
RESEARCH PAPER

Effects of Size, Surface Energy and Casimir Force
on the Superharmonic Resonance Characteristics of a Double-Layered
Viscoelastic NEMS Device Under Piezoelectric Actuations

Sasan Rahmanian1 • Mohammad-Reza Ghazavi2 • Shahrokh Hosseini-Hashemi1,3

Received: 6 January 2018 / Accepted: 8 May 2018 / Published online: 16 May 2018
� Shiraz University 2018

Abstract
This paper investigates the nonlinear characteristics of a double-layered viscoelastic nanoelectromechanical system

(NEMS) in the vicinity of superharmonic resonance. Two nanobeams are made of piezoelectric material and coupled

through a visco-Pasternak medium in between. Modified couple-stress theory together with Gurtin–Murdoch surface

elasticity theory is utilized to take into account the effects of size-dependency and surface energy for the nanosized

structure. Kelvin–Voigt model is also implemented to consider the impact of viscoelasticity. The differential equations of

motion are established based on Hamilton’s principle and decomposed to a set of nonlinear ordinary differential equations

via Galerkin discretization method. Arclength continuation technique is schemed to capture the frequency–response curves

near superharmonic resonance of the system. The influence of the couple-stress parameter, surface strain energy and

dispersion force on the nonlinear behavior of the system near superharmonic resonance has been studied. It is observed,

that the hardening and softening behaviors of the system are remarkably affected by the size and surface parameters, and

interatomic Casimir force. Finally, considering all the mentioned effects, the influence of the DC and AC voltage loads on

the dynamic pull-in behavior of the NEMS device is investigated. For these cases, some frequency ranges are addressed as

the pull-in band in which the lower nanobeam collapses.

Keywords Superharmonic resonance � Size effect � Viscoelastic NEMS � Piezoelectric actuation � Arclength continuation

method

1 Introduction

In recent years, along with the rapid development of nan-

otechnology, nanoelectromechanical devices have become

one of the basic components of novel mechanical systems.

Among unparalleled properties of a NEMS device are

miniature size, low cost manufacturing process, remarkable

reliability, low consumption of energy, and high precision.

NEMS systems are applicable in wide variety of engi-

neering devices such as resonators, capacitive sensors,

nanoswitches, nanorelays, nanovalves, bandpass filters,

mass and force detection, pressure sensors, biosensors,

nano energy harvesters, and atomic force microscopes.

Nanobeams and nanoplates are known as the main com-

ponents of such devices so that their operations are based

on the bending vibration or resonant oscillations for the

case of resonators. Thus, it is essential to analyze the
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dynamic characteristics of novel NEMS structures with the

aim of improving performance.

A great deal of research has been carried out on the

nonlinear dynamic response of NEMS/MEMS resonators

under electrostatic actuation. Furthermore, many valuable

researches have been performed on the static and dynamic

pull-in instabilities of nanoswitches and nanosensors under

the effect of DC electrostatic load (Askari and Tahani

2017; Dai and Wang 2017; Fakhrabadi and Yang 2015;

Miandoab et al. 2017; Mirkalantari et al. 2017; Rokni et al.

2013; Shaat and Mohamed 2014; SoltanRezaee and Afrashi

2016; SoltanRezaee et al. 2016). Zhao et al. (2003) pre-

sented a review article in 2005, in which the mechanics of

adhesion in MEMS systems has been investigated. In their

study, roughness ratio was introduced as a key parameter to

describe the importance of surface roughness for adhesion

contact which can be due to Casimir force in NEMS

structures, or carbon nanotubes sticking to a substrate, as

examples. Hui et al. (Wen-Hui and Ya-Pu 2003) examined

the effects of geometrical properties of nanoscale electro-

static actuator on bifurcation of equilibrium points from the

case in which there exists no equilibrium point to the case

including two equilibrium points. They also considered the

same nanoactuator to study the effect of Casimir dispersion

force on the nonlinear dynamics of the system (Lin and

Zhao 2005b). Guo et al. (Guo and Zhao 2004) proposed a

model for stability analysis of electrostatic torsional NEMS

devices incorporating both the influences of Van Der

Waals (vdW) and Casimir regimes. Their results showed

that even for the case of zero voltage load, pull-in can still

occur for sufficiently small gaps, that is due to existence of

vdW and Casimir torques. Kacem et al. (Kacem et al.

2012) studied the nonlinear dynamics of NEMS-based

sensors under superharmonic resonance using the method

of multiple scales. Their results revealed that the dynamic

pull-in voltage will be retarded by decreasing the AC

voltage. Abdel-Rahman and Nayfeh (Abdel-Rahman and

Nayfeh 2003) examined the secondary resonances of

electrostatically actuated resonant microsensors. They

employed the method of the multiple scales to obtain the

frequency–response equation. Lin et al. (Lin and Zhao

2005a) presented an analytical solution for the pull-in gap

in nanometer switches considering the effect of Casimir

force using perturbation theory. Ouakad and Younis (2010)

investigated nonlinear dynamics of an electrically actuated

carbon nanotube (CNT) resonator. According to the two

sources of nonlinearities (midplane stretching and electro-

static force), the appearance of various interesting dynamic

behaviors are reported including hardening (Alsaleem et al.

