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Abstract Dynamic analysis of passive biped models plays

a significant role both in understanding human locomotion

and in developing humanoid robots. In this investigation,

two chaos control algorithms based on linearization of

Poincaré map (OGY method) and artificial neural networks

(ANNs) are utilized to control the motion of a passive

biped model. To this end, the chaotic characteristics of the

system are analyzed using several nonlinear dynamics tools

such as Poincaré map, bifurcation diagram, and Lyapunov

exponents, and then, unstable periodic orbits (UPOs) of the

system are detected. Detection of these orbits helps to

extract a desired walking pattern and also is utilized for

chaos elimination of the system. The robustness of the

proposed ANN-based control algorithm is verified by

applying toe-off impulses to the biped during the gait.

Furthermore, the effect of network parameters on the biped

walking performance is investigated to get design guide-

lines for the ANN-based controller.

Keywords Chaos � Chaos control � Unstable periodic orbit
(UPO) � Artificial neural network (ANN) � Passive biped

model

1 Introduction

In order to understand human locomotion which is one of

the most complicated motions in the nature (Alberto et al.

2014), investigating bipedal walking robots is shown to be

an appropriate means. Although human motion is con-

trolled by the neuromuscular system, except for part of a

stride (Philippe et al. 2013), McGeer (1990) showed that

some legged mechanisms could exhibit stable human-like

walking on a range of shallow ramps without actuation.

The compass-like biped robot investigated by Garcia

et al. (1997) is assumed to be the simplest model capable of

mimicking bipedal gait. The dynamics of the model has

been studied widely by several researchers (Garcia et al.

1997; Goswami et al. 1998; Asano et al. (2015); Gritli et al.

2012; Gan et al. 2014; Wang et al. 2015). Moreover, sev-

eral control strategies have been applied to get a desired

motion from the bipedal walkers. The control parameter is

usually the torque at the joints (Khosravi et al. 1987) and is

identified by different control algorithms and techniques.

Linear control, based on linearization of the equations of

motion around the vertical stance (Garcia et al. 2002),

variable structure control (Li and Ge 2013), optimal control

(Liu et al. 2013), and shaping discrete event dynamics

(Piiroinen and Dankowicz 2002) are the main techniques

that have been applied to biped robots by investigators.

The basic idea in controlling biped walking robots is

choosing a proper control input in order to get a desired

behavior. Another common desired feature for bipedal

walking with chaotic behavior is a stable periodic motion.

Using chaos control techniques, this desired behavior can

be extracted from the nature of the chaotic system through

detection of UPOs embedded in the chaotic attractor

(Abedini et al. 2012). Since the desired trajectory is already

included in the dynamics of the system, the resulting

behavior would be more natural and the system can be

stabilized with less control effort.

Although there is an acceptable amount of research on

controlling bipedal walkers with chaotic behavior, there are

still few works on stabilization of UPOs of the system via
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applying chaos control algorithms. Chaos control with the

aim of stabilization of UPOs has several major advantages

due to dynamical properties of the system. Because of the

ergodicity of the chaotic attractor, a trajectory eventually

comes close to the neighborhood of a hyperbolic fixed

point in the chaotic region, but never converges to the

specific point (Baker and Gollub 1996). This enables us to

drive the system to periodic orbits embedded in the chaotic

attractor with small perturbations (Starrett and Tagg 1995;

Ott 1990; Shirazi and Ghafari 2003; Danca et al. 2013;

Pourtakdoust and Fazelzadeh 2003). Such a controller is

more robust because the basin of attraction for chaotic

region is bigger than the basin for a periodic orbit (Garcia

et al. 1997). This has been shown via numerical study of

the model (Garcia et al. 1997). A thorough investigation of

the basin of attraction of the simplest walking model is

given by Schwab and Wisse (2001). Moreover, the control

strategy has more flexibility since there is an infinite set of

UPOs within the chaotic attractor (Buhl and Kennel 2007)

that enables us to generate various stable patterns by

driving the system to any of these UPOs arbitrarily. In

other words, using the already existed periodic orbits in the

chaotic attractor as the desired trajectory would lead to

such advantages.

