviour between teeth faces is simu-

lated by the contact elements. The high-order tetrahedron

elements with 10 nodes were considered for the FE mod-

elling. The element size in the contact region is signifi-

cantly smaller than the size in the other regions. A

convergence study has been conducted, which justifies that

a 1 mm element size in the tooth contact region is suit-

able to reach accurate results without increasing the com-

putation burden significantly.

Figure 7 shows a 3D FE model for gear pair #2 in

Table 2 with a helix angle of 20�. By adjusting the angular

positions of the gears, the time-varying rotational

deformation h1(t) of the driving gear at each roll angle can

be determined once the gear deformation field is evaluated.

The single mesh stiffness of the tooth pair is then calcu-

lated by:

ki ¼ ðT1=Rb1Þ
Rb1h1

¼ T1

R2
b1h1

ð26Þ

where Rb1 is the base radius of the driving gear.

3 Comparisons and Discussion

In this section, two types of helical gear pairs are used to

compare the mesh stiffness results obtained from the ISO

standard, traditional analytical (TA) method, the improved

analytical (IA) method, FE models and some calculation

results provided in the literature. The main parameters of

the first helical gear pair (narrow-faced) are from (Kubur

et al. 2004), which belong to Type I helical gears defined in

Fig. 4. The main parameters of the second helical gear

pairs (wide faced) are provided by Chang et al. (2015),

which belong to Type II helical gears defined in Fig. 4.

Figure 8 shows the variations of the effective contact

face width We for the two types of helical gear pairs with

different helix angles listed in Table 2. It can be found that

the effective contact face width changes linearly from zero

to maximum, remains at the maximum for a moment, and

then linearly decreases from maximum to zero. The higher

the helix angle, the steeper the linearly increasing and

decreasing slope. For Type I helical gear pairs, the maxi-

mum effective contact face width is the tooth face width,

whereas for Type II helical gear pairs, the maximum

effective contact face width decreases with the increase in

the helix angle.

Table 1 Values of coefficients

in Eq. (24) (ISO 6336-1 2006)
C1 C2 C3 C4 C5 C6 C7 C8 C9

0.04723 0.15551 0.25791 - 0.00635 - 0.11654 - 0.00193 - 0.24188 0.00529 0.00182

Table 2 Parameters of the gear pairs

Gear pair #1 (Kubur et al. 2004) (Type I) Gear pair #2 (Chang et al. 2015) (Type II)

Number of teeth z1/z2 50/50 65/65

Normal module mn (mm) 3 3

Normal pressure angle an (�) 20 20

Helix angle b (�) 10, 15, 20 12, 16, 20, 24

Face width W (mm) 30 60

Inner hole radius ri (mm) 25 50

Young’s modulus E (GPa) 200 212

Poisson’s ratio 0.3 0.3
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3.1 Gear Pair #1

Figure 9 shows the single mesh stiffness curves of the

helical tooth pairs (Type I) with different helix angles

yielded by different methods. The value of WFmin = 0.25 is

used when using the proposed method to calculate the

stiffness, which is a suggested value by comparing with the

FE results for the helical gear pairs considered. It can be

found that the single mesh stiffness curves look like a

parabola which changes quite smoothly and has its peak at

the 0.5 mesh cycle, which is the moment when the contact

line passes through the pitch point at the tooth middle of

face with (Umezawa et al. 1986). Based on this feature,

Umezawa et al. (1986) proposed a cubic polynomial

expression to approximate the single mesh stiffness. The

helix angle has a similar influence on the single mesh

stiffness with that on the effective contact face width

shown in Fig. 8a.