2009; Mehrdad Pourkiaee et al. 2015; Najar et al. 2010a),

softening (Najar et al. 2010b), hysteresis (Azizi et al. 2014;

Kacem et al. 2009), jump phenomenon and multi-valued

response (Younis 2011). Dynamic behavior of bonded

double-piezoelectric nanobeam-based devices was exam-

ined by Arani et al. (2014). They focused on the piezo-

electric control of the proposed system based on wave

propagation theory in three different cases, in-plane wave,

out-of plane wave, and wave propagation while one

nanobeam is considered to be fixed. Arani et al. (Ghor-

banpour Arani et al. 2017) performed vibrational analysis

of the double of sandwich beams which are connected by

viscoelastic medium. In their system, each sandwich beam

consists of one magnetorheological core and two carbon

nanotubes/fiber/polymer composite face sheets. They

reported on the influences of various parameters such as

core-to-face sheets thickness ratio, magnetic field intensity,

visco-Pasternak coefficients on the natural frequencies and

loss factors of coupled system. They stated that the modal

loss factor decreases by increasing magnetic field intensity.

Pourkiaee et al. (2016) presented an investigation on the

subharmonic resonance of an electrically actuated piezo-

electric nanobeam resonator incorporating surface effects

and dispersion Van Der Waals force. The influence of

piezoelectric voltage, surface effects and interatomic forces

was studied on the natural frequencies, static equilibrium,

pull-in voltages, and principle parametric resonance of the

nanoresonator. They also examined the nonlinear modal

interactions and bifurcations of the same system with three-

to-one internal resonances (Pourkiaee et al. 2017). Their

results show that the system exhibits rich dynamic behav-

iors such as Hopf bifurcations, periodic and quasi-periodic

motions. Viscoelasticity effects on resonant response of a

shear deformable extensible microbeam were studied by

Farokhi and Ghayesh ( 2017). They found that viscoelastic

model is an amplitude-dependent energy mechanism which

gives more accurate results compared to a purely elastic

model. The stability and the nonlinear oscillations of both

single-walled and double-walled CNTs under electrostatic

excitation were investigated in depth by Hajnayeb and

Khadem (2011). Arani et al. (2015a) investigated nonlinear

vibration and instability of smart composite microtube

conveying fluid based on modified couple-stress theory.

They parametrically studied the combined effects of the

Knudsen number, couple-stress parameter, fibers volume

percentage, temperature change, elastic medium, and

aspect ratio on the nonlinear frequency and critical fluid

speed. Their results indicated that, the more the impact of

the small-scale parameter, the larger the natural frequency

and critical fluid velocity. Xu and Younis (2016) investi-

gated the nonlinear behaviors of a CNT actuated under

large electrostatic forces. They expanded the nonlinear

displacement-dependent term into enough number of terms

of the Taylor series. Wang et al. (2010) proposed a

methodology to study the effect of residual surface stress

induced in the bulk material on the elastic properties of

nanostructures. The surface elasticity notation was
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introduced in terms of both the Lagrangian and Eulerian

coordinates systems, and it was proved that even for the

case of infinitesimal deformations, difference must be

made between the undeformed and deformed configura-

tions of elastic body. As a case study, they focused on Al

nanowires to analyze the size-dependent characteristics of

pure bending problem. They reported that the effective

Young’s modulus of Al nanowires was remarkably affected

by the impact of surface tension. Li et al. (2012) investi-

gated both experimentally and theoretically the nonlinear

dynamics of a resonant pressure sensor under electro-

thermal excitation; they employed the multiple time scales

method together with the Galerkin’s procedure to obtain

the frequency–response behavior of the system. There are

also numerous papers in the literature which have

employed surface elasticity theory to study pull-in insta-

bility (Fu and Zhang 2011), buckling (Wang and Feng

2009; Yan and Jiang 2012) and free vibration (Zhang and

Wang 2012) of nanostructures.

In this work, the nonlinear characteristics of a double-

layered viscoelastic NEMS device under simultaneous

electrostatic and piezoelectric actuations are studied. To

include the effects of size-dependency and surface energy,

the modified couple-stress theory and Gurtin–Murdoch

elasticity theory are employed, respectively. In addition,

the Casimir force is considered as intermolecular disper-

sion force between the fixed and movable electrodes. The

frequency–response behavior of the system for large-am-

plitude of AC voltage, which is known as hard excitation is

obtained through numerical simulations. The influences of

different parameters such as viscoelasticity impact, size-

dependency, surface effects, and piezoelectric voltage

value on the frequency–response behavior of the system is

examined near the superharmonic resonance.

2 Mathematical Model

Schematic of a clamped–clamped double-layered vis-

coelastic NEMS system under the simultaneous piezo-

electric and electrostatic actuations is illustrated in Fig. 1.

