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Abstract This paper presents a comprehensive study of

the workspace, dynamic characteristics and accuracy of

three planar flexible manipulators with 3-RPR, 2-RPR and

1-RPR structures moving at high speed. A geometrical

procedure is employed to obtain the workspaces of the

manipulators. The flexible intermediate links are modeled

as the Euler–Bernoulli beams with fixed-free boundary

conditions based on the assumed mode method. Using the

Lagrange multipliers, a generalized set of differential

algebraic equations of motion is developed for the planar

RPR manipulators. Three moving constraints, which are

obtained from an inverse kinematics analysis and applied

to the actuated base joints, impose the end-effector to

follow a high-speed circular motion as the desired trajec-

tory. From this analysis, the dynamic performance of

1-RPR flexible serial manipulator and 2-RPR and 3-RPR

flexible parallel manipulators in tracking a desired trajec-

tory is evaluated. Based on the results, it is concluded that,

in addition to the specific structure of the manipulator, the

accuracy generally depends on the operation conditions.

The results contest the general assertion which claims that

parallel manipulators have more accuracy and stiffness

than serial counterparts.

Keywords Comparative study of manipulators �
Trajectory tracking � Serial and parallel manipulators �
Flexible manipulators

1 Introduction

During the past few years, the application of parallel

manipulators has gained considerable attention due to their

advantages over serial manipulators. In sensitive industries

such as precision machining and robot-assisted surgery,

any deviation and vibration of the end-effector can make

undesired effects. Structural flexibility of the components

such as joints and links is the major source of undesired

deflections. At high operational speeds, inertial forces of

moving components can become very large, leading to

considerable deflections of the light links which in turn

impose deviation of the end-effector from a desired tra-

jectory. The cumulative effect of these deformations

decreases the demanded level of accuracy. This important

issue can be more challenging when dealing with flexible

serial manipulators for some applications. In the past

decades, considerable effort has been devoted to the

dynamic analysis of flexible manipulators for the study of

their accuracy. Dwivedy and Eberhard (2006) presented a

survey of the literature related to dynamic analysis of

flexible manipulators. They described different modeling

techniques for flexible manipulators and carried out a good

literature survey related to the modeling of single, two and

multi-flexible link manipulators and also flexible joint

manipulators.

Pandilove and Dukovski (2014) have compared the

characteristics between serial and parallel manipulators.

Patel and George (2012) have listed several advantages of

parallel manipulators over their serial counterparts. Among

all, great load carrying capacity, low inertia, higher stiff-

ness, reduced errors and higher accuracy of parallel

manipulators can be mentioned. On the other hand, serial

manipulators have larger workspace, fewer constraints and

simpler equations. Among the advantages of parallel
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manipulators, the accuracy is challenging. Wavering

(1999) gives an overview of history and current status of

research in parallel kinematic machines at NIST. Song

et al. (1999) derived the inverse and forward kinematic

models to analyze and enhance the performance of a hex-

apod machine with parallel kinematic structure. They

modeled the error of the parallel kinematic machine and

compensated it.

On one hand, it is widely claimed in the literature that

parallel manipulators have intrinsically more stiffness and

accuracy than serial manipulators (see, e.g., (Guan et al.

2004; Rauf et al. 2004; Merlet 2006; Le et al. 2013; Wil-

liams and Joshi 1999)). On the other hand, the simulations

which confirm this assertion have not been properly

addressed. Only Briot and Bonev (2007) have pointed out

that there is no simple answer to this question of superi-

ority. They have tried to address this void statement and

confirm that parallel robots are generally less sensitive to

input errors than serial robots by comparing the kinematic

accuracy of two pairs of serial–parallel 2-DOF planar

robots. However, their comparison is too limited to draw

any general conclusions. Therefore, it is very important to

study the possibility of achieving less accuracy when using

parallel manipulators instead of serial manipulators for

some certain conditions. The main goal of this paper is to

address this critical issue.

Comparative study of parallel manipulators has been

considered by some researchers for performance evalua-

tion. Among the earliest studies on this issue, Tsai and

Joshi (2001) conducted a comparative study of the well-

conditioned workspace, stiffness and inertia properties of

four 3-DOF translational parallel manipulators. Wu et al.

