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Abstract
A variational approach is developed to obtain bending, buckling and vibration finite element equations of nonlocal

Timoshenko beams in this study. The reason for using the finite element method in this research is to investigate the

behavior of nano-beams with complex geometry, material property and different boundary conditions. Weak forms of

governing equations are derived, and the nonlocal differential elasticity theory is used to find the finite element formulation

of nonlocal Timoshenko beams. In deriving the weak formulations, it is seen that it is impossible to construct the quadratic

functional form due to non-symmetric bilinear property. Using the developed concepts and formulations, the bending and

buckling of nonlocal Timoshenko beams with four classical boundary conditions are analyzed and the obtained results are

compared with those reported in the literature. In order to show the capabilities of the proposed formulation in comparison

with exact methods, the simply supported stepped nonlocal Timoshenko beam is selected and bending and buckling

analyses are performed as well.
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1 Introduction

Nano-beams and nano-plates have become one of the most

important structures used widely in NEMS devices due to

outstanding mechanical and physical properties. There are

many research works about using such structures that can

be referred to the works done by Wang et al. (2006, 2008),

Ghannadpour and Mohammadi (2010, 2011), Ghannadpour

et al. (2013), Wang and Wang (2007), Dinckal (2016) and

Ebrahimi and Barati (2016). In the literature, it is observed

from both experimental and theoretical simulation that the

size effect has an important role on static and dynamic

deformation behavior of materials and cannot be negligible

in nano-sized structures (Farrokhabadi and Tavakolian

2017, Tavakolian and Farrokhabadi 2017 and Tavakolian

et al. 2017). Therefore, by applying the size-independent

theories, inaccurate results will be obtained.

Due to the difficulties in experimental work at the

nanoscale and due to their being time-consuming, numer-

ical simulations of nano-structures have been presented

extensively by the researchers and they became interested

to develop the size-dependent continuum theories. There-

fore, to model the small-sized structures, the various con-

tinuum theories that are dependent on size have attracted a

lot of attention. They can be pointed out to micro-morphic

theory by Eringen and Suhubi (1964), micro-polar theory

by Eringen and Suhubi (1964) and Chen et al. (2004),

couple stress theory by Toupin (1962) and nonlocal elas-

ticity theory by Eringen (1983).

Micro-morphic theory models a material as a continuous

set of deformable point particles. The deformation of a

micro-morphic continuum includes the displacements of

the center of particles and the microscopic internal motion

within the microstructure of a particle. By considering the

particle as rigid, micro-morphic theory becomes micro-

polar theory. Therefore, micro-polar theory yields only

translational and rotational modes of rigid units. In the

simplest form of micro-polar theory, the so-called couple

stress theory, the rotation vector is dependent on the dis-

placement vector. This theory, which is elaborated by
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Toupin (1962) and Koiter (1964), in addition to the clas-

sical constants, contains two material length scale coeffi-

cients for an isotropic elastic material. Recently, a modified

couple stress theory was proposed and introduced by Yang

et al. (2002) which contains one additional material length

scale coefficient.

The history of nonlocal elasticity theory goes back to

the works introduced by Eringen (1972, 1983). This theory

expresses that the stress at any point in the body depends

on the strain at this point and also on strains at all points in

the body. The nonlocal effect is present due to the intro-

duction of a nonlocal nanoscale which depends on the

material and an internal characteristic length, and this

parameter takes the zero value at macroscale.

Among the above-mentioned theories, the theory of

nonlocal elasticity has been adopted by many researchers,

as can be seen in the literature. This theory is used in two

general versions, nonlocal differential and integral elas-

ticity (Hu et al. 2008), but the former is more popular due

to its simplicity. Many scientists have used the differential

type of nonlocal elasticity for static and dynamic analyses

of nano-sized structures.