The two viscoelastic piezoelectric nanobeams (VPNBs) are

coupled by visco-Pasternak medium which is modeled by

spring constant of Winkler-type, kw, shear constant of

Pasternak-type, kg, and damping coefficient, C. The two

VPNBs are of length L, width b and thickness h, and are

surrounded by surface layers. A direct current polarization

voltage of Vp is applied to each of the nanobeams. g0 and

Vl denote the initial gap between the lower nanobeam and

the fixed electrode, and the applied electrostatic voltage

load, respectively. It is assumed that the voltage load is a

combination of a DC bias voltage, VDC, and an AC voltage

with amplitude VAC and frequency X. As depicted in

Fig. 1, the xyz inertial coordinates system passes through

the centroidal axis of the undeformed beam and is located

at the left clamped end of the nanobeam. The horizontal

and vertical displacements of any point located on the

neutral axis of the beam in x and z directions are repre-

sented by u x; tð Þ and w x; tð Þ, respectively.
The Casimir regime as distributed inner atomic force

induces an attractive force between the lower nanobeam

and stationary electrode in the form of

Fcas ¼
p2�hcb

240 g0 � w x; tð Þð Þ4
ð1Þ

where �h ¼ 1:055� 10�34 J denotes the Planck’s constant

divided by 2p, and c ¼ 2:998� 108 m=s is the light speed

(Lamoreaux 2004). The distributed electrostatic force can

be given by

Felec ¼
e0bV2

l

2 g0 � w x; tð Þð Þ2
1þ 0:65

g0 � w x; tð Þð Þ
b

� �
ð2Þ

In expressing Eq. (2), this fact has been taken into

account that the geometry is far from the infinite plate

capacitors, where the fringing field effect is negligible

(Gupta 1997; Huang et al. 2001).

2.1 Surface Energy Contribution

According to the surface elasticity theory proposed by

Gurtin and Murdoch, the non-zero components of the

surface stresses based on the Kelvin–Voigt model are given

by (Gurtin and Murdoch 1975)

sxx ¼ s0 þ 1þ g
o

ot

� �
Esexx ¼ sxx elð Þ þ sxx vsð Þ; snx

¼ s0nz
ow

ox
; n ¼ y; z ð3Þ

where s0, Es, and g are the residual surface stress, surface

elastic modulus and the structural viscoelastic damping

parameter, respectively. The subscripts (el) and (vs) denote

the elastic and viscous parts, respectively. nz represents the

z-component of the unit outward normal vector, n, to the

beam surface. It is worth mentioning that, since the out-of-

plane surface stress component snxð Þ is independent of the
surface modulus, the impact of viscoelasticity is not

included in this stress component (Oskouie et al. 2017). For

the Euler–Bernoulli beam assumption, the displacement

field for each arbitrary material point can be expressed as

~u x; z; tð Þ ¼ u x; tð Þ � z
ow x; tð Þ

ox
; ~v x; z; tð Þ

¼ 0; ~w x; z; tð Þ ¼ w x; tð Þ ð4Þ

Iran J Sci Technol Trans Mech Eng (2019) 43 (Suppl 1):S343–S355 S345

123



Assuming low slope for the beam after deformation and

using the von-Karman nonlinearity for midplane stretching,

the only non-zero component of the strain tensor can be

expressed as

exx ¼
o~u

ox
þ 1

2

o ~w

ox

� �2

¼ ou x; tð Þ
ox

� z
o2w x; tð Þ

ox2
þ 1

2

ow x; tð Þ
ox

� �2

ð5Þ

The contribution of the surface energy to the system’s

total strain energy is given by (Ru 2010)

dUS ¼
I
oA

sxx elð Þdexx þ snxdun;x
� �

dS; un x; tð Þ ¼ nzw x; tð Þ

ð6Þ

where oA is the undeformed surface area of the beam. For a

differential element of the surface layer, dS ¼ d�A dx, d�A is

the differential perimeter element. The surface virtual work

of Kelvin–Voigt damping can be written as

dWS ¼ �
I
oA

sxx vsð Þdexx dS ð7Þ

Note that, here, the piezoelectricity effects on the sur-

face layer are ignored due to lack of strong and compre-

hensive theoretical model in the literature. The variation of

the kinetic energy of the surface layer is as follows:

dTS ¼
Z L

0

qsAs ou

ot
d

ou

ot

� �
þ ow

ot
d

ow

ot

� �� �
dx; ð8Þ

where qs is the mass density of the surface layer, and As ¼
2 bþ hð Þ is the perimeter of the cross section.