(2010, 2011) compared the dynamic performances of three

planar 3-DOF parallel manipulators with 4-RRR, 3-RRR

and 2-RRR structures and showed that the 2-RRR parallel

manipulator has the worst dynamic performance. Also, in

(Wu et al. 2013) they compared the performance of planar

3-DOF parallel manipulators with one and two additional

branches. Some of the other studies on the dynamics of

parallel manipulators are presented in (Zhang et al. 2012;

Wu et al. 2010; Zhao and Gao 2009).

Binaud et al. (2011) compared two non-degenerate and

two degenerate 3-RPR planar parallel manipulators with

regard to their dexterity, workspace size and sensitivity.

The authors of (El-Khasawneh and Alazzam 2013) carried

out the forward and inverse kinematic and dynamic anal-

ysis of this manipulator. Staicu (2009) established recur-

sive matrix relations for kinematics and dynamics and

presented power requirement comparison on its dynamics.

He also studied the inverse dynamics of this manipulator

(Staicu 2009). The internal joint forces are considered in

dynamics of a 3-PRP planar parallel robot (Staicu and

Chablat 2012) and a 3-RRR parallel manipulator (Staicu

2013). In another work (Staicu 2009), the power require-

ment comparison in 3-RPR planar parallel robot dynamics

is studied. The principle of virtual work in the inverse

dynamic problem was used.

Briot and Bonev (2008) presented a detailed study of the

local maximum orientation and position errors occurring in

3-RPR and 3-PRR planar parallel robots subjected to errors

in the inputs. The authors of (Williams and Joshi 1999)

described the design, construction and control of a planar

3-RPR parallel manipulator by including forward pose

kinematics but did not consider dynamic modeling strat-

egy. Bonev et al. (2003) described several types of singular

configurations by studying the direct kinematics model of a

3-RPR planar parallel robot with actuated base joints.

Recursive matrix relations for the kinematic analysis of this

robot with pneumatic or hydraulic actuators were estab-

lished in (Staicu et al. 2007). In another study (Briot et al.

2008), the kinematic geometry of the general 3-RPR planar

parallel robots with actuated base joints was studied. Vil-

iani et al. (2012) investigated vibration analysis of a 3-RPR

parallel mechanism with flexible intermediate links. Sud-

hakar and Srinvas (2013) presented an analytical approach

for calculating the stiffness matrix of 3-RPR parallel

manipulator.

Pashkevich et al. (2009) presented a new stiffness

modeling method for over-constrained parallel manipula-

tors with flexible links and compliant actuating joints. The

advantages of the developed technique are confirmed by

application examples, which deal with comparative stiff-

ness analysis of two translational parallel manipulators of

3-PUU and 3-PRP architectures. Niaritsiry et al. (2004)

considered a 3 DOF in translation of high-precision parallel

manipulator having flexure hinges for the purpose of

studying its performances in terms of absolute positioning

accuracy in presence of different sources of inaccuracy.

Piras et al. (2004) presented a dynamic finite element

analysis of a planar fully parallel robot with flexible links.

They showed that for a given high-speed motion, the

configuration of the mechanism has a significant influence

on the nature of the resultant elastic vibrations. Kang and

Mills (2002) developed the fully coupled equations of

motion of a 3-PRR planar parallel manipulator by consid-

ering structural flexibility of the intermediate links, using

the Lagrange multipliers method. For evaluating the cou-

pling effects between the degree-of-freedom motions of

six-degree-of-freedom parallel manipulators, a method has

been presented in Ogbobe et al. (2011). This approach is

based on singular-value decomposition to the properties of

the joint space inverse mass matrix. Seifried et al. (2013)

presented the feedforward control designs based on inverse

models and applied to serial and parallel flexible manipu-

lators. Thereby, for a given system output the inverse

model provides the control input for exact reproduction of
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the desired output trajectory and the trajectories of the

generalized coordinates.

A dynamic model of a 3-RPR planar parallel manip-

ulator has been presented in our preliminary work

(Firoozabadi et al. 2015). In this paper, we intend to

investigate the accuracy and stiffness of the flexible par-

allel manipulators versus serial manipulators in high

speeds. For this purpose, three planar manipulators are

selected with 3-RPR and 2-RPR parallel structures and

1-RPR serial structure. The flexibility of the manipulators

is concentrated in intermediate links, as the rest of the

structure is mechanically far stiffer. The structural flexi-

bility of the intermediate links is modeled by the assumed

mode method considering three mode shapes. The

dynamic model of 3-RPR, 2-RPR and 1-RPR manipula-

tors with flexible intermediate links is developed. The

flexible intermediate links are modeled as the Euler–

Bernoulli beams with fixed-free boundary conditions.