The study of Peddieson et al. (2003) can be considered

to be a pioneering work which first applied the nonlocal

elasticity theory of Eringen. In this work, a nonlocal Euler

beam was selected and its flexural behavior was studied

using nonlocal differential elasticity. For integral type of

nonlocal elasticity, Polizzotto (2001) developed the total

potential energy, the complementary energy and the mixed

Hu–Washizu principles.

It is worth noting that most of the scientific community’s

attention in the literature has been attracted to deriving the

governing equations and the corresponding boundary

conditions of nano-structures by the well-known technique

of the calculus of variation and with nonlocal differential

elasticity approach. Accordingly, the exact solution of most

analyses on nano-beams with simple domains and classical

boundary conditions can be found in the literature such as

works carried out by Wang et al. (2006, 2007), Challamel

and Wang (2008) and Wang (2005). For example, Wang

et al. (2006) have analyzed the elastic buckling behavior of

micro- and nanotubes based on differential type of nonlocal

elasticity and the Timoshenko beam theory. The governing

equations and the corresponding boundary conditions have

been developed by the principle of virtual work. Such exact

solutions are not generally available for nano-sized struc-

tures with complicated geometries. It is quite obvious that

the finite element method can efficiently analyze the

structures with arbitrary boundary conditions and also

complicated geometries. So this has made this technique an

efficient alternative to the previous solutions for nano-sized

beams depending on beam model. Use of the finite element

method in the framework of nonlocal integral elasticity has

been formulated for the first time by Pisano et al.

(2009a, b). A new research activity on nonlocal structures

with differential type of nonlocal elasticity theory and with

Galerkin finite element method is the research carried out

by Phadikar and Pradhan (2010). In their study, the

Galerkin finite element technique in conjunction with dif-

ferential type of nonlocal elasticity using both Euler beam

theory and classical plate theory has been presented. More

recently, Ghannadpour et al. (2013) analyzed the bending,

buckling and vibration behaviors of nonlocal Euler beams.

Weak form of the governing equation of nonlocal beams

was outlined in their work.

With the above descriptions, finite element equations

and weak formulations related to the bending, buckling and

vibration of Timoshenko beams in the framework of non-

local differential elasticity approach are presented in this

paper. Thus, the first aim of this study is to present the final

expressions for the weak form of the weighted residuals

based on the differential type of nonlocal elasticity. The

second aim is to drive the element matrices of nonlocal

Timoshenko beams and analyze the bending and buckling

behaviors of such beams.

2 Derivation of Governing Equations

In this section, for completeness of formulations, bending,

buckling and vibration governing equations for nonlocal

Timoshenko beams are derived. It is known that in a shear

deformation beam theory, the so-called Timoshenko beam

theory (TBT), transverse shear stress and strain are

invariant throughout the thickness of the beam. This is due

to ignoring the normality assumption in Euler beam theory.

Therefore, in Timoshenko beam theory, plane sections

remain plane after deformation but not necessarily normal

to the longitudinal axis.

By adopting that the x- and z-axes are assumed along the

length and thickness of the beam, respectively, the relations

between strains and displacements according to the

Timoshenko beam theory can be written as

exx ¼ z
d/
dx

ð1Þ

cxz ¼ /þ dw

dx
ð2Þ

where z is measured from the mid-plane of the beam, / the

rotation due to bending, w the transverse displacement, exx
the normal strain and cxz the transverse shear strain.

The virtual strain energy dU, the virtual potential energy
dV of axial load P and transverse distributed load q ¼ qðxÞ
and the virtual kinetic energy dT of a Timoshenko beam by

assuming free harmonic motion and including the effect of

rotary inertia can be written as follows:
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dU ¼
Z L

0

Z
A

rxxdexx þ rxzdcxz
� �

dAdx ð3Þ

dV ¼ �
ZL

0

P
dw

dx

ddw
dx

þ qdw

� �
dx ð4Þ

dT ¼
ZL

0

qAx2wdwþ qIx2/d/
� �

dx ð5Þ

In the above equations, rxx is the normal stress, rxz the

transverse shear stress, L the length of the beam, A the

cross-sectional area of the beam, I the second moment of

area, x the circular frequency of vibration and q the mass

density of the beam material.

