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Abstract
It is important to identify the presence of damage present in the structures like bridge which undergoes the excitation due to

moving vehicles. In such type of problems, modal analysis and dynamic displacement response analysis are not sufficient

to portray the crack presence. The presented work emphases on the analysis of acceleration response to investigate the

crack presence. A mathematical model is developed by considering the two masses with fixed distance between them

traversing on the Euler–Bernoulli beam having a crack. The acceleration response analysis can be effective to present the

qualitative explanation of the fault present in the beam. A key features of the acceleration response of beam having a crack

includes discontinuity at the crack location which vary with change in distance between the front and rear wheel and a

greater response value compare to that for healthy in the last phase of travel from the time front wheel exits the beam.

However, the effectiveness of the presentation of the crack through acceleration response depends upon the fixed distance

between the front and rear wheel and the bridge length. The discontinuity will be higher for the higher ratio of distance

between the front and rear wheel to the bridge length.

Keywords Moving mass � Dynamic displacement response � Dynamic acceleration response � Crack identification �
Mathematical modeling

List of symbols
c Sectional flexibility

# Poissons ratio

E Young’s modulus

I Moment of inertia

h Height of the beam

a Depth of crack

Y1 xð Þ Displacement response of first segment

Y2 xð Þ Displacement response of second segment

b Non-dimensional natural frequency

x Variable distance traveled by vehicle from left

end

l1 Crack located at distance from the left end of

beam

L Total length of beam

t Time

m Velocity of vehicle

d Distance between front and rear wheel

M1 Mass on the front wheel (farthest from the left

end)

M2 Mass on the rear wheel

g Gravitational acceleration

q(t) Modal response

m Mass of the beam

q Density of the beam

A Cross section of beam

xn nth Natural frequency

1 Introduction

An extensive literature is available on the problem of

moving loads by considering the different loading, dif-

ferent boundary conditions, and different analytical as

well as numerical techniques. However, only few studies

are available in which the analysis is carried out on beam

having fault and undergoes the moving mass excitation.

Chondros et al. (1998) developed a theory to calculate the

continuous vibrations of the cracked beam using fracture
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mechanics approach. This is presented for single-edge as

well as for double-edge open crack. Considering a

cracked beam as a one-dimensional continuum, a varia-

tional formulation was used to develop the differential

equation and boundary conditions. The crack was mod-

eled as the continuous flexibility using the displacement

field only in the vicinity of the crack, and the stresses and

the displacement field for the complete beam are modified

by using the displacement field about the crack. The two

independent theories, i.e., continuous cracked beam

vibration theory and lumped cracked beam vibration

theory are presented for vibration analysis of the cracked

beam. An experimental data of aluminum beams with

fatigue crack and steel beam with double-edge crack are

presented which are compared well with that obtained by

above method. The same method for finding out the mode

shape of beam having crack has been used by many

researchers to study the problem of damaged beam under

the excitation of moving load. Wang and Lee (2012)

suggested the reduction in stiffness of the beam due to the

presence of crack with the development of a new sec-

tional flexibility factor for the open single-edge crack.

While, a crack modeled as a rotational spring has the

sectional flexibility. The natural frequency and mode

shapes are calculated by applying the continuity condi-

tions and using the transfer matrix method. The suggested

modified flexibility factor has the good agreement with

the results of other literature for relative crack size less

than 0.5. Lee and Singapore (1994) formulated the crack

by placing a torsional spring at the crack location having

an equivalent spring constant. A cracked beam is formed

by joining the two separate segments of beam with a

torsional spring at the crack location. The eigen-value of

the cracked beam is found by formulating the separate

vibrational mode functions for each segment which satisfy

the boundary conditions. A beam with a crack at one side

and subjected to the moving force on the other side is

studied to analyze the dynamics response at the crack

with a linear spring of very large stiffness. Lin and Chang

(2006) carried out the vibration analysis of cracked can-

tilever beam, subjected to a single moving force, with

respect to various parameters. Using the fracture

mechanics method as referred by Chondros et al., com-

patibility conditions are formulated at the crack location,

and transfer matrix was developed for establishing the

relation in two segments of the beam. The mode shapes

of the cracked beam are shown, and responses of the

cantilever beam are obtained by convolution integral

method. The response of free end is analyzed for the

parameters like crack size, location, mode numbers and

velocity ratio. The crack presence near the fixed end leads

to the maximum displacement. Lin (2007) presented the

method to determine the vibrational behavior of simply

supported cracked beam subjected to the moving vehicle

by using the modal expansion theory. The crack formu-

lation is done to find the mode shapes of the each seg-

ment separated by crack. A vehicle with two axles is

modeled as two concentrated moving loads separated by

the fixed distance. The vehicle load is distributed on each

axle from the center of gravity of the vehicle. Yang et al.

(2008) studied an inhomogeneous Euler–Bernoulli beam

having an open edge crack subjected to the moving force

traversing in a longitudinal direction and axial compres-

sive force to explore the free and forced vibration. A

crack is modeled as a rotational spring having sectional

flexibility and a beam is parted in the segments at the

crack location. A relational matrix is formed using the

compatibility requirements and boundary conditions at the

end of beam segments and mode shapes can be found.