Using the Lagrange multipliers, a generalized set of dif-

ferential algebraic equations (DAEs) of motion is devel-

oped. A high-speed motion of the end-effector is selected

to compare the deviations from the desired trajectory due

to deformations of the links.

2 Architecture of the 3-RPR, 2-RPR and 1-RPR
Manipulators

The main parallel manipulator presented in this work is

categorized as a 3-RPR type, as shown in 3D and 2D views

in Fig. 1, respectively. The manipulator is planar, and the

motion of the end-effector is two dimensional. This

manipulator comprises three symmetric RPR chains, each

of which consists of a revolute joint (R), then a prismatic

joint (P) and again a revolute joint (R), respectively. It is

composed of two triangular platforms: the moving platform

(C1C2C3) and the fix platform (A1A2A3) which are equi-

lateral triangles, as shown in Fig. 1. The end-effector is

installed on the mass center point P of the moving platform

(C1C2C3). The gravity is perpendicular to the manipulator

plane.

On the fixed platform (A1A2A3), there are three

revolving cylinders (AiBi) in which three moving sliders

reciprocate and provide linear actuations for each leg of

the flexible intermediate link. So, each prismatic joint at

point Bi (i = 1, 2, 3) is connected to the platform through

a flexible link (BiCi) with length l. The other end of the

links, Ci, i = 1, 2, 3, is connected to the moving platform

with revolute joints. As can be perceived from the figure,

two local coordinates are defined for each flexible link.

Coordinate xi is assumed to be in the direction of the ith

undeformed intermediate link, and coordinate wi(x) is

defined as the bending deflection of ith intermediate link

from its rigid configuration. The origin O of the fixed

coordinate frame, which has been hidden behind the

moving platform, is located at the geometrical center

point of the triangle A1A2A3. The rotation angle of each

rigid link AiBi is specified with hi. The variable distance

due to the actuation of prismatic joint between points Bi

and Ai is defined as qi. The manipulators with struc-

tures 2-RPR and 1-RPR are shown in Figs. 2 and 3.

Table 1 reports the necessary parameters of the

manipulators.

Fig. 1 Coordinates system of the proposed 3-RPR manipulator Fig. 2 Coordinates system of the proposed 2-RPR manipulator
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3 Workspaces of the Manipulators

In this section, the reachable workspaces of the manipu-

lators (for the end-effector center point P) assuming rigid

links are obtained. We describe a procedure for this pur-

pose which utilizes simple geometrical rules. For the

3-RPR manipulator, the reachable workspace is the com-

mon area between reachable zones by the three RPR

chains, as shown in Fig. 4.

The reachable area for the end-effector from each RPR

chain, ignoring the other RPR chains, is the common area

between two circles. Each smaller circle (inner circle) is

the trajectory of the end-effector when q
i
¼ 0 and up = 0,

ignoring the other RPR chains. The radius of the smaller

circle is obtained as

qi ¼ 0 ! AiCi ¼ AiBi ¼ l ! R1 ¼ AiCi þ CiP

¼ lþ b
ffiffiffi

3
p

=3 ð1Þ

where b is the side length of moving platform and R1 is the

radius of the smaller circle which is the minimum distance

between the end-effector and Ai joint assuming up = 0.

Every larger circle (outer circle) for each RPR chain is the

trajectory of the end-effector when q
i
¼ BiCi ¼ l and

up = 0, ignoring the other RPR chains. The radius of lar-

ger circle is obtained as

qi ¼ BiCi ¼ l ! AiCi ¼ AiBi þ BiCi ¼ 2l ! R2

¼ AiCi þ CiP ¼ 2lþ b
ffiffiffi

3
p

=3 ð2Þ

where R2 is the radius of the larger circle which is the

maximum distance between the end-effector and Ai joint

assuming up = 0. By substituting the parameters from

Table 1 into Eqs. (1) and (2), we have

R1 ¼ AiBi þ CiP ¼ 200þ 100�
ffiffiffi

3
p .