By substituting Eqs. (1) and (2) into Eq. (3), the final

form of the virtual strain energy by considering the shear

correction factor Ks can be expressed as Eq. (6).

dU ¼
Z L

0

Z
A

rxxd z
d/
dx

� �
þ rxzd /þ dw

dx

� �� �
dAdx

¼
Z L

0

Z
A

rxxz
dd/
dx

þ rxz d/þ ddw
dx

� �� �
dAdx

¼
Z L

0

M
dd/
dx

þ Q d/þ ddw
dx

� �� �
dx

ð6Þ

where M ¼
R
A
rxxzdA and Q ¼ Ks

R
A
rxzdA are the bending

moment and shear force, respectively. The Hamilton

principle for the Timoshenko beam theory has the fol-

lowing form:

dT � dU � dV ¼ 0

¼
Z L

0

qAx2wdwþ qIx2/d/�M
dd/
dx

�

�Qd/� Q
ddw
dx

þ P
dw

dx

ddw
dx

þ qdw

�
dx

ð7Þ

The Euler differential equations can be derived using the

well-known technique of variational calculus. After

applying this technique, the following relations are

obtained which are known as bending, buckling and

vibration governing equations of Timoshenko beams.

dM

dx
¼ Q� qIx2/ ð8Þ

dQ

dx
¼ P

d2w

dx2
� qAx2w� q ð9Þ

The associated boundary conditions of the beam are also

obtained as

w ¼ 0 or V ¼ Q� P
dw

dx
¼ 0 ð10Þ

/ ¼ 0 or M ¼ 0 ð11Þ

As can be observed, the above equations are the same as

the governing equations for local Timoshenko beam the-

ory. As mentioned before, in this study the nonlocal dif-

ferential elasticity theory is used. The essence of nonlocal

theory is that the size effects are captured by considering

that the stress at a point in a body is a function of strains at

all other points. Therefore, due to the nonlocal constitutive

relations, the shear force and bending moment expressions

for the nonlocal beams are quite different. The constitutive

equations in nonlocal elasticity and in one-dimensional

problems can be written as (Eringen 1964 and 1983):

rxx � g2
d2rxx
dx2

¼ Eexx ð12Þ

rxz ¼ Gcxz ð13Þ

where E is the Young’s modulus, G the shear modulus and

g the scale factor incorporating the size effect. The non-

local effect in this theory is present due to the introduction

of a nonlocal scale factor g ¼ e0a which depends on the

material e0 and an internal characteristic length a (e.g.,

granular distance and C–C bond length), and at macroscale,

this parameter takes the zero value. More details on how to

find this parameter can be found in the work studied by

Wang et al. (2007).

As it can be seen in Eqs. (12) and (13), in the nonlocal

differential elasticity the constitutive relation is presented

in the differential equations form and also the constitutive

relation for the shear stress and strain was assumed the

same as in the local beam theory in this study. Multiplying

Eq. (12) by zdA and integrating the result over the area A

yields

M � g2
d2M

dx2
¼ EI

d/
dx

ð14Þ

By multiplying Eq. (13) by shear correction factor Ks and

integrating over the area A and also substituting Eqs. (8)

and (9) into Eq. (14), the shear force and bending moment

expressions for the nonlocal beam theory can be written in

the following forms:

Q ¼ KsGA /þ dw

dx

� �
ð15Þ

M ¼ EI
d/
dx

þ g2 P
d2w

dx2
� qAx2w� qIx2 d/

dx
� q

� �
ð16Þ

Finally, the governing equations of the nonlocal Timosh-

enko beam in terms of the displacement components w and

/ can be obtained by substituting Eqs. (15) and (16) into

Eqs. (8) and (9).
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�P
d2w

dx2
þ KsGA

d/
dx

þ d2w

dx2

� �
þ qAx2wþ q ¼ 0 ð17Þ

g2P
d3w

dx3
þ EI � g2qIx2
� � d2/

dx2
� g2qAx2 dw

dx
� g2

dq

dx

� KsGA
dw

dx
þ /

� �
þ qIx2/

¼ 0

ð18Þ

It is noted that by setting g ¼ 0 in the above equations, the

governing equations of the local Timoshenko beam can be

retrieved.