In the literature, several works have been presented to

stabilize UPOs of chaotic systems. However, for chaotic

behavior of biped walking model, chaos control is not

extensively treated and only few works are found (Gritli

et al. 2015). One of the most famous chaos control algo-

rithms is OGY method proposed by Ott et al. in 1998 based

on the linearization of the Poincaré map near the fixed

point in the chaotic attractor (Ott 1990). In Suzuki et al.

(2005), the authors have applied OGY algorithm to a

compass-like biped with masses on knees assuming the hip

actuation torque as the controlling signal. The delayed

feedback control method has been accomplished to para-

metric excitation walking to suppress bifurcation in a

passive planar biped model with semicircular feet by

Harata et al. (2012). Gritli et al. (2015) have suggested an

OGY-based control method to stabilize UPOs of a chaotic

semi-passive biped walking robot. This method is based on

the linearization of the nonlinear model around a desired

passive hybrid limit cycle, and according to the linearized

model, they derive an analytical expression of a con-

strained controlled Poincaré map (Gritli et al. 2015). Kurz

and Stergiou (2005) have proposed a biologically inspired

ANN algorithm to rapidly drive the trajectories to a

stable periodic orbit. Actually the neural network proposed

in Kurz and Stergiou (2005) gives the proper spring stiff-

ness for a single ramp incline and is said to be applied to

the system after several steps. Nevertheless, the control

parameter and therefore the desired trajectory are calcu-

lated regardless of the existing UPOs within the chaotic

attractor. This is one of the main features of chaos control

algorithm which was mentioned above and would have

several advantages. This would lessen the control effort

and make the controller flexible enough to get various

behaviors from the system. The control parameter is not

adjustable enough, and setting up a spring in the hip joint in

the middle of walking seems not to be applicable. Fur-

thermore, adding up the spring from the beginning actually

changes the dynamics of the system and the chaotic char-

acteristics of the model that have already been resulted

through numerical manipulations. That is why a more

commonly used parameter which is the torque applied at

the hip is considered as the control parameter here.

In this investigation, firstly, the dynamic model of the

system is introduced. Choosing a proper Poincaré section,

the bifurcation diagram and a spectrum of the Lyapunov

exponents are plotted. This preliminary analysis would

show the chaotic behavior of the system and the region of

chaotic attractor in the phase space, and then, UPOs of the

chaotic system are achieved. After that, extending the

Kurz’s algorithm (Kurz and Stergiou 2005), an ANN-based

control structure is designed to stabilize the obtained UPOs

of the chaotic biped walking model. Choosing the torque in

the hip as the control actuator is thought to be more

applicable and more similar to what occurs in human

locomotion. The neural network is designed so that the

controller can be turned on at any time during the loco-

motion. The parameters of the ANN are varied in order to

see their effects on the performance of the walking biped.

This would give design hints for an experimental set and

the applicability of the proposed controller. Moreover, the

robustness of the controller to possible perturbations is

simulated by a toe-off impulse and the results are shown.

To illustrate the performance and effectiveness of the

proposed controller, the chaotic behavior of the biped

walking model is also stabilized via the OGY method and

the corresponding results are compared with those attained

by the ANN-based controller.

The main contributions of this work can be stated as

follows:

1. The unstable periodic orbits of different orders for the

chaotic passive biped are detected

2. An ANN-based controller is designed to stabilize these

orbits with actuation at hip joint.

3. The performance of the controller is compared with the

famous OGY method (Ott 1990).

4. A parametric study of ANN is performed to provide

insights in designing the controller.

The article is organized as follows: The dynamic model

of the system is introduced in Sect. 2. In Sects. 3 and 4,

chaotic behavior and UPO of the system are detected. A

controller based on artificial neural networks is designed
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and utilized to control the biped from a chaotic behavior to

a periodic motion in Sect. 5. The simulation results are

illustrated in Sect. 6. Also, the OGY method is used to

control the chaotic motion of the biped model in this sec-

tion and a comparison between the performances of the

ANN-based and OGY controllers is accomplished. Con-

clusions are given in the last section of this paper.