3 ¼ 257:735mm

ð3Þ

R2 ¼ AiBi þ BiCi þ CiP ¼ 200þ 200þ 100�
ffiffiffi

3
p .

3

¼ 457:735 mm ð4Þ

Fig. 3 Coordinates system of the proposed 1-RPR manipulator

Table 1 Planar n-RPR

manipulators parameters

(n = 1, 2, 3)

Moving platform Side length (CiCi?1 = b) 100 mm

Mass 0.5 kg

Flexible intermediate

links

Length (BiCi = l) 200 mm

Cross-sectional diameter 10 mm

Density 2772 kg/m3

Young’s modulus 73 GPa

Cylinders

(rigid links)

Motion course amplitude

(AiBi)

200 mm

Inner diameter 20 mm

Outer diameter 24 mm

Mass density 7800 kg/m3

Fixed platform Side length (AiAi?1) 660 mm

R257.7350

R457.7350

Fig. 4 Reachable workspace of the 3-RPR manipulator (all dimen-

sions are in mm)
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By following this procedure, one can obtain the work-

spaces of the 2-RPR and 1-RPR manipulators as shown in

Fig. 5. Note that in the 1-RPR manipulator, when q
i
¼ 0,

the moving platform can rotate around the Ci joint with a

much larger angle, due to absence of the other RPR chain

constraints. So, the radius of the smaller circle for this

manipulator is written as

R3 ¼ AiBi � CiP ¼ l� b
ffiffiffi

3
p

=3 ¼ 200� 100�
ffiffiffi

3
p .

3

¼ 142:265 mm ð5Þ

Figure 5 illustrates the workspace of the 1-RPR

manipulator including the workspaces of the 2-RPR and

3-RPR manipulators, and also the workspace of the 2-RPR

manipulator which includes the workspace of the 3-RPR

manipulator. As a result, the larger workspace of the serial

1-RPR manipulator compared to the parallel 2-RPR and

3-RPR manipulators is confirmed.

4 Flexibility Modeling of the Intermediate Links
with the Assumed Mode Method

In this work, the assumedmodemethod (AMM) is employed

to model the structural flexibility of the intermediate links.

Each intermediate link, BiCi, of the three manipulators is

modeled as an Euler–Bernoulli beam because the length of

each link is much longer than its cross-sectional diameter.

Study on the flexibility of the joints is not discussed in this

work, and therefore, they are assumed rigid. Also, the plat-

form C1C2C3 and links AiBi are assumed rigid because they

are designed and built to be much stiffer than the interme-

diate links BiCi. Based on the AMM, the transverse deflec-

tions of the links are modeled by an infinite number of

separable harmonic modes. Since only the first few modes

dominate the dynamics, the modes are truncated to a finite

number of modal series. According to the formulation of the

AMM, bending deformation of the ith flexible link of the

RPR manipulators can be expressed as

wiðx; tÞ ¼
X

r

j¼1

gijðtÞwjðxÞ; i ¼ 1; . . .; n ð6Þ

where wi(x, t) is the bending deflection of the flexible link

that varies along the link length with time, wj(x) is the

mode shape function and gij(t) is the time-varying mode

amplitude. Index i is the link number, j is the mode shape

number and r is the number of selected assumed modes for

modeling of the link flexibility. Scalar n for the 3-RPR, 2-

RPR and 1-RPR manipulators is three, two and one,

respectively. Vector of the generalized flexible coordinates

�g with dimension nr 9 1 (n = 1, 2, 3) is defined as

�g ¼ g11; . . .; g1r; . . .; gn1; . . .; gnr½ �T ð7Þ

where gij with i = 1,…, n and j = 1, 2,…, r denotes the

jth mode coordinate of the ith flexible link of the n-RPR

manipulator.

The flexible intermediate links are treated as rigid in the

longitudinal direction since the axial stiffness of intermediate

links is much higher than the lateral stiffness. The fixed-free

boundary conditions are selected for the intermediate links.