The displacement of the beam with various boundary

conditions is investigated analytically with respect to the

velocity of the moving force. The major effect of the

crack and compressive force can be observed on the

frequency than it is on the displacement. The frequency of

the damaged beam gets decreased and the deflection gets

increased comparative to that for the healthy beam. The

frequency and deflection are more sensitive to the applied

compressive force than it is with the presence of crack

and its location. Khorram et al. (2011) explored the

response of the simply supported cracked beam subjected

to the moving load for the crack of size 50% of the

height. The variations in the response for various veloc-

ities and the displacement of beam at various locations

due to the crack are compared with that for the healthy

beam. Bakhtiari-Nejad and Mirzabeigy (2013) modeled

the beam with breathing crack as a single-degree-of-

freedom model with varying stiffness subjected to the

moving force with constant velocity. The deflection of the

beam is estimated by using the basic principle of strength

of material and compared with that of the healthy beam

found with modal expansion theory. The study also

focused on effect of the location and size of crack with

speed of the moving force. Mahmoud and Zaid (2002)

discretized the beam into the number of elements, and the

mass of each element is considered as lumped in the

center of the element and assumed as connected by

massless rod having flexural rigidity. A matrix is devel-

oped to form the relation which shows the status of the

element at the locations immediately lies before and after

the center of element through the inertia forces. This

matrix gets modified with the presence of the crack. The

modified recurrence equation for each element is devel-

oped and gets modified with the crack presence. The

crack compliance is inserted in this equation which is

found again using the fracture mechanics by considering

the joining of two healthy beams at the crack location by
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torsional spring. The presence of crack leads to the

increase in the deflection and also shifts the deflection

peak to the right of beam. Ariaei et al. (2009) proposed a

solution using discrete element method and finite element

method. The variational method is used to extract the

stiffness and mass matrix of the beam element. The

dynamic response of the beam is evaluated for both the

methods and comparison is made for the open and

breathing crack. The methods are also evaluated with the

results presented in the previous literature. The presence

of crack leads to the increase in response with change in

response pattern. A discontinuity appears in the response

at the crack location which is very small to see with open

eyes. Pala and Reis (2012) presented the inclusion of the

centripetal, inertial and Coriolis forces remarkably affect

the response of the system with increase in mass and

speed of the moving mass. The crack is formulated by

considering the two separate beam joined by torsional

spring having spring constant. The fundamental vibration

mode functions are found for the simply supported beam

by satisfying the geometric boundary conditions at the

end. The resulting equations form the relation between the

two segments giving the transfer matrix, so that eigen-

value and constants of each segment can be found. The

response of the cracked beam is found by Duhamel

integration over the domain of the beam. The study has

shown the distinguished effect of considering these three

forces, i.e., inertial, centripetal and Coriolis force on the

response. The crack located in the middle leads to the

higher deflection. The increase in crack size leads to the

increase in deflection and shift of the peaks toward the

right of beam. Zhong and Oyadiji used the Rayleigh

method to obtain an approximate closed form solution for

the simply supported beam having a crack under a roving

mass. The effect of crack is introduced through the

polynomial function to formulate the transverse response.

The frequency of the cracked simply supported beam is

observed to be reduced with increase in crack-depth and

also as the roving mass traverse closer to the crack

location (Zhong and Oyadiji 2007). Fernandez-Saez et al.

found the Rayleigh method, natural frequency of the

cracked simply supported beam. The same method of

assuming the crack as a hinged torsional spring is used. A

beam is not divided in two segments instead the traverse

deflection response is assumed to be the addition of the

response of undamaged beam and the polynomial function

(Fernandez-Saez et al. 1999). Zhong et al. (2017) fixed a

sensor consists of an artificial quasi-interferogram fringe

pattern which is same as interferogram of 2D-OCVT

system on the surface of beam structure for identification

of crack presence. High-speed camera is used as a

detector to capture the image sequences. The period

density of the images observed to be changing with

change in structural vibration. It is found that the fre-

quency of the structure is changed as the roving auxiliary

masstraversed over the structure. The method proved to

be very effective for proving the information of spatial

locations of crack.

The problem of damaged beam traversed by a vehicle

with consideration of distributed weight over the front and

rear wheel is discussed by very few researchers. Vaidya

and Chatterjee (2017) used two contact point model of the

vehicle traveling over the healthy beam to analyze the

effect of the span between the front and rear wheel of the

vehicle. Also the displacement response of the two contact

point model compared with that of the single contact point

model. The maximum displacement can be controlled by

changing the distance between front and rear wheel espe-

cially in the case of heavy vehicles. Also in most of the

research paper, the displacement response has been

investigated while acceleration response should also be

investigated. The dynamic response of the damaged beam

contains a discontinuity at the crack location; however, it is

not visible and can be seen only through magnification.

In the present work, simulated acceleration response in

addition to the displacement response of damaged beam

subjected to the single moving mass whose mass is dis-

tributed over the front and rear wheel. The model is

equivalent to two mass moving with some fixed distance.

The acceleration response contains a discontinuity at the

location of crack with no change in the profile and trend of

response curve. A two contact point model of vehicle is

developed which includes the two moving masses with

fixed distance traversing over the simply supported Euler–

Bernoulli beam. The acceleration response presented has

the discontinuity at the crack location with the additional

feature of higher value of acceleration compare to the

response value of healthy one in the last phase of travel.

Therefore, the acceleration response presents the qualita-

tive explanation about the presence of crack and its

location.

2 Mathematical Modeling of a Damaged
Beam

Here a simply supported beam with crack at mid-span is

considered as shown in Fig. 1. Crack-depth is represented

by the parameter a and a/h denotes the crack-depth ratio. l1
denotes the location of crack from left end of the beam.

The crack introduces a local flexibility which can be rep-

resented by a torsional spring (Chondros et al. 1998) as

shown in Fig. 2.