2 Chaotic Biped Walking Model

The simplest walking model shown in Fig. 1 is a biped

robot with two rigid legs joints by a frictionless hinge at the

hip. There is a point mass at the hip, M, and two point

masses at the feet tips, m. The feet masses are much smaller

than the hip so that the hip motion is not affected by the

swinging leg motion. During each step, the stance leg acts

as an inverted pendulum while the other leg oscillates until

the heel contact. At this moment, the system has a plastic

impact without any slip or bounce and passes a double-

support phase instantaneously (Garcia et al. 1997).

The legs are assumed to be able to pass the foot-scuff

situation, and the swing leg is able to momentarily pass

through the ramp surface when the stance leg is nearly

vertical. These assumptions are made to avoid scuffing

problems for straight-legged walkers.

The degrees of freedom are chosen to be h and u that

show the stance leg angle with the vertical direction to the

ramp surface and the angle between stance and swing leg,

respectively. The governing equation in the single-support

phase is derived by the Lagrange method. Substituting the

Lagrangian of the system in the Lagrange equations and

applying the simplifying assumption m
M
\\1

� �
, the

dimensionless governing equations become

€h� sinðh� cÞ ¼ 0

€h� €uþ _h 2 sinu� cosðh� cÞ sinu ¼ 0
ð1Þ

in which the dimensionless time t0 ¼
ffiffiffiffiffi
l=g

q
t. Also, l and g

indicate the length of each leg and the gravitational con-

stant, respectively. During the single-support phase, the

above equation governs the motion of the biped. When the

swing leg contacts the surface, the following geometric

condition is satisfied

u � 2 h ¼ 0 ð2Þ

The collision occurs, and solving differential Eq. (1)

should be stopped. The conservation of angular momentum

should be satisfied for the whole system about the new

stance leg tip and for the new swing leg around the hip.

Considering the toe-off impulse denoted by P, the transi-

tion rule (Kurz and Stergiou 2005) for heel strike moment

is as follows:

h
_h

u

_u

2

6664

3

7775

þ

¼

�1 0 0 0

0 cos 2h 0 0

�2 0 0 0

0 cos 2hð1� cos 2hÞ 0 0

2

6664

3

7775

h
_h

u

_u

2

6664

3

7775

�

þ

0

sin 2h

0

ð1� cos 2hÞ sin 2h

2

6664

3

7775
P ð3Þ

Fig. 1 Schematic of the

walking model with a hip mass

and two point masses at the feet

tip (Garcia et al. 1997) (after the

heel strike the stance leg and the

swing leg switch)
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The states of the system just after and just before the

impact are identified by ‘?’ and ‘-’ subscripts, respec-

tively. The set of differential algebraic Eqs. (1)–(3) are the

governing equations of the simplest walking model.

3 Detection of Chaos in Biped Walking Model

In order to have a better understanding of the nonlinear

dynamics model, Poincaré section is used to monitor the

variation in the states of the system stroboscopically. The

Poincaré section reduces the dimensions of the system by

one and helps to find out the main characteristics of the

behavior of the system (Baker and Gollub 1996). The states

of the biped would be recorded right after the heel strike

(Eq. 2). Since there are special relations between the

variables at this moment in which Eq. (3) is the governing

equation of the motion, the Poincaré map of the system

would be 2D.

h
_h
u ¼ 2h
_u ¼ ð1� cos2hÞ _hÞ

2

664

3

775) h
_h

� �
ð4Þ

The Poincaré map of the biped model can be stated as

znþ1 ¼ f zn; c; sð Þ ð5Þ

in which zn ¼ h _h
h iT

is the state of the system at nth step

and s is the dimensionless torque, s ¼ T
�
ml2, in which T is

the input torque and applied at hip joint during the step.