Due to the rigidity of the prismatic joints, the slope and

deflection of the flexible links at pointBi are zero and so, fixed

boundary condition is adopted here. The boundary condition

at the endpoint Ci of the flexible links was chosen as free to

transmit the effects of the links flexibility to the moving

platform. For the fixed-free boundary conditions, the mode

shape function wj(n) that is presented in (Rao 2007) can be

easily developed in dimensionless form as

wjðnÞ¼ cosajn�coshajn
� �

�cosajþcoshaj
sinajþsinhaj

sinajn�sinhajn
� �

� �

ð8Þ

Here, n ¼ x
l
, 0 B n B 1, where x is the distance from Bi

to an arbitrary point on the ith flexible link, and l is the link

length. The parameter ai is obtained from the solution of

the following frequency equation

cos aj cosh aj þ 1 ¼ 0 j ¼ 1; 2; . . .; r ð9Þ

where, for example, a1 to a4 are written as

a1 ¼ 1:875104069; a2 ¼ 4:694091133;

a3 ¼ 7:854757438; a4 ¼ 10:99554073 ð10Þ

5 Equations of Motion of the Manipulators

In this section, the fully coupled equations of motion of the

n-RPR parallel manipulators with flexible intermediate

links using the Lagrange multipliers method are presented.

Fig. 5 Reachable workspaces of the rigid 3-RPR, 2-RPR and 1-RPR

manipulators (all dimensions are in mm)
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These equations include dynamic equations and kinematic

constraint equations. For deriving the equations, the rigid

body and elastic motions are incorporated as a set of

generalized coordinates.

5.1 Kinetic Energy

The total kinetic energy of the manipulators include the

kinetic energies of the rigid cylinders (AiBi), the flexible

intermediate links (BiCi) and the moving platform. The

kinetic energy of the rigid cylinders AiBi is given as

TC ¼
X

n

i¼1

1

2
Ic _h

2
i ð11Þ

where n is three, two and one for the 3-RPR, 2-RPR and 1-

RPR manipulators, respectively, Ic is the mass moment of

inertia of the ith rigid cylinder about its rotating axis at

point Ai, and _hi is the angular velocity of this link.

The kinetic energy of the flexible intermediate links BiCi

is expressed as

TL ¼
X

n

i¼1

1

2

Z l

0

qA _q2i þ ððxþ qiÞ _hi þ _wiðxÞÞ2
h i

dx ð12Þ

where qA is the mass per unit length of each flexible link

with mass m, _wiðxÞ is the time derivative of bending

deformation, and _qi is the linear velocity of flexible link i

in the direction of its undeformed configuration. Finally,

the kinetic energy of the platform is expressed as

TP ¼ 1

2
mpð _x2p þ _y2pÞ þ

1

2
Ip _u

2
p ð13Þ

where Ip is the mass moment of inertia of the platform

around the center point P, mp is the platform mass, _xp and

_yp are the linear velocities along the X and Y axes,

respectively, and _up is the angular velocity of the platform.

The total kinetic energy can be obtained by summing the

kinetic energy of all components as

T ¼
X

n

i¼1

1

2
Ic _h

2
iþ

X

n

i¼1

1

2

Z l

0

qA _q2i þððxþqiÞ _hiþ _wiðxÞÞ2
h i

dx

þ1

2
mpð _x2pþ _y2pÞþ

1

2
Ip _u

2
p ð14Þ

5.2 Potential Energy

The potential energy of a flexible manipulator system

generally arises from two sources: the elastic deformation

of flexible links and gravity. Gravitational force which is

perpendicular to the manipulators plane, and therefore, the

potential energy due to the gravity is not included here. The

potential energy of the system due to the bending deflection

of flexible links is given as

V ¼ 1

2

X

n

i¼1

Z l

0

EI
o2wiðxÞ
ox2

� �2

dx

¼ 1

2

X

n

i¼1

EI

l3

Z

1

0

X

r

j¼1

g2ijðtÞðw
00
j ðnÞÞ

2
dn ð15Þ

where E and I are the elastic modulus and the second

moment of area of each flexible link, respectively.

5.3 Lagrange Equations

The generalized coordinates of the manipulators with

flexible links include rigid body motion generalized coor-

dinates and flexible generalized coordinates. Rigid body

motion coordinates for the n-RPR manipulator are selected

as

�q ¼ q1; . . .; qn½ �T; �h ¼ h1; . . .; hn½ �T and
�Xp ¼ xp; yp; up

	 
T
ð16Þ

where �q is the vector of translational coordinates of links

BiCi, �h is the vector of rotational coordinates of links AiBi,

and �Xp is the vector of coordinates of the moving platform.