3 Derivation of Weak Form

In this section, derivation of weak form of the obtained

governing equations of the nonlocal Timoshenko beams is

outlined. As it is known, the weak form for a differential

equation can be obtained based on the weighted-integral

form that is equivalent to the governing differential

equation as well as the associated natural boundary

conditions.

Based on the above descriptions, the weak form of the

governing Eqs. (17) and (18) is developed using the

inverse of variational calculus, i.e., each equation must be

multiplied by a weight function. To do this, Eq. (17) is

multiplied by a weight function - w1 and Eq. (18) by a

weight function - w2, and then, they are integrated over

the beam length.
Z L

0

�w1 �P
d2w

dx2
þ KsGA

d/
dx

þ d2w

dx2

� �
þ qAx2wþ q

� �
dx ¼ 0

ð19Þ
Z L

0

�w2 g2P
d3w

dx3
þ EI � g2qIx2
� � d2/

dx2
� g2qAx2 dw

dx

�

�g2
dq

dx
� KsGA

dw

dx
þ /

� �
þ qIx2/

�
dx ¼ 0

ð20Þ

After performing integration once by parts on the first two

terms of Eq. (19) and on the first four terms of Eq. (20),

and using Eqs. (10), (11), (15) and (16), the weak state-

ments can be written in the following final form.

Z L

0

�P
dw

dx

dw1

dx
þ KsGA

dw

dx
þ /

� ��

dw1

dx
� qAx2ww1 � qw1

�
dx� w1V½ �L0¼ 0

ð21Þ

ZL

0

g2P
d2w

dx2
dw2

dx
þ EI � g2qIx2
� � d/

dx

dw2

dx

�

�g2qAx2w
dw2

dx
� g2q

dw2

dx

þKsGA
dw

dx
þ /

� �
w2 � qIx2/w2

�
dx� w2M½ �L0¼ 0

ð22Þ

The coefficients of the weight functions in the boundary

integrals are called secondary variables, and their specifi-

cations constitute the natural boundary conditions. The

weight functions w1 and w2 must have the physical inter-

pretations that give w1V and w2M units of work. Clearly, w1

must be equivalent to (the variation of) the transverse

deflection w, and w2 must be equivalent to (the variation

of) the rotation function /.
In the above equations, it can be observed that all the

terms are either bilinear or linear. However, the first and

the third terms in Eq. (22) are non-symmetric bilinear.

Therefore, it is impossible to construct the associated

quadratic functional form.

It must be remembered that, as in the case of variational

and weighted-residual methods, the aim is to satisfy the

governing differential equations in a weighted-integral

sense. The type of finite element model depends on the

weighted-integral form used to generate the algebraic

equations. Thus, if one uses the weak form, the resulting

model will be different from those obtained with a

weighted-residual statement in which the weight function

can be any of several choices. In the remaining of the

paper, the weak form finite element models are concerned.

4 Weak Form Finite Element Formulation

To construct the finite element model, the global domain

(0, L) of the problem should be divided into a set of sub-

domains. Each isolated interval, which is called finite ele-

ment, is of length l with domain ðxe; xeþ1Þ. Therefore, the
weak form must be applied to one of the isolated elements.Z l