The torque applied at the hip joint is to be varied at each

intersection of the trajectory with Poincaré section, that is

at the beginning of heel strike. Then, it will remain

unchanged during the step till the next heel strike. A limit

cycle trajectory on phase space which shows periodic

behavior corresponds to a point. Numerous scattered points

on a subspace of Poincaré section show chaotic behavior

and are called chaotic attractor. It has been shown that

there are infinite numbers of hyperbolic fixed points

embedded in chaotic attractors. Hyperbolic fixed points

correspond to UPOs in phase space, and the objective of

chaos control is to stabilize these UPOs.

The behavior of the system depends on the initial con-

ditions z0 ¼ h0 _h0
h iT

and the parameters c and s. To have a

better understanding of this dependence, the bifurcation

diagram of the model is drawn and shown in Fig. 2 in

which hst indicates the value of h at Poincaré section.

One of the most widespread methods for chaos predic-

tion is calculation of Lyapunov exponent of the system.

The procedure of this calculation can be seen in Sprott and

Sprott (2003). According to this procedure (Sprott and

Sprott 2003), the Lyapunov exponent spectrum of the biped

is calculated according to Eq. (6) and shown in Fig. 3

versus slope angle c.

k ¼ 1

n
ln

f ðnÞðz0 þ eÞ � f ðnÞðz0Þ
�� ��

ek k

 !

ð6Þ

As known, a positive Lyapunov exponent is interpreted

as a chaotic behavior while a negative one would show the

absence of chaos (Sprott and Sprott 2003).

The obtained results from Lyapunov exponent are in

acceptable competence with the bifurcation diagram.

4 Detection of Unstable Periodic Orbits

Based on attained data illustrated in Figs. 2 and 3, we can

say that the passive biped walking model (s ¼ 0) starts

exhibiting chaotic behavior for c[ 0.0187 rad. Within this

region, we can detect UPOs for which

Fig. 2 Bifurcation diagram of the system with respect to the ramp

slope c

Fig. 3 Lyapunov exponent spectrum of the biped model with respect

to the slope angle c
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z�n ¼ f z�n; c; s ¼ 0
� �

ð7Þ

Detection of these points is not easy, obviously due to

the hyperbolic (unstable) nature of these fixed points. There

are various ways to detect these points. To this end, we

used the iterative method proposed in Bu et al. (2004).

For the Poincaré map of (5), we have

znþ1 ¼ f zn; c; sð Þ þ Q f zn; c; sð Þ � znð Þ ð8Þ

in which

Q ¼ cI � J znð Þð Þ f zn; c; sð Þ � znð Þ�1 ð9Þ

converges to the fixed point of the Poincaré map. J(zn) is

the Jacobian function which should be calculated numeri-

cally, �1\c\1 is a constant, and I is the identity matrix.

The initial condition is chosen to be the fixed point found

by the previous method. Setting this as the initial condition,

the fixed point of the map for c = 0.0187 rad and s ¼ 0 is

found to be

z� ¼ h�
_h�

� �
¼ 0:25340

�0:24530

� �
ð10Þ

The detected UPO is of order 1; however, the same

procedure can be used for detection of UPOs of higher

orders, namely period-2 behavior by merely considering

Poincaré map of corresponding order in (8).

The reason why we considered UPOs of different orders

is to indicate the value of ‘chaos control’ approach in

which many different step length combinations are readily

available (Garcia et al. 1997) and can be stabilized to

provide different behaviors.

5 Chaos Control of Biped Model based
on Artificial Neural Networks

Artificial neural networks (ANN) can be used to control

chaos in biped motion using the data from Poincaré map

and the detected unstable periodic orbit (UPO). Since the

system is nonlinear and discontinuous, there is no analytic

formulation of Poincaré map or its inverse. The idea is to

force the trajectory to follow the stable manifold of the

hyperbolic fixed point by applying necessary torque, s, at
the hip.

The neural network would get the value of z ¼ h _h
	 
T

in the current step and the desired one, z� ¼ h� _h�
	 
T

, in

the next step as inputs and the hip torque s as the output.

So, basically the network has 4 inputs and one output. The

number of input neurons can be increased as will be dis-

cussed in the next subsection.