The crack divides the beam as two separate uniform

segments connected by a torsional spring with local sec-

tional flexibility at the crack location. This flexibility due to
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the crack is here termed as a parameter c, which can be

found as (Chondros et al. 1998)

c ¼ 1� #2ð Þ
EI

6ph/ að Þ ð1Þ

where, a ¼ a=h is the crack-depth ratio and # is Poisson

ratio

For a single-sided open crack, using fracture mechanics

formulations, one can obtain

/ að Þ ¼ 0:655563a2½0:9566� 1:5944aþ 7:008a2� 15:21a3

þ 30:9534a4� 50:38657a5þ 71:8488a6

� 62:1624a7þ 29:89486a10� ð2Þ

For the cracked beam, deflection response for each segment

of the beam can be written as

Y1 xð Þ ¼ C1 sin bxð Þ þ C2 cos bxð Þ
þ C3 sinh bxð Þ þ C4 cosh bxð Þ 0\x\l1

ð3aÞ

Y2 xð Þ ¼ D1 sin b x� l1ð Þð Þ þ D2 cos b x� l1ð Þð Þ
þ D3 sinh b x� l1ð Þð Þ
þ D4 cosh b x� l1ð Þð Þ l1\x\L

ð3bÞ

The applicable boundary conditions are

yjx¼0 ¼ 0;
o2y

ox2
jx¼0 ¼ 0; yjx¼L ¼ 0 and

o2y

ox2
jx¼L ¼ 0

ð4Þ

which gives

sin b L� l1ð Þð Þ cos b L� l1ð Þð Þ sinh b L� l1ð Þð Þ cosh b L� l1ð Þð Þ
� sin b L� l1ð Þð Þ � cos b L� l1ð Þð Þ sinh b L� l1ð Þð Þ cosh b L� l1ð Þð Þ

� �

D1

D2

D3

D4

2
6664

3
7775 ¼

0

0

� �

ð5Þ

denoting y0 ¼ oy
ox
; y00 ¼ o2y

ox2
and y000 ¼ o2y

ox2
and assuming the

constant properties along the beam, the conditions at the

crack location for both segments can be written as

y1 l1; tð Þ � y2 l1; tð Þ ¼ 0 ð6aÞ

y001 l1; tð Þ � y002 l1; tð Þ ¼ 0 ð6bÞ

y0001 l1; tð Þ � y0002 l1; tð Þ ¼ 0 ð6cÞ

y02 l1; tð Þl1 � y01 l1; tð Þ ¼ y002 ; tð Þ EIcð Þ
l1

� �
l1 ð6dÞ

where, (EIc/l1) is the non-dimensional cracked section

flexibility.

Equations (4, 6a–d) along with Eq. (3a) give

D1

D2

D3

D4

2
6664

3
7775

¼

2ac � Kbs � 2bs � Kac Kbh Kah

2bs 2ac 0 0

�Kbs �Kac 2ah þ Kbh 2bhl þ Kah

0 0 2bh 2ah

2
6664

3
7775

C1

C2

C3

C4

2
6664

3
7775

ð7Þ

where K ¼ bEIc

ac ¼ cos bl1ð Þ ah ¼ cosh bl1ð Þ
bs ¼ sin bl1ð Þ bh ¼ sinh bl1ð Þ
acl ¼ cos b L� l1ð Þð Þ ahl ¼ cosh b L� l1ð Þð Þ
bsl ¼ sin b L� l1ð Þð Þ bhl ¼ sinh b L� l1ð Þð Þ

Now inserting Eq. (7) into Eq. (5) gives

bsl acl bhl ahl

� bsl � acl bhl ahl

� �

2ac � Kbs � 2bs � Kac Kbh Kah

2bs 2ac 0 0

�Kbs �Kac 2ah þ Kbh 2bhl þ Kah

0 0 2bh 2ah

2
6664

3
7775

C1

C2

C3

C4

2
6664

3
7775 ¼

0

0

� �
ð8Þ

Fig. 1 A simply supported beam with crack at mid-span

Fig. 2 Beam modeled with crack through a torsional spring
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This results in

where, the constants are

N1 ¼ 2ah þ Kbhð Þbhl þ 2bhahl

N2 ¼ bhl 2bhl þ Kahð Þ þ 2ahahl

N3 ¼ 2ac � Kbsð Þ
N4 ¼ �2bs � Kacð Þ

For non-trivial solution of Eq. (9) to exit the coefficient

determinant needs to be equal to zero which gives the

required frequency equation as

2cos l1bð Þcosh l1bð Þ sin L� l1ð Þbð Þ sinh L� l1ð Þbð Þ
þ 2cos L� l1ð Þbð Þcosh l1bð Þ sin l1bð Þ sinh L� l1ð Þbð Þ
� K cosh l1bð Þ sin L� l1ð Þbð Þ sin l1bð Þ sinh L� l1ð Þbð Þ
þ 2cos l1bð Þcosh L� l1ð Þbð Þ sin L� l1ð Þbð Þ sinh l1bð Þ
þ 2cos L� l1ð Þbð Þcosh L� l1ð Þbð Þ sin l1bð Þ sinh l1bð Þ
� K cosh L� l1ð Þbð Þ sin L� l1ð Þbð Þ sin l1bð Þ sinh l1bð Þ
þ K cos l1bð Þ sin L� l1ð Þbð Þ sinh L� l1ð Þbð Þ sinh l1bð Þ
þ K cos L� l1ð Þbð Þ sin l1bð Þ sinh L� l1ð Þbð Þ sinh l1bð Þ ¼ 0

ð10Þ

This determinant is solved to find the multiple values of b,
i.e., non-dimensional natural frequency. Once this b is

obtained, it is inserted in Eq. (9) to find the value of the C3

by assuming that C1 = 1. Then we can find out the mode

shape of the damaged beam.