The vector of generalized coordinates of the n-RPR

manipulator can be written as X ¼ �qT; �h
T
; �X

T

p ; �gT
h iT

2
Rq where q = ((2n ? 3) ? nr) 9 1. These n-RPR manip-

ulators, without considering the flexibilities, have three

degrees of freedom; so the rigid body motion coordinates:

�q, �h and �XP are not independent and must satisfy 2n con-

straint equations. From the geometry of n chains of the n-

RPR manipulator as shown in Figs. 2, 3 and 4, the con-

straint equations can be written as

rOAi
þ rAiBi

þ rBiCi
¼ rOP þ rPCi

; i ¼ 1; . . .; n ð17Þ

which upon projection along X and Y axes, 2n constraint

equations are written as

C2i�1 � XAi þ ðqi þ lÞ cos hi � wiðlÞ sin hi � xp

�rPCi
cosðui þ upÞ ¼ 0; i ¼ 1; . . .; n

ð18Þ

C2i � YAi þ qi þ lð Þ sin hi þ wi lð Þ cos hi � yp

�rPCi sin ui þ up

� �

¼ 0; i ¼ 1; . . .; n
ð19Þ

where rPCi
cosðui þ upÞ ¼ x0ci and rPCi

sinðui þ upÞ ¼ y0ci
specify the global X and Y coordinates of Ci, respectively,

measured from the mass center of the platform, P, when up

is zero. Furthermore, as shown in Fig. 6, ui is the angle

between rPCi
and x-axis of local coordinate which can be

written as u1 = -p/6, u2 = p/2 and u3 = 7p/6. Parame-

ters XAi and YAi are the X and Y coordinates of Ai,

respectively, as shown in Figs. 1, 2 and 3. Note that the

variables rPCi
, ui, XAi and YAi are constant.
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Using the Lagrange multiplier method, the dynamic

equations of the manipulators with n flexible links are given

as

d

dt

oðT � VÞ
o _Xi

� �

� oðT � VÞ
oXi

¼ Qi þ
X

6

k¼1

kk
oCk

oXi

;

i ¼ 1; . . .; 2nþ 3þ nrð Þ
ð20Þ

where Qi is the generalized force associated with the gen-

eralized coordinate Xi, and kk is the Lagrange multiplier

associated with the kth constraint equation. Substituting

Eqs. (14), (15), (18) and (19) into Eq. (20) results in the

equations of motion of the flexible n-RPR manipulators

which can be rearranged as the following differential–al-

gebraic equations (DAEs)

Mqq 0 0 0

0 Mhh 0 MT
gh

0 0 MXPXP
0

0 Mgh 0 Mgg

2

6

6

6

4

3

7

7

7

5

€�q
€�h
€�XP

€�g

2

6

6

6

6

4

3

7

7

7

7

5

þ

Kqq 0 0 0

Khq 0 0 0

0 0 0 0

0 0 0 Kgg

2

6

6

6

4

3

7

7

7

5

�q
�h
�XP

�g

2

6

6

6

4

3

7

7

7

5

¼

Fcq

Fch

0

Fcg

2

6

6

6

4

3

7

7

7

5

þ

Feq

Feh

FeXP

Feg

2

6

6

6

4

3

7

7

7

5

þ

JTCq

JTCh
JTCXP

JTCg

2

6

6

6

6

4

3

7

7

7

7

5

k1

..

.

k2n

2

6

6

4

3

7

7

5

ð21Þ

C2i�1 � XAi þ ðqi þ lÞ cos hi � wiðlÞ sin hi � xp

� rPCi
cosðui þ upÞ ¼ 0

C2i � YAi þ qi þ lð Þ sin hi þ wi lð Þ cos hi � yp

� rPCi sin ui þ up

� �

¼ 0

where vectors Fci ði ¼ q; h; gÞ include Coriolis and cen-

trifugal forces, vectors Feiði ¼ q; h; Xp; gÞ contain exter-

nally applied forces, and JCiði ¼ q; h; Xp; gÞ are the

constraint Jacobian matrices corresponding to the general-

ized coordinates. Matrices M and K are the mass and

stiffness matrices, respectively. Upper index T represents

transpose of matrix. The detailed expressions of the above

parameters are given in the ‘‘Appendix’’ section.