The network is trained using a set of data gathered from

Poincaré map of the system in chaotic state. For each set of

input target, initial conditions are chosen from within the

basin of attraction of the chaotic attractor. This would be

the first pair of input values. A random amount of torque is

applied to the hip, and the z value at the next step would be

the second pair of input values. The applied torque is the

target value.

The trained network will be used to control the chaotic

motion by getting the current state of the biped right after the

heel strike, z, and the fixed point of the Poincaré map, z*, as

inputs. The output would be the suggestion of the trained

network for the necessary torque applied to the hip joint

during the step so that the system converges to periodic

behavior. However, the torque will not be applied unless the

trajectory is close enough to the periodic orbit. That is the

main idea behind the chaos control which is leading the

system to the unstable periodic orbit with the least control

effort. Moreover, the applied torque should not exceed a

maximum limit. Then, the applied toque is determined as

s¼
snet; if zn � z�k k\g and snetj j� smax

sgn snetð Þsmax; if zn � z�k k\g and snetj j[ smax

0; otherwise

8
<

:

ð11Þ

in which snet is the network output, smax is the maximum

torque. The critical distance between the trajectory and

UPO inside which the actuation is applied is denoted by g.
The state of the system at Poincaré section is denoted by zn
and the corresponding UPO by z*.

5.1 Effect of ANN Parameters on Biped

Performance

An understanding of how the ANN parameters affect the

performance of the controller is necessary if we want to

extend the model or possibly apply the results for an

experimental set. Some of these parameters are chosen and

changed to see their effects on biped performance. To

evaluate the biped performance, three different parameters

are considered. These parameters are maximum slope

angle, dimensionless response time, and maximum distur-

bance level.

(a) Maximum Slope Angle (cmax)

The simulation results show that the biped would have no

stable walking for slope angle c[ 0.0187 rad. So, the

maximum slope angle on which the biped can continue

walking can be considered as one of the performance

parameters.
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Furthermore, the approximate percent relative error eca is
defined between the maximum slope angles of the con-

trolled and the uncontrolled systems as eca ¼
ðcmax � 0:0187Þ=0:0187j j � 100 and determined for vari-

ous cases. The maximum slope angle of the controlled

system is indicated by cmax, and that of the uncontrolled

system is considered as c = 0.0187 rad.

(b) Dimensionless Response Time (t0res)

When the controller starts working, it takes some time for

the biped to transmit from chaotic state to a periodic sit-

uation. Since the state of the system is viewed only after

heel strikes and the amount of torque is unchanged for the

whole step, it takes several steps for the controller to sta-

bilize a periodic orbit. The dimensionless response time

which can be defined as the number of steps or the amount

of time before the motion becomes periodic is considered

to be another performance parameter.

(c) Maximum Disturbance Level (Pmax)

Chaos controllers are claimed to be robust due to stability

of chaotic attractors. To evaluate the maximum disturbance

level that the controlled biped can tolerate, a toe-off

impulse, denoted by P in Eq. (3), is applied to the biped

after it is led to a periodic motion. The maximum value of

P that biped can withstand without falling over is consid-

ered to be another performance parameter.

The ANN parameters for which the performance of

biped is evaluated are stated in the following. These ANN

parameters are chosen as transfer function, number of input

neurons, number of neurons in hidden layer, number of

hidden layers, training method. For investigating the effect

of each parameter, the biped performance results are listed

for comparison. Except for the results of maximum slope

angle, the simulations are done for slope angle of

c = 0.0187 rad.

5.1.1 Effect of Transfer Function

The effect of transfer function is investigated by choosing

three different functions for hidden layer. The definition of

these functions is stated in Table 1. In this paper, we

simply refer to hyperbolic sigmoid function as sigmoid

function.

The number of neurons in hidden layer is four, and there

are also four inputs. The results are listed in Table 2.

5.1.2 Number of Input Neurons

According to Hausdorff et al. (2000), human locomotion

has a neural memory of past locomotive states. Inspired by

that, Kurz and Stergiou (2005) suggested that the states of

previous steps are the input values to the neural network.