2.2 Bulk Energy Contribution

In the present work, the modified couple-stress theory is

employed to consider the size effect and discrete nature of

the nanobeam keeping the continuity assumption. Taking

into consideration the MCST for piezoelectric materials,

the strain energy density stored in elastic bulk materials

with infinitesimal deformation occupying volume V is

given by (Yang et al. 2002)

UB ¼ 1

2

Z
V

rijeij þ mijvij � EkDk

� �
dV ð9Þ

where rij, eij, mij, vij, Dk, Ek, are stress tensor, strain tensor,

deviatoric part of couple-stress tensor, symmetric curvature

tensor, electric displacement and electric field, respec-

tively. According to the Kelvin–Voigt model, these

mechanical and electrical components can be obtained as

(Arefi and Zenkour 2017)

rij ¼ 1þ g
o

ot

� �
Cijklekl � ekijEk

� �
¼ rij elð Þ þ rij vsð Þ;

Di ¼ 1þ g
o

ot

� �
eiklekl þ kikEkð Þ ¼ Di elð Þ þ Di vsð Þ

mij ¼ 2Gxyl
2 1þ g

o

ot

� �
vij ¼ mij elð Þ þ mij vsð Þ;

vij ¼
1

2

ohi
oxj

þ ohj
oxi

� �
i; j ¼ 1; 2; 3; hi ¼

1

2
eijkuk;j

ð10Þ

where l is a materials’ size effect parameter that varies

from one material to another or from one scale to another

scale, and h is the rotation vector. Additionally, Cijkl, ekij,

kik denote the elastic constant, piezoelectric voltage’s

constant and dielectric constant, respectively. Due to the

small thickness of the nanobeams, the one-dimensional

electric field is assumed to be constant and it can be written

as

Ez ¼
Vp

h
ð11Þ

Fig. 1 Schematic of a clamped–

clamped double-layered

viscoelastic piezoelectric

NEMS system
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where Vp is the bias piezoelectric voltage. Hence, based on

Eq. (10), Dz is the one-dimensional electric displacement

and it can be expressed as

Dz ¼ 1þ g
o

ot

� �
�e31exx þ k33Ezð Þ ¼ Dz elð Þ þ Dz vsð Þ ð12Þ

According to the Euler–Bernoulli beam assumption, the

only non-zero component of the force stress tensor can be

expressed as

rxx ¼ 1þ g
o

ot

� �
C11 �

C2
13

C33

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�C11

exx

� 1þ g
o

ot

� �
e31 �

C13

C33

e33

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�e31

Ez þ
C13

C33

� �
|fflfflffl{zfflfflffl}

t

rzz

¼ rxx elð Þ þ rxx vsð Þ

ð13Þ

Here, �C11 and �e11, respectively, denote the reduced

elastic and piezoelectric voltage constants. The symmetric

curvature tensor v has two non-zero components given by

vxy ¼ � 1

2

o2w

ox2
; vyx ¼ vxy ð14Þ

The corresponding components of m can be obtained as

mxy ¼ 2l2C66 1þ g
o

ot

� �
vxy ¼ mxy elð Þ þ mxy vsð Þ ð15Þ

It is worth mentioning that, in the above equations, the

influence of electrical hysteresis (Arefi and Zenkour 2017)

is also considered. According to Lu et al. (2006), rzz varies
linearly through the thickness of the nanobeam as follows:

rzz ¼
2z

h
s0

o2w x; tð Þ
ox2

� qs
o2w x; tð Þ

ot2

� �
ð16Þ

Based on Eqs. (12)–(16), the variational form of the

potential energy of the system, on the basis of MCST, can

be formulated as

dUB ¼
Z
V

rxx elð Þdexx þ 2mxy elð Þdvxy � EzdDz elð Þ
� �

dV ð17Þ

The nonconservative work done by the viscous parts of

the stress and the deviatoric part of the symmetric couple-

stress tensors can be written as

dWB ¼ �
Z
V

rxx vsð Þdexx þ 2mxy vsð Þdvxy � EzdDz vsð Þ
� �

dV

ð18Þ

The variation of the kinetic energy of the bulk material

can be written as

dTB ¼
Z L

0

qA
ou

ot
d

ou

ot

� �
þ o ~w

ot
d

ow

ot

� �� �
dx; ð19Þ

where q is the mass density of the bulk material, and A is

the area of the nanobeam cross section.

2.3 Equations of Motion

In this section, the differential equations of motion gov-

erning the behavior of the NEMS system are derived by the

means of the extended Hamilton’s principle.Z t2

t1

dTB þ dTS � dUB þ dUSð Þ þ dWB þ dWSð

þdW ð1Þ
ext þ dW ð2Þ

ext

�
dt ¼ 0

ð20Þ

The external work done by the electrostatic and Casimir

forces is equal to:

dW ð1Þ
ext ¼

Z L

0

Felec þ Fcasð Þ dwdx ð21Þ

Considering visco-Pasternak medium between the two

VPNBs, the external force can be written as follows (Arani

et al. 2015b)

FvP ¼ C _w1 � _w2ð Þ þ kw w1 � w2ð Þ � kg
o2

ox2
w1 � w2ð Þ

ð22Þ

And, the corresponding external work done by visco-

Pasternak components is given by

dW ð2Þ
ext ¼

Z L

0

�FvPdw1 þ FvPdw2ð Þdx ð23Þ

For convenience, the following non-dimensional quan-

tities are introduced:

~w1 ¼
w1

g0
; ~w2 ¼

w2

g0
~x ¼ x

L
~t ¼ t

t�
; ~g ¼ g

t�
; ~X ¼ Xt�;

ð24Þ

where t� is a characteristic time (timescale) defined as

follows:

t� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAð ÞeqL4

EIð Þeq

s
ð25Þ

After some straightforward mathematical manipulations,

and dropping the tildes for the sake of simplicity, one can

derive the non-dimensional differential equations of

motion for the transverse vibration of the NEMS device, as

follows:
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Nanobeam 1

o2w1 x; tð Þ
ot2

þ 1þ b1 þ b2ð Þ o
4w1 x; tð Þ
ox4

þ 1þ b1ð Þg o
5w1 x; tð Þ
otox4

þ b6
o4w1 x; tð Þ
ot2ox2

� b3 þ b4 þ b5C w1;w1ð Þ þ 2b5gC _w1;w1ð Þ½ � o
2w1

ox2

þ Kw w1 � w2ð Þ þ CD

ow1

ot
� ow2

ot

� �

� KG

o2

ox2
w1 � w2ð Þ ¼ b7 VDC þ VAC cos Xtð Þð Þ2

1� w1ð Þ2

1þ b0 1� w1ð Þð Þ þ b8
1

1� w1ð Þ4

ð26Þ

Nanobeam 2

o2w2 x; tð Þ
ot2

þ 1þ b1 þ b2ð Þ o
4w2 x; tð Þ
ox4

þ 1þ b1ð Þg o
5w2 x; tð Þ
otox4

þ b6
o4w2 x; tð Þ
ot2ox2

� b3 þ b4 þ b5C w2;w2ð Þ½

þ 2b5gC _w2;w2ð Þ� o
2w2

ox2
� Kw w1 � w2ð Þ

� CD

ow1

ot
� ow2

ot

� �
þ KG

o2

ox2
w1 � w2ð Þ ¼ 0

ð27Þ

Subject to the following boundary conditions:

wi 0; tð Þ ¼ wi 1; tð Þ ¼ 0; w0
i 0; tð Þ ¼ w0

i 1; tð Þ ¼ 0; i ¼ 1; 2

ð28Þ

where

C u1 x; tð Þ;u2 x; tð Þð Þ ¼
Z 1

0

ou1

ox
� ou2

ox
dx; b1 ¼

Al2C66

EIð Þeq
;

b2 ¼ � 2ts0I
h EIð Þeq

; b3 ¼
FsL

2

EIð Þeq

b4 ¼ � 2VpA�e31L
2

h EIð Þeq
; b5 ¼

EAð Þeqg20
2 EIð Þeq

; b6 ¼
qIð Þeq

L2 qAð Þeq
;

b7 ¼
e0bL4

2g30 EIð Þeq
; b8 ¼

p2�hcbL4

240g50 EIð Þeq

Kw ¼ kwL
4

EIð Þeq
; CD ¼ CL4

EIð Þeqt�
;KG ¼ kgL

4

EIð Þeq
;

b0 ¼
0:65

b
g0 EIð Þeq¼ �C11I þ EsIs;

EAð Þeq¼ �C11Aþ EsAs; qAð Þeq¼ qAþ qsAs;

Fs ¼ 2s0 2bþ hð Þ; qIð Þeq¼
2tqsI
h

ð29Þ

The integral term in Eqs. (26) and (27) stands for the

midplane stretching of the nanobeam due to the immovable

edges.

3 Reduced-Order Model of VPNBs

In this section, to generate the reduced-order model (ROM)

of the system, Galerkin discretization method is applied to

the coupled partial differential equations, Eqs. (26) and

(27). Therefore, the following finite series are assumed as

the solution for the motions of the NEMS resonator.

w1 x; tð Þ ¼
XN1

i¼1;3;5;...

qi tð Þui xð Þ

w2 x; tð Þ ¼
XN2

i¼1;3;5;...

pi tð Þui xð Þ
ð30Þ

where ui xð Þ is the eigenfunction of doubly clamped linear

undamped nanobeam under piezoelectric actuation, con-

sidering the effects of size and surface energy. qi tð Þ and

pi tð Þ indicate the i’th time-dependent generalized coordi-

nates for w1 and w2 motions, respectively. Note, that here

only the symmetric eigenfunctions are considered because

of the symmetry in the configuration of the NEMS device

and the electrostatic and dispersion Casimir forces. In

addition, ui s are normalized such that
R 1
0
ui � uj dx ¼ dij

and satisfying the following eigenvalue problem:

1þ b1 þ b2ð ÞuIV
i ¼ b3 þ b4 þ b6x

2
i

� �
u00
i

þ x2
i ui; ui xð Þ ¼ 0; u0

i xð Þ ¼ 0 at x ¼ 0; 1
ð31Þ

where xi is the i
0th dimensionless natural frequency of the

corresponding linear system. Substituting Eq. (30) into

Eqs. (26) and (27) and using Eq. (31) to eliminate uIV
i ,

then based on Galerkin technique multiplying both sides by

un, and integrating the resultant over the length of the

nanobeam reduces to a set of nonlinear differential equa-

tions in terms of generalized coordinates, qi and pi.

