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Ç. Dinçkal1

Received: 12 September 2014 / Accepted: 17 June 2015 / Published online: 9 May 2016

� Shiraz University 2016

Abstract In the present study, an efficient and accurate

finite element model for vibration analysis of carbon nan-

otubes (CNTs) with both Euler–Bernoulli and Timoshenko

beam theory has been presented. For this purpose, an ana-

lytical solution for the exact dynamic shape functions of

CNTs based on both Euler–Bernoulli and Timoshenko beam

theories has been derived. The solution is general and is not

restricted to a particular range of magnitudes of the nonlocal

parameters. The exact dynamic shape functions have been

utilized to derive analytic expressions for the coefficients of

the exact dynamic (frequency-dependent) element stiffness

matrix. Numerical results are presented to figure out the

effects of nonlocal parameter, mode number and slenderness

ratio on the vibration characteristics ofCNTs. It is shown that

these results are in good agreement with those reported in the

literature. Present element formulation will be useful for

structural analyses of nanostructures with complex geome-

tries, loadings, material properties and boundary conditions.

Keywords Carbon nanotubes � Nonlocal elasticity �
Finite element method � Exact dynamic shape functions �
Exact dynamic stiffness matrix

1 Introduction

Nanotubes have a very broad range of electronic, thermal

and structural properties that change depending on the

different kinds of nanotube length, chirality or twist

(Mongillo 2009). Since their discovery in 1991 by Iijima

(1991), both single-wall carbon nanotubes (SWNTs) and

multi-wall carbon nanotubes (MWNTs) have become an

active area of research. Simply, carbon nanotubes (CNTs)

are long, thin cylinders of carbon that are unique in their

size, shape and remarkable physical properties. CNTs can

be thought of as rolled up; closed graphite sheets (see

Fig. 1).

Being only a few times wider than atoms, CNTs offer

exceptionally high material properties such as electrical

and thermal conductivity, stiffness, toughness and

remarkable strength (Wilson et al. 2002). Their properties

and cylindrical shapes allow for their potential applica-

tions in such diverse fields as fibrous reinforcement,

atomic label piping and nanostructures. Besides CNTs are

structured to serve as a capstone design materials for new

nanoelectronics and switching devices. For the sake of

example, CNTs have been proposed as nanomachines.

They make good nanotweezer tips for electron micro-

scopy, and multi-wall nanotubes can be pulled in and out

like pistons. Calculations have been made to understand

their role as mechanical nanogears. Furthermore, CNTs

with certain defects can act as transistors and CNTs can

store hydrogen and may also be useful with lithium as

batteries. They have unusual tensile strength and may

make valuable building materials if manufactured cheaply

in quantity, other potential applications of CNTs include:

flat panel display screens, actuators, chemical sensors

(Wilson et al. 2002). Behaviors of NEMS (Nanoelec-

tromechanical systems) are usually described by two

theoretical approaches such as molecular dynamics (MD)

and continuum mechanics approach (CMA). MD is the

most common method in examining CNT behavior. Liew

et al. (2008) used MD based on a second-generation

reactive empirical bond order (REBO) potential to
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cdinckal@cankaya.edu.tr

1 Department of Civil Engineering, Çankaya University,
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simulate the flexural wave propagation in a single-walled

carbon nanotube (SWCNT). Yakobson et al. (1996), Wu

(2004), Cho et al. (2007), Zhang et al. (2009) and Tsai

and Tu (2010) studied mechanical behavior of CNTs and

single graphene layer and graphene flakes. Then contin-

uum models have been proven to be important and effi-

cient tools in the study of nanostructures (Narendar and

Gopalakrishnan 2009).

Controlled experiments in nanoscale are difficult, and

molecular dynamic simulations are computationally

expensive and take excessive time to compute. To analyze

small-scale structures by considering size effect, nonlocal

theory is one of the theories which is the extension of the

classical field theory for the application in nanoscale

(Reddy 2007; Reddy and Pang 2008; Thai 2012; Shen and

Zhang 2011). Nonlocal continuum modeling with nonlocal

elasticity has been established and used as a reliable tool

for the analyses of nanostructures (Peddieson et al. 2003;

Wang and Liew 2007). Nevertheless, there is a need to

upgrade the classical nonlocal continuum theories to

account for the small-scale effects. Vibration analysis of

CNTs is important for better understanding of mechanical

responses of CNTs. In the literature, there have been a

number of studies about vibration of CNTs (Wang et al.

2007; Wang 2009; Ansari and Gholami 2015; Demir et al.