0

�P
dwe

dx

dwe
1

dx
þ KsGA

dwe

dx
þ /e

� �
dwe

1

dx

�

�qAx2wewe
1 � qwe

1

�
dx� we

1V
� �l

0
¼ 0

ð23Þ

Z l

0

g2P
d2we

dx2
dwe

2

dx
þ EI � g2qIx2
� � d/e

dx

dwe
2

dx

�

� g2qAx2we dw
e
2

dx
� g2q

dwe
2

dx

þKsGA
dwe

dx
þ /e

� �
we
2 � qIx2/ewe

2

�
dx� we

2M
� �l

0
¼ 0

ð24Þ
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A close examination of the terms in Eqs. (23) and (24)

shows that the transverse deflection w is differentiated

twice with respect to x and the rotation function / is dif-

ferentiated only once. In the present work, the following

displacement fields in a local coordinate system �x have

been defined for w and /.

we ¼
X4
j¼1

Nj �xð Þwj

/e ¼
X4
j¼1

Nj �xð Þ/j

ð25Þ

where Nj �xð Þ; j ¼ 1; 2; 3; 4 are Lagrange interpolation

functions which are given as follows:

N1 �xð Þ ¼ �1

2

�x

l
� 1

� �
3
�x

l
� 1

� �
3
�x

l
� 2

� �

N2 �xð Þ ¼ 9

2

�x

l

�x

l
� 1

� �
3
�x

l
� 2

� �

N3 �xð Þ ¼ �9

2

�x

l

�x

l
� 1

� �
3
�x

l
� 1

� �

N4 �xð Þ ¼ 1

2

�x

l
3
�x

l
� 1

� �
3
�x

l
� 2

� �
ð26Þ

and wj and /j; j ¼ 1; 2; 3; 4 denote the nodal degrees of

freedom of the element. By substituting the displacement

fields into the weak form Eqs. (23) and (24) and assuming

q ¼ q0 (constant), the following finite element equations

are obtained.

X4
j¼1

K11
ij � bB11

ij � x2M11
ij

� 	
wj þ

X4
j¼1

K12
ij /j � Q1

i � F1
i

¼ 0;
i ¼ 1; 2; 3; 4ð Þ

ð27Þ
X4
j¼1

K21
ij � bB21

ij � x2M21
ij

� 	
wj

þ
X4
j¼1

K22
ij � x2 M22

ij þM022
ij

� 	� 	
/j � Q2

i � F2
i

¼ 0;
i ¼ 1; 2; 3; 4ð Þ

ð28Þ

where

K11
ij ¼

Z l

0

KsGA
dNi

d�x

dNj

d�x
d�x

B11
ij ¼

Z l

0

�P
dNi

d�x

dNj

d�x
d�x

M11
ij ¼

Z l

0

qANiNjd�x

K12
ij ¼

Z l

0

KsGA
dNi

d�x
Njd�x

K21
ij ¼

Z l

0

KsGANi

dNj

d�x
d�x

B21
ij ¼

Z l

0

�g2 �P
dNi

d�x

d2Nj

d�x2
d�x

M21
ij ¼

Z l

0

g2qA
dNi

d�x
Njd�x

K22
ij ¼

Z l

0

EI
dNi

d�x

dNj

d�x
þ KsGANiNj

� �
d�x

M22
ij ¼

Z l

0

qINiNjd�x

M022
ij ¼

Z l

0

g2qI
dNi

d�x

dNj

d�x
d�x

Q1
i ¼

Z l

0

q0Nid�x; Q2
i ¼

Z l

0

g2q0
dNi

d�x
d�x

F1
i ¼ Ni lð ÞV j�x¼l�Ni 0ð ÞV j�x¼0; F2

i ¼ Ni lð ÞMj�x¼l�Ni 0ð ÞMj�x¼0

ð29Þ

and the eigenvalue b ¼ P=�P represents the ratio of actual

buckling load and applied in-plane load. Equations (27)

and (28) can be written in matrix form as

K11 K12

K21 K22


 �
� b

B11 0

B21 0


 �� ��

�x2 M11 0

M21 M22 þM022


 ��
w

/

� 
¼ Q1

Q2

� 
þ F1

F2

� 

ð30Þ

or

K½ � � b B½ � � x2 M½ �
� �

Uf g ¼ Qf g þ Ff g ð31Þ

where Uf g; K½ �; B½ �; M½ �; Qf g and Ff g are defined in

‘‘Appendix’’.