The control parameter we have considered, s, can change

in every step, unlike the case of Kurz and Stergiou (2005)

in which the stiffness of the spring added at the hip joint is

unchanged for the whole walk. Therefore, in order to

consider the information of previous steps, the states and

also the torques applied in each step are considered to be

the inputs for the network.

Considering N last steps of the biped walk, there would

be 3N ? 1 input neurons, including 2N state values of the

current and previous steps, two state values of the next

(desired) step value, and N - 1 torque values that led the

biped to this position. The schematic of the network is

shown in Fig. 4.

Training of the network for each case is similar to the one

explained in Sect. 5 except that the data should be gathered

for N ? 1 successive steps along with the random torque

applied at each step. The torque applied for transition

between the last two steps is the target value. The network

for each value of N = 1, 2, …, 7 was trained, and the per-

formance parameters were evaluated. A hidden layer with 6

neurons is considered. The transition function is chosen to be

sigmoid for hidden layer and linear for the output layer. The

maximum slope angle, cmax, the dimensionless response

time, t0res, the relative step number, and the maximum dis-

turbance level, Pmax, are shown according to N in Table 3.

The data for N last steps of the biped are the input values for

3N ? 1 input neurons. For the values N[ 5, the controller

was unable to control chaos for c = 0.0187 rad.

5.1.3 Number of Neurons in Hidden Layer

The number of neurons in the hidden layer seems to have

an important effect on neural network function fitting. WeTable 1 Transfer functions used for evaluation of biped performance

(Hagan et al. 2002)

Name Definition

Hard limit
g xð Þ ¼

0 if x\0

1 if x� 0

(

Linear g xð Þ ¼ x

Log-sigmoid g xð Þ ¼ 1
1þe�x

Hyperbolic tangent sigmoid g xð Þ ¼ ex�e�x

exþe�x

Table 2 Effect of the hidden layer transfer function on the perfor-

mance of the controlled biped

Transfer function cmax eca t0res—step no. Pmax

Hard limit 0.0192 2.674 92.80—28th 0.005

Linear 0.022 17.65 31.47—12th 0.008

Log-sigmoid 0.022 17.65 214.02—59th 0.004

308 Iran J Sci Technol Trans Mech Eng (2016) 40:303–313

123



have changed this parameter to see its effect on the chaos

controller performance. The results are for the case of

N = 1 which means there are four inputs, one hidden layer

with sigmoid transfer function, and the output layer with

one neuron and linear transfer function (Table 4).

5.1.4 Number of Hidden Layers

The number of hidden layers is increased to see whether

they affect the biped performance. To see the effect of each

parameter, other parameters remained constant. For this

case, the number of neurons in hidden layer(s) is 4, with

sigmoid transfer function. The results are listed in Table 5.

5.1.5 Training Method

There are several commonly used training methods in

backpropagation algorithm (Hagan et al. 2002). The size of

data set for training the network is 100, and other param-

eters are like those mentioned in the part of transfer

function effect. The biped performance according to each

of these methods is shown in Table 6. The methods are

referred to as’trainlm (Levenberg–Marquardt backpropa-

gation), ‘trainbfg’ (BFGS quasi-Newton backpropagation),

‘trainscg’ (scaled conjugate gradient backpropagation) and

‘traincgp’ (conjugate gradient backpropagation) (Hagan

et al. 2002).

5.2 Discussion on ANN Parameters Effects

There are parameters other than the ones considered here

that can affect the results shown in Tables 3, 4, 5, and 6

such as the initial conditions for biped motion and initially

selected weights and biases. But these results can give

quite useful guidelines and intuitions for designing ANN

chaos controller. The results show that:

1. Increasing the number of input neurons does not

necessarily improve the performance of the biped. This

number effectively plays the role of memory of the

controller.

2. It is shown that increasing the number of hidden layers

to two improves the performance parameters, but it

will have a negative effect if it becomes more.