€qn þ
XN
i¼1

b3 þ b4 þ b6x
2
i

� �
kniqi þ x2

nqn

þ 1þ b1ð Þg
1þ b1 þ b2ð Þ

XN
i¼1

b3 þ b4 þ b6x
2
i

� �
kni _qi þ x2

n _qn

 !

� b3 þ b4ð Þ
XN
i¼1

kniqi � b5
XN
i¼1

XN
j¼1

XN
l¼1
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qiqjqlknl

Z 1

0

u0
iu

0
jdx� 2b5g

XN
i¼1

XN
j¼1

XN
l¼1

_qiqjqlknl

Z 1

0

u0
iu

0
jdxþ b6

XN
i¼1

kni€qi

þ
XN
i¼1

Kwdni � KGknið Þ qi � pið Þ þ CD

XN
i¼1

kni _qi � _pið Þ

¼ b7 VDC þ VAC cos Xtð Þð Þ2

�
Z 1

0

un

1�
PN
i¼1

kniqi

� �2
1þ b0 1�

XN
i¼1

kniqi

 ! !0
BBB@

1
CCCAdx

þ b8

Z 1

0

undx

1�
PN
i¼1

kniqi

� �4
; n

¼ 1; 2; . . .;N

ð32Þ

€pn þ
XN
i¼1

b3 þ b4 þ b6x
2
i

� �
knipi þ x2

npn

þ 1þ b1ð Þg
1þ b1 þ b2ð Þ

XN
i¼1

b3 þ b4 þ b6x
2
i

� �
kni _pi þ x2

n _pn

 !

� b3 þ b4ð Þ
XN
i¼1

knipi � b5
XN
i¼1

XN
j¼1

XN
l¼1

pipjplknl

Z 1

0

u0
iu

0
jdx

� 2b5g
XN
i¼1

XN
j¼1

XN
l¼1

_pipjplknl

Z 1

0

u0
iu

0
jdxþ b6

XN
i¼1

kni€pi

�
XN
i¼1

Kwdni � KGknið Þ qi � pið Þ � CD

XN
i¼1

kni _qi � _pið Þ

¼ 0; n ¼ 1; 2; . . .;N

ð33Þ

where

kni ¼
Z 1

0

u00
i xð Þun xð Þdx ð34Þ

In this work, it is assumed that N1 ¼ N2 ¼ N. In

Eqs. (32) and (33), overdot indicates o=ot and prime stands

for o=ox, and dni symbols the kronecker delta.

The two terms in the right hand side of Eq. (32) repre-

sent the electrostatic and Casimir dispersion forces,

respectively, which consist of complex displacement-de-

pendent nonlinearities in the denominator. A combined

arclength continuation-shooting method is schemed to

capture the frequency–response curves of the system.

Although this method causes large computational cost, it is

very reliable. In the rest of the paper, the influences of the

length-scale parameter, surface energy, interatomic dis-

persion force, and piezoelectric voltage on the frequency–

response behavior of the double-layered VPNBs system

near superharmonic (X = 3x0) resonance are investigated.

To this aim, the complicated set of nonlinear ODEs is

numerically solved employing a combined shooting–ar-

clength continuation scheme with direct-time integration.

The Floquet theory is used to perform stability analysis.

4 Results and Discussion

The geometrical parameters of the PZT-5H nanobeams and

the values related to the mechanical properties of the bulk,

and surface layer are listed in Table 1 (mechanical prop-

erties of the surface layer were adopted from (Zhang et al.

2014)).

In the rest of the paper, the numerical simulations are

performed for Kw ¼ 2 and KG ¼ 1 unless indicated in the

text. The non-dimensional damping coefficient of the

elastic medium, CD, is set to be 0.1 throughout the simu-

lations. Two-mode approximation is considered for each

nanobeam displacement to analyze the nonlinear dynamic

response of the double-layer VPNBs. In fact, the system of

equations of motion consists of four second-order nonlinear

differential equations which are converted to an 8-degree-

of-freedom system in state space. The blue and black dots

represent the stable solution while the red and violet dots

denote the unstable one for the lower and upper nano-

beams, respectively.

The influence of the length-scale parameter on the

amplitude of the steady-state response of the NEMS sys-

tem, W1max and W2max, is depicted in Fig. 2. The AC fre-

quency-displacement plots are obtained for three values of

length-scale parameter. As observed, the nanoresonator

exhibits mixed hardening–softening-type behavior with

four saddle-node bifurcation points, S1, S2, S3 and S4.