It is emphasized that the corresponding equations of the

local Timoshenko beam element can be achieved by setting

B21½ � ¼ M21½ � ¼ M022½ � ¼ 0 in Eq. (30). The submatrices

B21½ � and M21½ � have non-symmetric effect on the finite

element equations of the nonlocal Timoshenko beam

element.

Finally, by applying these expressions to obtain the

matrices of individual elements, the overall matrices for the

whole beam can be assembled by using the conventional

routines of finite element method.

5 Results and Discussions

In the above sections, the finite element formulations for

bending, buckling and vibration of nonlocal Timoshenko

beams were presented. However, the results for bending

and buckling of nonlocal Timoshenko beams are obtained
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and presented in this section. In order to conduct conver-

gence study and also validation of the results, the following

data are adopted in generating the bending and buckling

results.

Nano-rod with diameter d ¼ 1 nm, Young’s modulus

E ¼ 1 TPa, Poisson’s ratio v ¼ 0:19, shear correction

factor Ks ¼ 0:9, applied in-plane load �P ¼ 1 nN and uni-

form distributed load q0 ¼ 1 nN=nm.

The convergence studies carried out for the maximum

deflection w and critical buckling load Pcr of a simply

supported nano-rod with the scale coefficient g of 1 and

length-to-diameter ratio L/d of 10 are tabulated in Table 1.

In this table, the results of maximum deflection and

critical buckling load obtained by Wang et al. (2006 and

2008) are also included. In the mentioned references, the

governing equations and the boundary conditions have

been derived using the principle of virtual work and

explicit expressions for the transverse deflections and

critical buckling loads of nano-beams with various end

conditions have been presented.

The convergence study shows that over 20 elements are

needed to obtain accurate results for the critical buckling

load Pcr. But the data related to the bending analysis con-

verge with fewer numbers of elements. However, for the

sake of confidence, all of the results presented in this study

have been calculated using 30 elements.

In the next step and in order to compare the results

obtained by the proposed FEM, the maximum deflections

w and critical buckling loads Pcr are tabulated and com-

pared with those of obtained by Wang et al. (2006 and

2008) in Tables 2 and 3, respectively. As mentioned

before, the results of Wang were obtained by solving the

governing equations and so they are named exact solutions.

It can be seen that there is an excellent agreement

between the FEM results and exact solutions.

Table 2 shows that for a simply supported nonlocal

Timoshenko beam subjected to a uniformly distributed

load, the deflection is affected by the small-scale coeffi-

cient, whereas in the clamped nonlocal Timoshenko beam

example, the deflection is the same as that of local

Timoshenko beam. In other words, in the clamped nonlocal

Timoshenko beam, the deflection is not affected by the

scaling factor (Challamel and Wang 2008).

It can be inferred from Table 3 that the application of

the local elasticity models for nano-sized structures anal-

ysis would lead to an overprediction of the buckling loads

if the effect of small scale is neglected between the atoms.

In order to show the ability of the finite element method,

the simply supported stepped nonlocal Timoshenko beam

shown in Fig. 1 has been chosen and bending and buckling

analyses have been performed.

The following data are adopted in generating the results

of stepped beam with circular cross section.

Nano-rod with diameters d1 ¼ 4 nm, d2 ¼ 3 nm,

d3 ¼ 2 nm, lengths l1 ¼ l2 ¼ l3 ¼ 10 nm, Young’s modu-

lus E ¼ 1 TPa, Poisson’s ratio v = 0.19, shear correction

factor Ks = 0.9, applied in-plane load �P ¼ 1 nN and uni-

form distributed load q0 ¼ 1 nN=nm.

All the analyses for this beam have been obtained by

choosing 45 finite elements of equal length. The maximum

deflections for various nonlocal parameters and also critical

buckling loads are tabulated in Table 4.

As can be seen from the above table, the deflections and

the critical buckling loads of the stepped nonlocal

Timoshenko beam are affected by the scale coefficient.