3 Response Analysis of Damaged Beam
Under Moving Vehicle

Figure 3a–e shows a two contact point model of the vehicle

over the damaged beam during five phases of traversal. In

dynamic response modeling for this case, the following

assumptions are considered.

(a) The beam is simply supported at both the ends.

(b) Vehicle acts as a rigid mass and moves with a

constant velocity, v.

(c) Vehicle vibration is translational only. Rotational

vibration is taken to be negligible and not

considered.

(d) At any time, only one vehicle traverses the bridge

with zero initial conditions.

The governing differential equation of motion by con-

sidering the weight and inertia effects is written for the

beam for these five different stages of travel of vehicle.

For t� d=v

EI
o4y x; tð Þ
ox4

þ qA
o2y x; tð Þ

ot2

¼ M1g � d x� vtð Þ �M1

o2y

ot2
þ 2v

oy

ox

oy

ot
þ v2

o2y

ox2

� �
� d x� vtð Þ

ð11Þ

For t[ d=v and t� l1=v;

For t[ l1=v and t� l1 þ dð Þ=v;
For t[ l1 þ d=v and t� L=v

EI
o4y x; tð Þ
ox4

þ qA
o2y x; tð Þ

ot2

¼ M1g � d x� vtð Þ �M1

o2y

ot2
þ 2v

oy

ox

oy

ot
þ v2

o2y

ox2

� �
� d x� vtð Þ

þ M2g � d x� vt � dð Þ½ �

� M2

o2y

ot2
þ 2v

oy

ox

oy

ot
þ v2

o2y

ox2

� �
� d x� vt � dð Þ½ �

ð12Þ

For t[ L=v and t� Lþ dð Þ=v

EI
o4y x; tð Þ
ox4

þ qA
o2y x; tð Þ

ot2

¼ M2g � d x� vt � dð Þ½ �

� M2

o2y

ot2
þ 2v

oy

ox

oy

ot
þ v2

o2y

ox2

� �
� d x� vt � dð Þ½ �:

ð13Þ

The mass M1 is a front wheel mass and M2 is the rear

wheel mass. d is the fixed distance between the two base

wheels. Using the series form solution as

bslN3þ 2bsacl � Kbsbhl bslN4þ 2acacl � Kacbhl Kbhbsl þ N1 Kahbsl þ N2

� bslN3� 2bsacl � Kbsbhl � bslN4� 2acacl � Kacbhl �Kbhbsl þ N1 �Kahbsl þ N2

� �

C1

0

C3

0

2
6664

3
7775 ¼

0

0

� �
ð9Þ
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y x; tð Þ ¼ Yj xð Þ qj tð Þ ð14Þ

where, qj tð Þ are the modal coordinates and Yj (x) are the

mode shape spatial functions for simply supported beam.

Now, substitution of Yj (x) in Eq. (14) and multiplying each

term of Eqs. (11–13) with Yn xð Þ and integrating over the

domain (0, L) gives

For t� d=v

x2
nqn tð Þ þ €qn tð Þ

¼ 2M1g

mL
Yn xð Þ � 2M1

mL

X1
j¼1

Yj xð ÞYn xð Þ€qj tð Þ

� 4M1v

mL

X1
j¼1

Y
0

j xð ÞYn xð Þ _qj tð Þ

� 2M1v
2

mL

X1
j¼1

Y
00

j xð ÞYn xð Þqj tð Þ ð15Þ

For t[ d=v and t� l1=v;

For t[ l1=v and t� l1 þ dð Þ=v;
For t[ l1 þ d=v and t� L=v

x2
nqn tð Þþ €qn tð Þ

¼2M1g

mL
Yn xð Þ�2M1

mL

X1
j¼1

Yj xð ÞYn xð Þ€qj tð Þ

�4M1v

mL

X1
j¼1

Y
0

j xð ÞYn xð Þ _qj tð Þ�
2M1v

2

mL

X1
j¼1

Y
00

j xð ÞYn xð Þqj tð Þ

þ2M2g

mL
Yn x�dð Þ�2M2

mL

X1
j¼1

Yj x�dð ÞYn x�dð Þ€qj tð Þ

�4M2v

mL

X1
j¼1

Y
0

j x�dð ÞYn x�dð Þ _qj tð Þ

�2M2v
2

mL

X1
j¼1

Y
00

j x�dð ÞYn x�dð Þqj tð Þ ð16Þ

For t[ L=v and t� Lþ dð Þ=v

x2
nqn tð Þ þ €qn tð Þ ¼ 2M2g

mL
Yn x� dð Þ

� 2M2

mL

X1
j¼1

Yj x� dð ÞYn x� dð Þ€qj tð Þ

� 4M2v

mL

X1
j¼1

Y
0

j x� dð ÞYn x� dð Þ _qj tð Þ

� 2M2v
2

mL

X1
j¼1

Y
00

j x� dð ÞYn x� dð Þqj tð Þ

ð17Þ

All these three Eqs. (15–17) can be detailed for total

time of travel of vehicle, i.e., 0\ t\ L/v by the following

equation

Fig. 3 Five phases of travel for two contact point model. a
0\t� d=v, b d=v\t� l1=v, c l1=v\t� l1 þ dð Þ=v, d l1 þ dð Þ=v\
t� L=v, e L=v\t� Lþ dð Þ=v
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EI
X1
j¼1