However, there are obvious discrepancies between the

results yielded from Eq. (18) and results from the other

methods, as we notice that the maximum single mesh

stiffnesses yielded from the latter decrease slightly with the

increase in the helix angle. This is brought by the term cosb
in Eq. (25), as the ISO 6336-1 (2006) explained, which was

used to transform the normal into transverse theoretical

single stiffness of the helical gear teeth. This demonstrates

that the integration strategy used in Eqs. (17) and (21),

which evaluates the mesh stiffness of the helical gear pair

through the integration of the mesh stiffness of the stag-

gered spur gears along the face width, is more accurate

than the integration strategy used in Eq. (18), which eval-

uates the mesh stiffness of the helical gear pair through

combining each stiffness component, and each stiffness

component (tooth beam stiffness, tooth fillet-foundation

stiffness and tooth contact stiffness) is obtained through the

integration of that stiffness component of the spur tooth

pieces along the face width.

Compared with the traditional analytical method, the

proposed analytical method considering the convective

effects among tooth pieces seems to yield a single mesh

stiffness curve having little difference with that of the

traditional analytical method, except making the curve

smoother, especially when the helix angle is higher, which

is consistent with the FE results in Fig. 9a. This proves that

Fig. 7 FE model of a helical

gear pair: a 3D model, b close-

up plot near the contact region

Fig. 8 Variations of effective contact face width in a mesh cycle for a helical gear pair #1, b helical gear pair #2
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for Type I helical gears, the convective effect among

neighbouring tooth pieces is negligible.

3.2 Gear Pair #2

Figure 10 shows the single mesh stiffness curves of the

helical tooth pairs (Type II) with different helix angles

yielded by different methods. It should be noted that in

Chang’s method (2015), the mesh stiffness provided is

stiffness per unit face width (W), whereas in ISO 6336-1

method (2006), the maximum mesh stiffness value pro-

vided is stiffness per unit effective contact face width (We).

Therefore, the stiffness curves in Fig. 10b are obtained by

multiplying the stiffness curves in (Chang et al. 2015) with

face width W, and the stiffness values for all dots are

obtained by multiplying the single stiffness c0 provided by

ISO 6336-1 (2006) with the corresponding maximum

effective face width We shown in Fig. 8b. Compared with

the Type I helical gear pairs, it can be found that the single

mesh stiffness decreases more abruptly as the helix angle

increases for Type II helical gear pair. Apart from the

reduction of single stiffness c’ introduced by the term cosb

in Eq. (25), the abrupt reductions of the maximum effec-

tive contact face width We with the increase in helix angle

b for type II gear (see Figs. 8b and 11) are the main reason

leading to it.

As can be seen in Fig. 10, except those obtained from

the traditional analytical method, the single mesh stiffness

curves from all the other methods look like a parabola

which changes quite smoothly and has its peak when the

contact line passes through the pitch point at the tooth

middle of face with (Chang et al. 2015; Umezawa et al.

1985). The single mesh stiffness curves yielded from the

TA method change abruptly from a gradual steep line to a

flat one (region where the length of contact line keeps

constant). Figure 12a illustrates the single mesh stiffness

curves during the flat curve region (A–B region in Fig. 12)

from different methods when the helix angle is 24�, which
clearly shows the discrepancies between the traditional

analytical method and other methods. The reason that a

strange flat curve happens using the TA method for type II

helical gear pair, is that the TA method assumes that the

sliced tooth pieces are independent from each other, and

each tooth piece has the same influence as that of the total

Fig. 9 Comparisons of the single stiffness curves with different helix

angles calculated by various methods a FE method, b traditional

analytical method based on Eq. (17), c traditional analytical method

based on Eq. (18), d proposed analytical method based on Eq. (21)

using WFmin = 0.25 (Note: the solid dots blue circle, red square and

green triangle in each figure represent the maximum single stiffness

values provided by ISO 6336-1 for each helical angle case)
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tooth mesh stiffness. Therefore, during the A-B region, the

single mesh stiffness remains constant as the length of the

contact line and its position relative to gear tooth involute

flank does not change at all. This demonstrates one of the

shortcomings of the traditional analytical method using

slicing principle to evaluate the mesh stiffness of helical

gear pair. The proposed analytical method can yield a quite

similar parabolic-shaped, smooth curve with that yielded

by FE method and Chang’s method (2015).