Equation (21) is comprised of 2n ? 3 ? nr differential

equations, 2n algebraic constraint equations, and

4n ? 3 ? nr variables equal to the number of equations.

The number of degrees of freedom is 3 ? nr in the n-RPR

manipulators with n flexible links, i.e., 3� of rigid body

motion degree and nr degrees of elastic motion.

6 Numerical Simulation

In this section, numerical simulations for the 3-RPR and

2-RPR parallel manipulators with three and two flexible

intermediate links, respectively, and 1-RPR serial manip-

ulator with one flexible intermediate link are presented to

compare the accuracy level between flexible parallel and

flexible serial manipulators. Although parallel manipula-

tors usually have higher stiffness and accuracy than serial

manipulators, it will be shown that it may not be the case in

some conditions. In these simulations, the first three mode

shapes are selected to model the structural flexibility of the

intermediate links, i.e., r = 3.

As it can be observed, the equations of motion of the

flexible n-RPR manipulators, like most of other flexible

parallel manipulators, are large, highly nonlinear and

complicated. Therefore, their inverse dynamic analysis is

very complicated. In this paper, an easier method is

employed to investigate the effects of links flexibility on

the end-effector trajectory.

For simulations, a circular motion is selected as a

desired trajectory for the end-effector of the moving plat-

forms with constant orientation up. The motion is consid-

ered with high acceleration and frequency to excite

structural vibrations of the flexible linkages. The amount of

deviation from the desired trajectory, due to the links

flexibility, can specify the accuracy level of each

manipulator.

The desired trajectory is specified as:

xp ¼ 30 cos 2pft � 30 ðmmÞ; yp ¼ 30 sin 2pft ðmmÞ andup

¼ p
4
with f ¼ 10Hz ð22Þ

Since the rigid 1-RPR, 2-RPR and 3-RPR manipulators

have three degrees of freedom, three moving constraints

are considered to impose the required rigid body motion of

the end-effector in following the desired trajectory. For this

purpose, the rigid body motion coordinates q1, h1 and up,

which are common between the three manipulators, are

constrained. Based on Eqs. (18), (19) and (22), and con-

sidering that wi(l) = 0 in a rigid body motion, the moving

constraint equations are written as

XA1
þ ðq1ðtÞ þ lÞ cos h1ðtÞ � ð30 cosð2pftÞ � 30Þ
� rPC1

cosðu1 þ upðtÞÞ ¼ 0 ð23Þ

Fig. 6 Coordinates system of the moving platform
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YA1
þ ðq1ðtÞ þ lÞ sin h1ðtÞ � ð30 sinð2pftÞ
� rPC1

sinðu1 þ upðtÞÞ ¼ 0 ð24Þ

upðtÞ �
p
4
¼ 0 ð25Þ

Equations (23), (24) and (25) are the moving constraints

which impose certain motion on the moving platform. These

moving constraints do not make any change in the derivation

of kinematic constraints Jacobian matrices

JCiði ¼ q; h; Xp; gÞ. Before considering these moving con-

straints, components of the Jacobian matrices JCiði ¼
q; h; Xp; gÞ are to be constructed using the approach

explained in ‘‘Appendix’’ section. Indeed, the moving con-

straints are considered together with the system dynamic

equations of motion. Corresponding to each moving con-

straint, a constraint force is obtained and exerted to themoving

platform. As the result, the other parts of the manipulator are

moved accordingly. All these steps are performed automati-

cally in Maple within the numerical solution of the DAE.

As an important issue, it is worth mentioning that the

moving constraint equations constrain the rigid body

motion of the manipulators and they do not impose any

constraint on the elastic deflections of the flexible links,

i.e., wi(l) = 0 which makes the end-effector deviate from

the desired trajectory.

The initial values of the generalized elastic deformation

�g0 and velocity _�g0 are considered to be zero. The initial

positions �q0 and �h0, and velocities _q0 and _h0 of the

manipulators are calculated from Eqs. (18), (19) and (22).

Using the initial values, Eq. (21) is solved with Maple

software by using MEBDFI solver (Modified Extended

Backward-Differentiation Formula Implicit). This solver

has the ability to fully solve implicit DAE systems.