d4Yj xð Þ
dx4

qj tð Þ þ qA
X1
j¼1

Yj xð Þ€qj tð Þ

þ
X2
k¼1

Mkak
X1
j¼1

Yj xð Þ€qj tð Þ þ 2v
X1
j¼1

dYj xð Þ
dx

_qj tð Þ
(

þ v2
X1
j¼1

d2Yj xð Þ
dx2

qj tð Þ
)
d xþ k � 1d � vt
� �

¼
X2
k¼1

Mkakgd xþ k � 1d � vt
� �

: ð18Þ

Such that ak ¼ 1; when 0\vt � k � 1ð Þd\L and ak ¼ 0

otherwise, which means that kth point is yet to enter the

beam or it has already travelled past the beam. Now mul-

tiplying each term of Eq. (18) with Yn xð Þ and integrating

over the domain (0, L), one obtains

x2
nqn tð Þþ €qn tð Þ

þ 2

mL

X2
k¼1

akMk

X1
j¼1

Yj vt�kdþdð ÞYn vt�kdþdð Þ€qj tð Þ

þ 4v

mL

X2
k¼1

akMk

X1
j¼1

dYj vt�kdþdð Þ
dx

Yn vt�kdþdð Þ _qj tð Þ

þ2v2

mL

X2
k¼1

akMk

X1
j¼1

d2Yj vt�kdþdð Þ
dx2

Yn vt�kdþdð Þqj tð Þþ

¼ 2

mL

X2
k¼1

akMkgYn vt�kdþdð Þ: ð19Þ

Now, the dynamic response of the damaged beam can be

found by inserting the mode shape derived in Eq. (3a) and

(3b) for first and second segment of the beam in the above

equations for the five phases of travel of vehicle as follows.

For t� d=v

x2
nqn tð Þ þ €qn tð Þ ¼ 2M1g

mL
C1 sin bnxð Þ þ C2 cos bnxð Þ þ C3 sinh bnxð Þ þ C4 cosh bnxð Þ½ �

� 2M1

mL

X1
j¼1

C1 sin bjx
� �

þ C2 cos bjx
� �

þ C3 sinh bjx
� �

þ C4 cosh bjx
� �� �

� C1 sin bnxð Þ þ C2 cos bnxð Þ þ C3 sinh bnxð Þ þ C4 cosh bnxð Þ½ � � €qj tð Þ

� 4M1v

mL

X1
j¼1

bj C1 cos bjx
� �

� C2 sin bjx
� �

þ C3 cosh bjx
� �

þ C4 sinh bjx
� �� �

� C1 sin bnxð Þ þ C2 cos bnxð Þ þ C3 sinh bnxð Þ þ C4 cosh bnxð Þ½ � � _qj tð Þ

� 2M1v
2

mL

X1
j¼1

b2j � �C1 sin bjx
� �

� C2 cos bjx
� �

þ C3 sinh bjx
� �

þ C4 cosh bjx
� �� �

C1 sin bnxð Þ þ C2 cos bnxð Þ þ C3 sinh bnxð Þ þ C4 cosh bnxð Þ½ �qj tð Þ ð20Þ
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For t[ d=v and t� l1=v;

4x2
nqn tð Þ þ €qn tð Þ ¼ 2M1g

mL
C1 sin bnxð Þ þ C2 cos bnxð Þ þ C3 sinh bnxð Þ þ C4 cosh bnxð Þ½ �

� 2M1

mL

X1
j¼1

C1 sin bjx
� �

þ C2 cos bjx
� �

þ C3 sinh bjx
� �

þ C4 cosh bjx
� �� �

� C1 sin bnxð Þ þ C2 cos bnxð Þ þ C3 sinh bnxð Þ þ C4 cosh bnxð Þ½ �€qj tð Þ

� 4M1v

mL

X1
j¼1

bj½C1 cos bjx
� �

� C2 sin bjx
� �

þ C3 cosh bjx
� �

þ C4 sinh bjx
� �

�½C1 sin bnxð Þ þ C2 cos bnxð Þ þ C3 sinh bnxð Þ
þ C4 cosh bnxð Þ� � _qj tð Þ

� 2M1v
2

mL

X1
j¼1

b2j ½�C1 sin bjx
� �

� C2 cos bjx
� �

þ C3 sinh bjx
� �

þ C4 cosh bjx
� �

�½C1 sin bnxð Þ þ C2 cos bnxð Þ þ C3 sinh bnxð Þ
þ C4 cosh bnxð Þ�qj tð Þ

þ 2M2g

mL
½C1 sin bj x� dð Þ

� �
þ C2 cos bj x� dð Þ

� �
þ C3 sinh bj x� dð Þ

� �
þ C4 cosh bj x� dð Þ

� �
�

� 2M2

mL

X1
j¼1

½C1 sin bj x� dð Þ
� �

þ C2 cos bj x� dð Þ
� �

þ C3 sinh bj x� dð Þ
� �

þ C4 cosh bj x� dð Þ
� �

� � ½C1 sin bn x� dð Þð Þ
þ C2 cos bn x� dð Þð Þ þ C3 sinh bn x� dð Þð Þ
þ C4 cosh bn x� dð Þð Þ� � €qj tð Þ

� 4M2v

mL

X1
j¼1

bj½C1 sin bj x� dð Þ
� �

þ C2 cos bj x� dð Þ
� �

þ C3 sinh bj x� dð Þ
� �

þ C4 cosh bj x� dð Þ
� �

� � ½C1 sin bn x� dð Þð Þ
þ C2 cos bn x� dð Þð Þ þ C3 sinh bn x� dð Þð Þ þ C4 cosh bn x� dð Þð Þ�

� 2M2v

mL

X1
j¼1

bj½C1 sin bj x� dð Þ
� �

þ C2 cos bj x� dð Þ
� �

þ C3 sinh bj x� dð Þ
� �

þ C4 cosh bj x� dð Þ
� �

�
� ½C1 sin bn x� dð Þð Þ þ C2 cos bn x� dð Þð Þ þ C3 sinh bn x� dð Þð Þ
þ C4 cosh bn x� dð Þð Þ�qj tð Þ ð21Þ
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For t[ l1=v and t� l1 þ dð Þ=v

x2
nqn tð Þ þ €qn tð Þ ¼ 2M1g

mL
½D1 sin bn x� l1ð Þð Þ þ D2 cos bn x� l1ð Þð Þ þ D3 sinh bn x� l1ð Þð Þ

þ D4 cosh bn x� l1ð Þð Þ�

� 2M1

mL

X1
j¼1

½D1 sin bj x� l1ð Þ
� �

þ D2 cos bj x� l1ð Þ
� �

þ D3 sinh bj x� l1ð Þ
� �

þ D4 cosh bj x� l1ð Þ
� �

� � ½D1 sin bn x� l1ð Þð Þ þ D2 cos bn x� l1ð Þð Þ
þ D3 sinh bn x� l1ð Þð Þ þ D4 cosh bn x� l1ð Þð Þ�€qj tð Þ

� 4M1v

mL

X1
j¼1

bj½D1 cos bj x� l1ð Þ
� �

� D2 sin bj x� l1ð Þ
� �

þ D3 cosh bj x� l1ð Þ
� �

þ D4 sinh bj x� l1ð Þ
� �

�½D1 sin bn x� l1ð Þð Þ þ D2 cos bn x� l1ð Þð Þ
þ D3 sinh bn x� l1ð Þð Þ þ D4 cosh bn x� l1ð Þð Þ� � _qj tð Þ

� 2M1v
2

mL

X1
j¼1

b2j ½�D1 sin bj x� l1ð Þ
� �

� D2 cos bj x� l1ð Þ
� �

þ D3 sinh bj x� l1ð Þ
� �

þ D4 cosh bj x� l1ð Þ
� �

�½D1 sin bn x� l1ð Þð Þ þ D2 cos bn x� l1ð Þð Þ
þ D3 sinh bn x� l1ð Þð Þ þ D4 cosh bn x� l1ð Þð Þ�qj tð Þ

þ 2M2g

mL
½C1 sin bj x� dð Þ

� �
þ C2 cos bj x� dð Þ

� �
þ C3 sinh bj x� dð Þ

� �
þ C4 cosh bj x� dð Þ

� �
�

� 2M2

mL

X1
j¼1

½C1 sin bj x� dð Þ
� �

þ C2 cos bj x� dð Þ
� �

þ C3 sinh bj x� dð Þ
� �

þ C4 cosh bj x� dð Þ
� �

� � ½C1 sin bn x� dð Þð Þ þ C2 cos bn x� dð Þð Þ
þ C3 sinh bn x� dð Þð Þ þ C4 cosh bn x� dð Þð Þ�€qj tð Þ

� 4M2v

mL

X1
j¼1

bj½C1 sin bj x� dð Þ
� �

þ C2 cos bj x� dð Þ
� �

þ C3 sinh bj x� dð Þ
� �

þ C4 cosh bj x� dð Þ
� �

� � ½C1 sin bn x� dð Þð Þ þ C2 cos bn x� dð Þð Þ þ C3 sinh bn x� dð Þð Þ

þ C4 cosh bn x� dð Þð Þ� � 2M2v
2

mL

X1
j¼1

b2j ½�C1 sin bj x� dð Þ
� �

� C2 cos bj x� dð Þ
� �

þ C3 sinh bj x� dð Þ
� �

þ C4 cosh bj x� dð Þ
� �

�
� ½C1 sin bn x� dð Þð Þ þ C2 cos bn x� dð Þð Þ þ C3 sinh bn x� dð Þð Þ
þ C4 cosh bn x� dð Þð Þ�qj tð Þ ð22Þ
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For t[ ðl1 þ dÞ=v and t� L=v

x2
nqn tð Þ þ €qn tð Þ ¼ 2M1g

mL
½D1 sin bn x� l1ð Þð Þ þ D2 cos bn x� l1ð Þð Þ þ D3 sinh bn x� l1ð Þð Þ

þ D4 cosh bn x� l1ð Þð Þ�

� 2M1

mL

X1
j¼1

½D1 sin bj x� l1ð Þ
� �

þ D2 cos bj x� l1ð Þ
� �

þ D3 sinh bj x� l1ð Þ
� �

þ D4 cosh bj x� l1ð Þ
� �

� � ½D1 sin bn x� l1ð Þð Þ
þ D2 cos bn x� l1ð Þð Þ þ D3 sinh bn x� l1ð Þð Þ þ D4 cosh bn x� l1ð Þð Þ�

� €qj tð Þ �
4M1v

mL

X1
j¼1

bj½D1 cos bj x� l1ð Þ
� �

� D2 sin bj x� l1ð Þ
� �

þ D3 cosh bj x� l1ð Þ
� �

þ D4 sinh bj x� l1ð Þ
� �

� � ½D1 sin bn x� l1ð Þð Þ
þ D2 cos bn x� l1ð Þð Þ þ D3 sinh bn x� l1ð Þð Þ þ D4 cosh bn x� l1ð Þð Þ�

� _qj tð Þ �
2M1v

2

mL

X1
j¼1

b2j ½�D1 sin bj x� l1ð Þ
� �

� D2 cos bj x� l1ð Þ
� �

þ D3 sinh bj x� l1ð Þ
� �

þ D4 cosh bj x� l1ð Þ
� �

�
� ½D1 sin bn x� l1ð Þð Þ þ D2 cos bn x� l1ð Þð Þ þ D3 sinh bn x� l1ð Þð Þ
þ D4 cosh bn x� l1ð Þð Þ�qj tð Þ

þ 2M2g

mL
½D1 sin bn x� dð Þ � l1ð Þð Þ þ D2 cos bn x� dð Þ � l1ð Þð Þ

þ D3 sinh bn x� dð Þ � l1ð Þð Þ þ D4 cosh bn x� dð Þ � l1ð Þð Þ�

� 2M2

mL

X1
j¼1

½D1 sin bj x� dð Þ � l1ð Þ
� �

þ D2 cos bj x� dð Þ � l1ð Þ
� �

þ D3 sinh bj x� dð Þ � l1ð Þ
� �

þ D4 cosh bj x� dð Þ � l1ð Þ
� �

�
� ½D1 sin bn x� dð Þ � l1ð Þð Þ þ D2 cos bn x� dð Þ � l1ð Þð Þ
þ D3 sinh bn x� dð Þ � l1ð Þð Þ þ D4 cosh bn x� dð Þ � l1ð Þð Þ�€qj tð Þ

� 4M2v

mL

X1
j¼1

bj½D1 cos bj x� dð Þ � l1ð Þ
� �

� D2 sin bj x� dð Þ � l1ð Þ
� �

þ D3 cosh bj x� dð Þ � l1ð Þ
� �

þ D4 sinh bj x� dð Þ � l1ð Þ
� �

�
� ½D1 sin bn x� dð Þ � l1ð Þð Þ þ D2 cos bn x� dð Þ � l1ð Þð Þ
þ D3 sinh bn x� dð Þ � l1ð Þð Þ þ D4 cosh bn x� dð Þ � l1ð Þð Þ� _qj tð Þ

� 2M2v
2

mL

X1
j¼1

b2j ½�D1 sin bj x� dð Þ � l1ð Þ
� �

� D2 cos bj x� dð Þ � l1ð Þ
� �

þ D3 sinh bj x� dð Þ � l1ð Þ
� �

þ D4 cosh bj x� dð Þ � l1ð Þ
� �

�
� ½D1 sin bn x� dð Þ � l1ð Þð Þ þ D2 cos bn x� dð Þ � l1ð Þð Þ
þ D3 sinh bn x� dð Þ � l1ð Þð Þ þ D4 cosh bn x� dð Þ � l1ð Þð Þ�qj tð Þ ð23Þ
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Fig. 4 Mid-span deflection for healthy and damaged beam for velocity ratio = 0.2. a d = 3 m, b d = 2 m, c d = 0
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For t� L=v

These equations are solved by Fourth order Runge–

Kutta numerical method.

4 Results and Discussion

A typical beam mass system with following parameters is

considered for simulation.

L ¼ 20m; qA ¼ 312 kg/m; E ¼ 2:06� 1011 N/m2 and q
¼ 7800 kg/m3:

The mid-span displacement responses are investigated by

considering the moving mass to beam mass ratio as 0.2 in

the range of velocity ratio [velocity of the moving mass to

the critical velocity xnL
np

� �
] between 0.1 and 1 (critical

velocity). The displacement responses of the beam show

the combined effect of the first three modes of vibration.