Increasing the amount of length-scale parameter causes the

Table 1 Geometrical and material properties of the PZT-5H

nanobeams

L ¼ 500 nm t ¼ 0:31

b ¼ 45 nm s0 ¼ 1N=m

h ¼ 15 nm Es ¼ 7:56 N=m

�C11 ¼ 126GPa qs ¼ 7:5� 10�6 kg=m2

�e31 ¼ �6:55 C=m2 e0 ¼ 8:854� 10�12 F=m

q ¼ 2331 kg=m3
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Fig. 2 Influence of the small-scale parameter on AC frequency–response curves of the NEMS resonator near superharmonic resonance; a lower

nanobeam, b upper nanobeam. VDC = 1 V and VAC = 2 V
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Fig. 3 Influence of the small-scale parameter on AC frequency–response behavior of the lower nanobeam near superharmonic resonance; for

a g = 0.0001 and b g = 0.00012. VDC = 1 V and VAC = 2 V
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Fig. 4 Influence of the surface energy on AC frequency–response curves of the NEMS resonator near superharmonic resonance; a lower

nanobeam, b upper nanobeam. VDC = 1 V and VAC = 2 V
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frequency–response branches and consequently the bifur-

cation points’ loci almost rigidly shift to the right. In other

words, the slope of the solution manifolds is not remark-

ably affected by the impact of the couple-stress parameter.

It is also seen that the response amplitude level of the upper

nanobeam is smaller than that of the lower one. Moreover,

the upper nanobeam shows more extreme softening

behavior in comparison with the lower one, which is

inferred by the intense bending of the high-amplitude

solution manifolds to the left, Fig. 2b.

For larger impact of viscoelasticity, the effect of the

couple-stress parameter on the superharmonic resonance

characteristics corresponding to the lower nanobeam is

illustrated in Fig. 3. In Fig. 3a, the parameter g is assumed

to be 0.0001, and it is seen that for classical continuum

theory (CCT), the frequency–response curve consists of

both hardening and softening behaviors; containing three

stable and three unstable solution manifolds. While the

effect of small-scale parameter is considered (for MCST),

the amplitude level of the system response is remarkably

reduced so that the large-amplitude unstable branches are

disappeared. For g = 0.00012, the nanobeam dynamics

undergoes only hardening-type behavior for both CCT and

MCST; however, similar to the previous case, the maxi-

mum amplitude of the periodic orbit decreases and the

slope of the solution manifolds remains unchanged while

the influence of size is considered, Fig. 3b.

Figure 4 illustrates the effect of surface energy on

dynamic response of the double-layered NEMS system in

the vicinity of superharmonic resonance. Similar to the

previous case, the frequency–response plots consist of

three stable and three unstable solution manifolds which

intersect at four saddle-node bifurcation points. According

to Fig. 4a, the response amplitude level far from the res-

onance region significantly increases, while the effect of

surface energy is not included in the model. Furthermore,

the horizontal distance between the stable and unsta-

ble branches corresponding to the hardening motion is

reduced in the presence of the surface energy effect. It is

also observed that, the softening behavior of the lower

nanobeam is slightly weakened while the system dynamics

is affected by the surface parameters; whereas the upper

nanobeam shows a little more softening-type behavior in

the presence of the surface effect.

Figure 5 shows the influence of the interatomic Casimir

regime on the nonlinear dynamic response of the double-

layered NEMS device. As observed in the figure, the sys-

tem displays a combined hardening and softening-type

behavior whether or not the effect of Casimir force is

considered. As seen, in the absence of the dispersion force,

the maximum level of the system’s response amplitude is

extremely larger than those obtained in the presence of the

Casimir force. As observed in Fig. 5a, the bending of the

solution manifolds increases in both hardening and soft-

ening parts of the frequency–response curve while the

effect of the Casimir force is not taken into account in the

system dynamics. However, for the upper nanobeam

(Fig. 5b), the slope of the both stable and unstable solution

branches remains almost unchanged, and thus, the order of

nonlinearity is not affected by the Casimir regime. Fur-

thermore, for both nanobeams, the bifurcation points’ locus

is shifted to the left while considering the influence of the

Casimir force.

The effect of piezoelectric voltage value and its polar-

ization is shown in Fig. 6. The amplitude of the steady-

state response of the lower and upper nanobeams are

obtained for three different levels of piezoelectric voltage,

Vp = - 100 mV, Vp = 0 and Vp = 100 mV. As observed in

the figure, for zero piezoelectric actuation, the resonance

occurs in the system while the excitation frequency
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Fig. 5 Influence of the Casimir force on AC frequency–response curves of the NEMS resonator near superharmonic resonance; a lower

nanobeam, b upper nanobeam. VDC = 1 V and VAC = 2 V
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approaches X & 7.4. For the case of positive polarization,

a tensile axial force is induced in the nanobeams which

results in an enhancement in the bending stiffness of the

structure. Therefore, the resonance region shifts to the

higher frequencies (X & 8.2). In contrast, when a negative

piezoelectric voltage is applied in direction of the nano-

beams’ thickness, a compressive axial force is induced in

the VPNBs. This reduces the nanobeam bending stiffness,

Vp VVm001-= p VVm0= p= 100mV 
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Fig. 6 Influence of the piezoelectric voltage on AC frequency–response curves of the NEMS resonator near superharmonic resonance; a lower

nanobeam, b upper nanobeam. VDC = 1 V and VAC = 2 V
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superharmonic resonance, considering the effects of size-dependency
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VAC = 3.5 V; Vp = 100 mV
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and consequently the system undergoes resonant at lower

frequencies (X & 6.6).