This table demonstrates the significant effects of the scale

coefficient on higher modes of buckling. This can also be

seen from the buckling deflection modes represented in

Fig. 2.

Table 1 Convergence study of

maximum deflection and critical

buckling load with g ¼ 1 and

L=d ¼ 10

N w (nm) Pcr (nN)

4 2.949 4.34289

8 2.949 4.34420

12 2.949 4.34463

16 2.949 4.34480

20 2.949 4.34488

24 2.949 4.34492

28 2.949 4.34494

32 2.949 4.3450

36 2.949 4.3450

2.949b 4.345a

aExact results obtained by Wang

et al. (2006)
bExact results obtained by

Wang et al. (2008)

Table 2 Maximum deflections w for simply supported and clamped

rods with various scale coefficients

g w (nm)

Simply supported rod Clamped rod

Exacta FEM Exacta FEM

0 2.6947 2.6947 0.5726 0.5726

0.5 2.7583 2.7583 0.5726 0.5726

1 2.9493 2.9493 0.5726 0.5726

1.5 3.2676 3.2676 0.5726 0.5726

2 3.7133 3.7133 0.5726 0.5726

aExact results obtained by Wang et al. (2008)
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6 Conclusion

In this paper, nonlocal Timoshenko beam element matrices

in bending, buckling and vibration formulations were

derived. The final expressions for the weak form of the

weighted residuals using the differential type of nonlocal

elasticity were also derived. In the development process, it

was found that there are two terms in the weak statements

of the governing equations which have non-symmetric

bilinear form. Therefore, it was concluded that it is

Table 3 Critical buckling loads

Pcr (nN) for rods with various

boundary conditions and

various length-to-diameter

ratios L/d

L/d g

0 0.5 1 1.5 2

Exacta FEM Exacta FEM Exacta FEM Exacta FEM Exacta FEM

Simply supported rod

10 4.767 4.7670 4.654 4.6540 4.345 4.3450 3.9121 3.9121 3.4333 3.4333

12 3.3267 3.3267 3.2713 3.2713 3.1156 3.1156 2.8865 2.8865 2.6172 2.6172

14 2.4514 2.4514 2.4212 2.4212 2.3348 2.3348 2.2038 2.2038 2.0432 2.0432

16 1.8805 1.8805 1.8626 1.8627 1.8111 1.8111 1.7313 1.7313 1.6306 1.6306

18 1.4878 1.4878 1.4766 1.4766 1.444 1.4440 1.3928 1.3928 1.3269 1.3269

20 1.2063 1.2063 1.1989 1.1989 1.1773 1.1773 1.1431 1.1431 1.0983 1.0983

Clamped-simply supported rod

10 9.5605 9.5605 9.1179 9.1179 8.0055 8.0054 6.652 6.6518 5.3782 5.3780

12 6.7118 6.7118 6.4904 6.4904 5.9059 5.9058 5.1348 5.1347 4.341 4.3409

14 4.9638 4.9638 4.8416 4.8416 4.5086 4.5085 4.0448 4.0447 3.5355 3.5354

16 3.8168 3.8168 3.7441 3.7441 3.5418 3.5417 3.249 3.2490 2.912 2.9120

18 3.0248 3.0247 2.9789 2.9789 2.8493 2.8493 2.6567 2.6567 2.427 2.4270

20 2.4553 2.4553 2.425 2.4250 2.3384 2.3384 2.2071 2.2070 2.0462 2.0461

Clamped rod

10 18.192 18.1919 16.649 16.6490 13.273 13.2723 9.92 9.9194 7.3283 7.3279

12 12.874 12.8742 12.082 12.0819 10.199 10.1988 8.0964 8.0959 6.2829 6.2825

14 9.5687 9.5687 9.124 9.1239 8.0077 8.0074 6.6514 6.6510 5.3765 5.3761

16 7.3818 7.3817 7.1143 7.1142 6.4168 6.4166 5.5155 5.5153 4.6092 4.6089

18 5.8631 5.8631 5.6931 5.6930 5.2375 5.2374 4.6212 4.6210 3.9675 3.9673

20 4.767 4.7670 4.654 4.6540 4.345 4.3449 3.9122 3.9120 3.4333 3.4331