x2
nqn tð Þ þ €qn tð Þ ¼ 2M2g

mL
½D1 sin bn x� dð Þ � l1ð Þð Þ þ D2 cos bn x� dð Þ � l1ð Þð Þ

þ D3 sinh bn x� dð Þ � l1ð Þð Þ þ D4 cosh bn x� dð Þ � l1ð Þð Þ�

� 2M2

mL

X1
j¼1

½D1 sin bj x� dð Þ � l1ð Þ
� �

þ D2 cos bj x� dð Þ � l1ð Þ
� �

þ D3 sinh bj x� dð Þ � l1ð Þ
� �

þ D4 cosh bj x� dð Þ � l1ð Þ
� �

�
� ½D1 sin bn x� dð Þ � l1ð Þð Þ þ D2 cos bn x� dð Þ � l1ð Þð Þ

þ D3 sinh bn x� dð Þ � l1ð Þð Þ þ D4 cosh bn x� dð Þ � l1ð Þð Þ�€qj tð Þ

� 4M2v

mL

X1
j¼1

bj½D1 cos bj x� dð Þ � l1ð Þ
� �

� D2 sin bj x� dð Þ � l1ð Þ
� �

þ D3 cosh bj x� dð Þ � l1ð Þ
� �

þ D4 sinh bj x� dð Þ � l1ð Þ
� �

�
� ½D1 sin bn x� dð Þ � l1ð Þð Þ þ D2 cos bn x� dð Þ � l1ð Þð Þ

þ D3 sinh bn x� dð Þ � l1ð Þð Þ þ D4 cosh bn x� dð Þ � l1ð Þð Þ� _qj tð Þ

� 2M2v
2

mL

X1
j¼1

b2j ½�D1 sin bj x� dð Þ � l1ð Þ
� �

� D2 cos bj x� dð Þ � l1ð Þ
� �

þ D3 sinh bj x� dð Þ � l1ð Þ
� �

þ D4 cosh bj x� dð Þ � l1ð Þ
� �

�
� ½D1 sin bn x� dð Þ � l1ð Þð Þ þ D2 cos bn x� dð Þ � l1ð Þð Þ

þ D3 sinh bn x� dð Þ � l1ð Þð Þ þ D4 cosh bn x� dð Þ � l1ð Þð Þ�qj tð Þ ð24Þ
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Fig. 5 Mid-span deflection for healthy and damaged beam for velocity ratio 0.4. a d = 3 m, b d = 2 m, c d = 0
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Fig. 6 Mid-span deflection for healthy and damaged beam for velocity ratio 0.8. a d = 3 m, b d = 2 m, c d = 0
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Fig. 7 Acceleration response of the healthy and damaged beam, velocity ratio 0.1. a d = 0, b d = 1 m, c d = 2 m, d d = 3 m
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Fig. 8 Acceleration response of the healthy and damaged beam, velocity ratio 0.2. a d = 0, b d = 1 m, c d = 2 m, d d = 3 m
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The crack-depth ratio (a) considered is 0.25, located at the

center of the beam. The responses are normalized by

dividing the dynamic deflection with static mid-span

deflection WL3

48EI

� 	
.

5 Deflection Response Analysis

The deflection response for healthy and damaged beam is

compared for the velocity ratio [velocity of the moving

mass to the critical velocity xnL
np

� �
] 0.1, 0.4, and 0.8. The

distance between the wheels d is varied as 2 and 3 m. In

Figs. 4, 5 and 6, x-axis represents the total time taken by

the rear wheel to leave the right end of the beam. This time

is increasing as the distance between the front and rear

wheel is increasing. The normalized position of the moving

mass is the distance travelled by rear wheel to the total

length of beam.

Following observations can be noted from Figs. 4, 5

and 6

(a) There is an increase in the deflection response with

the presence of crack.

Fig. 9 Acceleration response of the healthy and damaged beam, velocity ratio 0.4. a d = 0, b d = 1 m, c d = 2 m, d d = 3 m
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(b) The deflection response of the cracked beam changes

as function of velocity.

(c) The difference in the peak value of the deflection for

healthy and damaged is very small for lower

velocity. At higher velocity, the presence of crack

can be indicated by the rise in the deflection value.

(d) At lower velocity, there is not any significant change

in deflection response of cracked beam instead the

displacement value suddenly gets jumped compared

to that for healthy as soon as the front mass left the

beam.

(e) For lower velocity, the vehicle takes more time to

travel the transition phase, when only the rear wheel

is on the bridge. During this small part of time, the

mass loading reduces to half and hence the differ-

ence seen between the two response.

6 Acceleration Response Analysis

The acceleration responses of the healthy and damaged

beam are plotted to interpret the presence of the crack and

its key features like its location and severity. The analysis

is carried out with respect to the velocity of the moving

mass, i.e., for velocity ratio 0.1, 0.2, 0.4, 0.6 and 0.8. The

acceleration responses calculated by the fixed sensor

approach at mid-span of the beam are shown in Figs. 7, 8,

9, 10 and 11. In fixed sensor approach, a sensor is con-

sidered to be attached at the center span of the beam. The

displacement responses are obtained at the mid-span of

beam by simulation.

The key points observed from the accelerations response

are established as

(a) At velocity ratio 0.1, the sudden distortion in the

response of damaged beam remarkably represents

the location of the crack.

(b) For all the distance (d) between the wheels, the

acceleration values are same as it is for healthy until

the first wheel excites the crack location. After the

wheel excites the crack location, change in acceler-

ation values can be observed.

(c) The fluctuations in the response are observed to take

place at the crack location for a certain time period

equivalent to the (d/v).

Fig. 10 Acceleration response of the healthy and damaged beam, velocity ratio 0.6. a d = 0, b d = 1 m, c d = 2 m, d d = 3 m
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(d) The same discontinuity in the response of the

damaged beam can be observed when the front

wheel leaves the beam.

(e) At higher velocities, the acceleration response sig-

nificantly changes after the excitation of crack

location but the key features like discontinuity and

the sudden change in acceleration at the end are not

reflected in the graph.

So, the acceleration responses at the lower velocity

ratios 0.1 and 0.2 can be helpful in finding the crack

presence and its location. If the results of the moving

sensor and fixed sensor are compared for identification of

the crack, both approaches are helpful for this type of two

contact point model. The visibility of discontinuity at crack

location obtained by both approaches is sufficiently higher

but only for lower velocities. Therefore, for crack identi-

fication, the vehicle can run over the bridge at the speeds

corresponding to the velocity ratio 0.1 and 0.2.

A considerable increase in the value of the displacement

response and acceleration response of damaged beam

compared to that of healthy beam can be observed during

the last phase of travel. This increase in the mid-span

response during the last phase of vehicle travel cannot be

ignored from the safety point of view.

7 Conclusion

A mathematical model has been developed for two contact

point vehicle–bridge interaction in the present work. This

model is more representative than single contact point

model mostly adopted in the previous research works. The

acceleration response illustrates the crack presence more

effectively than the displacement response. A distortion at

the crack location depends on the distance between the

front and rear wheel. The distortion will be for more period

as the distance between the front and rear wheel increases.

A difference in the acceleration values also represents the

presence of crack. These features are more distinguishable

for lower velocity ratio than that for higher velocity ratio.

The responses measured are useful in representing the

information about crack.

Fig. 11 Acceleration response of the healthy and damaged beam, velocity ratio 0.8. a d = 0, b d = 1 m, c d = 2 m, d d = 3 m
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