On the other hand, in terms of the maximum single mesh

stiffness kmax
i , the results from traditional analytical method

agree well with the ISO 6336-standard. This is reasonable

as the stiffness formula provided by ISO 6336 stems from

Weber’s analytical formulae, which is the basis of the TA

method. The maximum single mesh stiffness evaluated

from different methods and the percentage error relative to

the FE results are listed in Table 3. It can be found that

when the helix angle is small, the results yielded by all

methods show negligible discrepancies. However, as the

helix angle increases, there are comparatively large per-

centage errors from the ISO 6336 and the traditional ana-

lytical method. This demonstrates that the proposed

analytical method considering a parabolic weighting factor

distribution on the tooth pieces has a higher accuracy

compared with the traditional analytical method which

assumes no coupling effects among tooth pieces.

Fig. 10 Comparisons of the single stiffness curves with different

helix angles calculated by various methods a FE method, b Chang’s

method (2015), c traditional analytical method based on Eq. (17),

d proposed analytical method based on Eq. (21) using WFmin = 0.5

(Note: the solid dots blue circle, red square, green triangle and pink

inverted triangle, and in each figure represent the maximum single

stiffness values provided by ISO 6336-1 (2006) for each helical angle

case)

Lα 
μ 

We
We
We
We

12°

16°

20°

24°

Fig. 11 Maximum effective contact face width We for each helix

angle of gear pair #2 in Table 2
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4 Conclusions

This paper classified two types of helical gear pair based on

the relationship between its transverse contact ratio and

overlap contact ratio. An improved analytical method

considering the elastic couplings between neighbouring

tooth pieces is introduced. This is achieved by assigning a

parabola-like weighting factor distribution on the sliced

tooth pieces along the tooth width. The calculation results

from various methods (mainly FE method, traditional

analytical method, proposed analytical method and the ISO

standard) for the single mesh stiffness of two gear pair

cases provided in the literature are compared and discussed

in terms of the stiffness curve shape and maximum stiff-

ness value. The main conclusions of this study include:

1. For Type I helical gear pairs, the maximum single

mesh stiffness decreases slightly with the increase in

the helix angle by an approximate term of cosb. For
Type II helical gear pairs, the maximum single mesh

stiffness decreases abruptly with the increase in the

helix angle, which is due to the abrupt reductions of the

maximum effective contact face width.

2. The integration strategy that evaluates the mesh

stiffness of the helical gear pair through the integration

of the mesh stiffness of the staggered spur gears along

the face width (Eq. (17)), is more accurate than the

strategy that evaluates the mesh stiffness of the helical

gear pair through combining each stiffness component

(Eq. (18)), which is obtained through the integration of

that stiffness component of the spur tooth pieces along

the face width.

3. Compared with the traditional analytical method, the

proposed analytical method yields more accurate

results in terms of the shape of the single mesh

stiffness curve in a mesh cycle, and the maximum

value of single mesh stiffness, especially for the helical

gears with wide face and large helix angle.
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Fig. 12 Single mesh stiffness in the flat curve region using different methods when the helix angle is 24�: a single mesh stiffness curves in the

flat curve region, b corresponding flat curve region in the plane of action

Table 3 Maximum single mesh stiffness evaluated from different methods

Methods The maximum single mesh stiffness (kN/mm, or 106 N/m)

b = 12� Error (%) b = 16� Error (%) b = 18� Error (%) b = 24� Error (%)

FE method 804 0 745 0 647 0 543 0

ISO 6336-1 794 1.27% 757 1.66% 580 10.35% 458 15.67%

Chang’s Method (2015) 770 4.26% 747 3.70% 635 1.9% 546 0.44%

TA method 804 0.15% 747 0.33% 584 9.7% 471 13.19%

IA method 812 0.93% 769 3.21% 640 1.1% 534 1.76%
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