Figures 7 and 8 illustrate variations in q1ðtÞ and h1ðtÞ
which are identical for the 1-RPR, 2-RPR and 3-RPR

flexible manipulators. It is prerequisite for comparison of

the end-effector trajectory of the manipulators.

Figure 9 presents the elastic deformations of the flexible

intermediate link B1C1 for the three manipulators at their

endpoint C1 connected to the moving platform. Vibrations

of this point directly affect the end-effector motion. As it

can be seen, the overall elastic deformation of the flexible

link B1C1 of the 3-RPR manipulator is larger than the

2-RPR manipulator, and for the 2-RPR manipulator is

larger than the 1-RPR serial manipulator.

Figure 10 illustrates the end-effector trajectories of the

three flexible manipulators that deviate from the desired

trajectory. The corresponding deviation magnitude (error) in

following the circular trajectory is shown in Fig. 11. Max-

imum deviations for the 3-RPR, 2-RPR and 1-RPR manip-

ulators are 10.003, 9.285 and 8.474 mm, respectively.

By integrating the deviations from the desired trajectory

and averaging during 100 ms of the simulation, the devi-

ation averages are obtained about 4.82, 4.43 and 3.92 mm

for the 3-RPR, 2-RPR and 1-RPR manipulators, respec-

tively. Consequently, the 1-RPR flexible serial manipulator

acts stiff with higher accuracy compared to parallel 2-RPR

and 3-RPR flexible manipulators. These results contest the

general assertion which claims that parallel manipulators

have more accuracy and stiffness than serial counterparts.

Reasons which may contribute to decrease the stiffness

and accuracy from the 1-RPR flexible serial manipulator to

the 3-RPR flexible parallel manipulator can be classified as:

1. The total mass of the manipulators increases from the

1-RPR manipulator to the 3-RPR manipulator due to

increasing the number of components which increases

Fig. 7 Variations in q1(t) for the 1-RPR, 2-RPR and 3-RPR flexible

manipulator

Fig. 8 Variations in h1(t) for the 1-RPR, 2-RPR and 3-RPR flexible

manipulator
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the inertial forces and the deformations of the flexible

links.

2. The degrees of freedom of the elastic motion of the

flexible manipulators increase from the 1-RPR manip-

ulator to the 3-RPR manipulator.

3. In very flexible serial manipulators, the deformations

of flexible links are added cumulatively, while in the

parallel manipulators they are averaged. However, here

in these manipulators, in which only intermediate links

are considered flexible, this situation is not the case.

7 Conclusion

This work investigates the effects of links flexibility on the

rigid body motion of the moving platform of the 3-RPR and

2-RPR parallel manipulators and 1-RPR serial manipulator

with flexible intermediate links moving at high speeds. A

geometrical procedure was employed to obtain the work-

spaces of the manipulators. The equations of motion,

including the differential algebraic equations and algebraic

constraint equations, for the three flexible manipulators were

developed by using the Lagrange multipliers method. The

structural flexibility of the intermediate links was modeled

by the assumed mode method considering three mode

shapes. Three moving kinematic constrains, obtained from

an inverse kinematics analysis and applied to the actuated

base joints, imposed the end-effector to follow a high-speed

circular motion as the desired trajectory. The simulation

results illustrated that the stiffness and accuracy decrease

from the 1-RPR serial manipulator to the 3-RPR parallel

manipulator. These results disagree with the general asser-

tion which claims that parallel manipulators have more

accuracy and stiffness than serial counterparts.
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Fig. 9 Endpoint C1

deformation of the flexible link

B1C1 of the three manipulators.

a 3-RPR flexible parallel

manipulator, b 2-RPR flexible

parallel manipulator, c 1-RPR

flexible serial manipulator
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Appendix

Mass matrix:
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Stiffness matrix:
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Fig. 10 Trajectory of the end-

effector of the flexible

manipulators. a 3-RPR parallel

manipulator, b 2-RPR parallel

manipulator, c 1-RPR serial

manipulator
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Fig. 11 Deviation magnitude.

a 3-RPR parallel manipulator,

b 2-RPR parallel manipulator,

c 1-RPR serial manipulator
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where s3i ¼ r sinð/i þ /pÞ; c3i ¼ r cosð/i þ /pÞ
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2

6

6

4

3

7

7

5

2 Rnr�2n; Ĵi ¼
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