In the following, we aim to study the influences of the

direct and alternative- current voltage values on the

dynamic pull-in behavior of the proposed NEMS device.

For these cases, the effects of couple-stress parameter,

surface strain energy, and the dispersion force are all

included in dynamical model. The impact of viscoelasticity

is considered as previous, and the system is actuated by a

certain piezoelectric voltage value; Vp = 100 mV. Figure 7

illustrates the frequency–response behavior of the lower

nanobeam in the neighborhood of the superharmonic res-

onance of one-third of the fundamental natural frequency,

for VDC = 1 V and VAC = 3.5 V. As seen in the figure,

there are two frequency regions named A = [10.17, 10.2]

and B = [10.57, 10.61], in which there exist two stable so-

lutions; one low-amplitude and one large-amplitude

motion. In the middle region, there is no stable solution

manifold and, therefore, the system undergoes dynamic

pull-in instabilities for the frequencies in the interval of

10.49, 10.52]. There is only one stable solution branch in

the other frequency ranges. Figure 8 depicts the nonlinear

dynamic response of the system for the electrostatic volt-

ages of VDC = 2 V and VAC = 3.5 V. It can be seen that,

the resonance region shifts to the left, and the distance

between the solution manifolds enhances as the level of DC

load is increased. Furthermore, the pull-in band width

increases while increasing the DC voltage load, and the

system becomes unstable in the frequency interval of [10.3,

10.41].

Similar to the previous case, there are two regions,

A and B, one before and one after the pull-in band; con-

sisting of two stable solutions and one unstable solution

amplitude. In this case, the frequency interval B becomes

narrower than that obtained in Fig. 7. This is based on the

fact, that for the larger values of DC voltage load, the

softening behavior due to electrostatic force dominates the

hardening behavior rising from midplane stretching; thus,

the slope of the lower solution manifolds increases up to

that of a vertical line, Fig. 8.

The frequency-displacement behavior of the NEMS

system for the electrostatic loads of VDC = 1 V and VAC-

= 4 V is drawn in Fig. 9. Comparing Figs. 7 and 9, it is

observed that, the resonance frequency shifts to the left as

the level of AC voltage load increases; however, the slope

of the lower solution branches remains constant. Moreover,

the width of the frequency interval in which the system

undergoes dynamic pull-in instabilities increases as the

alternative-current voltage grows. In this case, the pull-in

range is approximated in the interval of [10.36, 10.47].

Unlike the previous case, in which the region A shifted to

the right by increasing the amount of DC load, here, the

region shifts to the lower frequencies while the AC load

increases.

5 Conclusion

The impetus of this paper was to investigate the nonlinear

characteristics of a double-layered viscoelastic NEMS

device near superharmonic resonance. Two nanobeams are

made of piezoelectric material and coupled through a

visco-Pasternak medium in between. Taking into account

the effects of size and surface strain energy for the nano-

sized structure, the modified couple-stress theory together

with Gurtin–Murdoch surface elasticity theory were uti-

lized. Kelvin–Voigt model is also employed to consider the

impact of viscoelasticity.

For a certain value of the viscoelasticity parameter,

g = 0.00001, the influences of the length-scale parameter,

surface energy and Casimir force on the nonlinear char-

acteristics of the system are studied. The results revealed

that the nanoresonator exhibits a combined hardening–

softening-type behavior with four saddle-node bifurcation

points, so that increasing the amount of couple-stress

parameter results in a right-shift to the frequency–response

branches. In addition, the upper nanobeam shows more

extreme softening behavior in comparison with the lower

one. It has been observed that, both the response amplitude

level of the horizontal solution manifolds and the hori-

zontal distance between the stable and unstable branches is

remarkably reduced while the effect of surface energy is

considered. This study also revealed that, ignoring the

influence of Casimir force leads to enhancement in the

maximum vibration amplitude of the system as well as the

bending degree of the solution branches in both hardening

and softening part of the frequency–response curve,
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Fig. 9 Frequency–response behavior of the lower nanobeam near

superharmonic resonance, considering the effects of size-dependency

(l = h/6), surface energy, and the Casimir forces. VDC = 1 V and

VAC = 4 V; Vp = 100 mV
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Fig. 5a. Furthermore, the results indicate that application of

MCST, and the presence of the surface energy effects and

Casimir force shift the saddle-node bifurcation point’s loci

and affect the jump phenomenon.

In this work, the effects of the DC and AC voltage

values on the dynamic pull-in behavior of the proposed

NEMS device are also studied. The results showed that the

resonance region shifts to the left; the distance between the

solution manifolds and the pull-in band width increases as

the level of both DC and AC loads enhances. The obtained

results can be useful in designing and analyzing the novel

nanoelectromechanical devices which are made of vis-

coelastic piezoelectric materials, so that they can be mod-

eled by two nanobeams and a third medium in between.
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