Cantilever rod

10 1.2063 1.2063 1.1989 1.1989 1.1773 1.1773 1.1431 1.1431 1.0983 1.0983

12 0.8387 0.8387 0.8352 0.8352 0.8246 0.8246 0.8077 0.8077 0.7851 0.7851

14 0.6167 0.6167 0.6147 0.6147 0.609 0.6090 0.5997 0.5997 0.5872 0.5872

16 0.4724 0.4724 0.4712 0.4712 0.4679 0.4679 0.4623 0.4624 0.4549 0.4549

18 0.3734 0.3734 0.3726 0.3726 0.3705 0.3705 0.367 0.3671 0.3623 0.3623

20 0.3025 0.3025 0.302 0.3020 0.3006 0.3006 0.2984 0.2984 0.2952 0.2952

aExact results obtained by Wang et al. (2006)

Fig. 1 Simply supported stepped nonlocal Timoshenko beam

Table 4 Maximum deflections and critical buckling loads for the

stepped beam

h Max. deflection (nm) Critical buckling load nN (three modes)

0 4.7085 21.077

103.342

191.488

1 4.7649 20.621

96.010

162.117

2 4.9341 19.345

76.524

112.690
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impossible to construct the quadratic functional form. In

this regard and after deriving the finite element formula-

tion, some nano-beams with four classical boundary con-

ditions were analyzed in bending and buckling problems. It

was observed that the results of the developed method are

in excellent agreement with exact solutions. Also, in order

to show the capabilities of the FEM method in comparison

with exact methods, the simply supported stepped nonlocal

Timoshenko beam was selected and bending and buckling

analyses were performed. The present study will be helpful

in the analyses and design of nano-sized structures with

complicated geometry, material property and boundary

conditions.
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Fig. 2 a First mode shape of

simply supported stepped

nonlocal Timoshenko beam,

b second mode shape of simply

supported stepped nonlocal

Timoshenko beam, c third mode

shape of simply supported

stepped nonlocal Timoshenko

beam
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Appendix: Nonlocal Timoshenko Beam
element matrices

The element matrices for nonlocal Timoshenko beam are

presented as

Uf g ¼ w1 w2 w3 w4 /1 /2 /3 /4f gT

K½ � ¼ KsGA

1680l

42 C1½ � 21l C2½ �
21l C2½ �T l2 C3½ �


 �
þ EI

40l

0 0

0 C1½ �


 �

M½ � ¼ ql
1680

A C3½ � 0

0 I C3½ �


 �
þ g2q

80l

0 0

Al C2½ � 2I C1½ �


 �

B½ � ¼
�P

40l

C1½ � 0

0 0


 �
þ 9

8

g2 �P
l2

0 0

C4½ � 0


 �

Qf g ¼ q0l

8

1

3

3

1

0

0

0

0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

þ q0g
2

0

0

0

0

�1

0

0

1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

; Ff g ¼

�V j�x¼0

0

0

Vj�x¼l

�Mj�x¼0

0

0

Mj�x¼l

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

where C1½ �, C2½ �, C3½ � and C4½ � are defined as

C1½ � ¼

148 �189

�189 432

54 �13

�297 54

54 �297

�13 54

432 �189

�189 148

2
6664

3
7775

C2½ � ¼

�40 �57

57 0

24 �7

�81 24

�24 81

7 �24

0 �57

57 40

2
6664

3
7775

C3½ � ¼

128 99

99 648

�36 19

�81 �36

�36 �81

19 �36

648 99

99 128

2
6664

3
7775

C4½ � ¼

13 �31 23 �5

�9 27 �27 9

�9 27 �27 9

5 �23 31 �13

2
6664

3
7775
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