Fig. 4 Schematic of the artificial neural network using the data from

last N steps of the biped

Table 3 Effect of no. of neurons in the first layers on the perfor-

mance of controlled biped

No. of neurons cmax eca t0res—step no. Pmax

16 0.0192 2.674 59.10—23th 0.001

12 0.020 6.952 50.44—20th 0.009

10 0.0192 2.674 138.26—41th 0.003

7 0.0192 2.674 58.54—20th 0.002

4 0.020 6.952 51.00—17th 0.006

Table 4 Effect of no. of neurons in the hidden layer Nhid on the

performance of controlled biped

Nhid cmax eca t0res—step no. Pmax

2 0.021 12.30 19.81—9th 0.016

4 0.022 17.65 31.47—12th 0.008

6 0.020 6.952 39.31—14th 0.013

10 0.021 12.30 27.26—11th 0.009

Table 5 Effect of no. of hidden layer Lhid on the performance of

controlled biped

Lhid cmax eca t0res—step no. Pmax

1 0.022 17.65 39.33—14th 0.009

2 0.022 17.65 23.70—10th 0.0024

3 0.022 17.65 31.43—15th 0.005

Table 6 Effect of training method on the performance of controlled

biped

Training method cmax eca t0res—step no. Pmax

‘Trainlm’ 0.0199 0.0192 82.74—25th 0.012

‘Trainbfg’ 0.021 0.020 97.00—29th 0.005

‘Trainscg’ 0.021 0.0192 112.75—33th 0.004

‘Traincgp’ 0.021 0.0192 214.02—42th 0.007
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3. Changing the transfer functions would have dramatic

effects on the performance. The network controller

with hard limit function returns the same amount of hip

torque for any input value, but can still control the

chaotic motion. The sigmoid function in the hidden

layer seems to be the best choice as suggested by many

authors (Hagan et al. 2002).

4. The training methods used in the backpropagation

algorithm also have significant effects on the perfor-

mance parameters. The best choice seems to be the

commonly used Levenberg–Marquardt backpropaga-

tion method.

5. The performance parameters do not vary with the same

trend. The response time and maximum disturbance

level have better correlation in variation and are more

sensitive to ANN parameter compared to maximum

slope angle.

6. An optimum set of parameters for the network can be

suggested from these results which are: a network with

four inputs, two hidden layers with four neurons and

sigmoid transfer function and an output layer with one

neuron and linear transfer function. The training

method for backpropagation is suggested to be Leven-

berg–Marquardt.

6 Simulation Results

The variations of biped state and the applied torque

according to the footsteps are shown for some ANN

parameters in Figs. 5, 6, and 7. To show the disturbance

tolerance of the chaos controller, a toe-off impulse is applied

at the 80th step after the biped has already been controlled

so as to have periodic motion. The simulations are done for

c = 0.0187 rad, smax = 0.02 s-2, and g = 0.01.

As shown in these figures, the proposed ANN-based

controller is able to stabilize the chaotic behavior of the

biped model to its UPO.

6.1 Chaos Control of Biped Model based

on the OGY Method

To show the superiority of the proposed ANN-based con-

troller, the OGY method as a conventional chaos control

technique is selected to control the chaotic behavior of the

biped model. The formulation of the OGY controller is

based on the following two key ideas: (1) designing con-

troller by the discrete system model based on linearization

of the Poincaré map and (2) applying the control action

only at the instants when the trajectory returns to some

neighborhood of the desired state or given orbit (Ott 1990).

Consider that the discrete dynamical system or the

Poincaré map of a continuous system is expressed by

z nþ 1 ¼ f ðz n ; pÞ ð12Þ

where zn is introduced in Eq. (5) and p is the accessible

parameter of the system that can be changed in the

neighborhood of p*. p* is the value of the accessible

parameter p corresponding to the UPO or its intersection

with the section indicated by z* as the hyperbolic fixed

point. The map (11) can be linearized in the neighborhood

of this orbit by Ott (1990)

znþ1 � z� ¼ Jðzn � z�Þ þ gðpn � p �Þ ð13Þ

in which

J ¼ of ðz; pÞ
oz

����
ðz�;p �Þ

g ¼ of ðz; pÞ
op

����
ðz�;p �Þ

ð14Þ

Fig. 5 Variation of h value and the hip torque s value generated by a network with N = 7 and hard limit transfer function
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J is the Jacobian of the system at the fixed point and

g shows the differentiation of the function with respect to

parameter p at the same point. The values of J and g can be

calculated either by numerical differentiation or by lin-

earization methods like the one described in detection of

periodic orbits.

Let ks and ku be the stable and unstable eigenvalues of

the map ( kuj j[ 1[ ksj j), and the eigenvectors es and eu
show the stable and unstable directions along which the

trajectories are attracted to and repelled from the fixed

point. Then, the contra variant vectors fs and fu can be

defined such that (Ott 1990)

fu:eu ¼ fs:es ¼ 1

fu:es ¼ fs:eu ¼ 0
ð15Þ

Based on the OGY method, as soon as the trajectory gets

close enough to the fixed point, so that 0\ z n � z�k k\h,

the parameter p is varied so that the trajectory will be

located on the stable manifold of the fixed point in the next

step which means

f Tu ðznþ1 � z�Þ ¼ f Tu ðJðzn � z�Þ þ gðpn � p�ÞÞ ¼ 0 ð16Þ

and the control law would be (Ott 1990)

pn ¼ p� � f Tu Jðzn � z�Þ
f Tu g

if 0\ zn � z�k k\h

pn ¼ 0 otherwise

8
<

:
ð17Þ

Using the UPO detected and attained in Sect. 4, the

Poincaré map is linearized in the neighborhood of the point

for c ¼ 0:0187 and s ¼ 0 as

znþ1 � z� ¼ �7:2383 �8:4847
5:01633 6:16318

� �
ðzn � z�Þ

þ �0:2642
0:07397

� �
s ð18Þ

Applying the control law (16), the chaotic system would

be controlled on the detected periodic orbit and the biped

Fig. 6 Variation of h value and the hip torque s value generated by a network with N = 1 and sigmoid transfer function in a hidden layer with 10

neurons

Fig. 7 Variation of h value and the hip torque s value generated by a network with N = 1 and sigmoid transfer function in a hidden layer with 4

neurons trained with Levenberg–Marquardt backpropagation method
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continues a periodic motion with repeated steps as shown

in Fig. 8.

It should be noted that the footfall and the step

number mentioned as the x-labels in Figs. 5, 6, 7 and 8,

respectively, are identical. Comparing the results

obtained by the proposed ANN-based controller and the

OGY method, it can be said that the control effort

needed by the OGY controller is more than that attained

by the neural network controller for stabilizing the same

periodic orbit. OGY method is a theoretically more

reliable method for controlling chaos, but it requires a

rather accurate detection of periodic orbit and lineariza-

tion of Poincaré map to give good results. On the other

hand, there is no analytical tool to investigate the sta-

bility of neural network controller and it depends on

network’s parameters. But the neural network controller

is shown to be more flexible in getting various behaviors

from the system and robust to possible perturbations

which were not seen by the OGY controller applied to

the biped model.

7 Conclusions

Chaos detection and chaos control of a biped walking

model have been investigated in this study. The unsta-

ble periodic orbits within the chaotic attractor have been

detected. Based on artificial neural networks, a chaos

control scheme has been proposed to stabilize the

achieved UPO of the chaotic system. The control input

has been considered as the torque applied at the hip. The

effects of changing ANN parameters on the biped per-

formance have been studied through numerical results.

The results can be used to design an optimum ANN chaos

controller. Investigating the effects of various ANN

parameters showed that the transfer function and the

training methods have significant effects on the biped

performance. The number of neurons and layers did not

seem to have exact correlation with the performance, but

some suggestions for optimum values could be extracted

from the numerical results. Furthermore, to control the

chaotic behavior of the biped model, the OGY method

has been also utilized and the obtained results are com-

pared with those attained from the ANN-based controller.

The simulation results illustrated that the proposed ANN-

based controller is flexible and robust to a noise like toe-

off impulses at heel strikes.
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