2010; Yang et al. 2010; Murmu and Adhikari 2010; Ansari

et al. 2011; Rafiei et al. 2012; Eltaher et al. 2012, 2013a, b;

Nami and Janghorban 2015; Yan et al. 2013; Ansari et al.

2014; Chakraverty and Behera 2014; Ansari et al. 2013).

Zhang et al. (2005) developed a double-elastic beam model

based on Euler–Bernoulli beam theory for transverse

vibrations of double-walled carbon nanotubes under com-

pressive axial load to investigate the effects of the axial

load on the natural frequencies of double-walled carbon

nanotubes. Furthermore, Civalek and Akgöz (2010) studied

free vibration of microtubules based on Euler–Bernoulli

beam theory by differential quadrature method to show the

effect of the behavior on the frequencies of microtubules.

Besides, Civalek and Demir (2011) presented an approach

for obtaining accurate bending moments and displacements

in microtubules based on Euler–Bernoulli beam theory by

differential quadrature method. Nonlocal constitutive

equations used in all the studies (Wang et al. 2007; Wang

2009; Ansari and Gholami 2015; Demir et al. 2010; Yang

et al. 2010; Murmu and Adhikari 2010; Ansari et al. 2011;

Rafiei et al. 2012; Eltaher et al. 2012, 2013a, b; Nami and

Janghorban 2015; Yan et al. 2013; Ansari et al. 2014;

Chakraverty and Behera 2014; Ansari et al. 2013) are based

on the hypothesis that the stress is a function of strains at

all points in the continuum (Eringen 2002; Eringen 1983;

Eringen 1976; Eringen 1972; Eringen and Edelen 1972). In

the literature, finite element formulations are used and

derived in some studies (Eltaher et al. 2013b; Phadikar and

Pradhan 2010; Adhikari et al. 2013; Pradhan 2012). All

these studies have focused on vibration analysis in terms of

nonlocal, small-scale effects based on EBT or TBT by use

of a great number of elements to converge analytical (also

exact) solutions. Neither of them has constituted nor

derived an exact element which provides exact solutions

for the vibration problem of CNTs. Instead, they have

employed too many elements to minimize error and also

deviate from exact results. The present work aims to

develop finite element method in such a way that it can be

employed in the study of free vibration of CNTs based on

both nonlocal EBT and TBT modeling with only one ele-

ment per member. The size effect is taken into considera-

tion using the Eringen’s nonlocal elasticity theory. Finite

element method introduced widely in the 1960s, and for-

mulations are based on cubic Hermitian functions (Cook

et al. 2001). In this paper, by use of EBT and TBT gov-

erning equations, finite element formulations are derived.

Applying the clamped end boundary conditions, the gov-

erning equation is solved to obtain exact dynamic shape

functions by finite element method. The exact dynamic

shape functions construct the bases for obtaining exact

dynamic stiffness terms. Due to use of exact shape and

dynamic stiffness terms, the proposed solution strictly

satisfies equilibrium equations, not only at the element

nodes but also within the element, which would not have

been the case if Hermitian interpolation functions had been

used. This is one of the benefits of the proposed element,

and it only requires one element per member to obtain

results and converges to exact solution with minimal

computational effort. Explicit forms of both exact dynamic

shape functions and exact dynamic stiffness terms are

presented. Numerical results for free vibration of CNTs are

also served up to demonstrate the benefits of the proposed

solutions.

Fig. 1 Illustration of CNTs and

cross section
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2 Equations of Nonlocal Beam Theories

2.1 Euler–Bernoulli Beam Theory

The governing equation for free vibration of carbon nan-

otubes based on Euler–Bernoulli beam theory (EBT) can

be written as (Reddy and Pang 2008)

o2

ox2
�EI

o2w

ox2

� �
þ l

o2

ox2
m0

o2w

ot2
� m2

o4w

ox2ot2

� �

¼ m0

o2w

ot2
� m2

o4w

ox2ot2
ð1Þ

where l ¼ e2oL
2 (nonlocal parameter), m0 = qA, (mass

inertia) m2 ¼ qA h2

12
; (mass inertia) q is the mass density

and A is the cross-sectional area of the carbon nanotube.

eo is a material constant, L is the element length for

carbon nanotube, and h is the depth of the carbon nanotube.

For free vibration, the solution can be written as

w x; tð Þ ¼ W xð Þeixt ð2Þ

where w(x, t) denotes the transverse displacements,

depending on position and time, W is the mode shape, and

x is the frequency of natural vibration. Substitution of this

expression into Eq. (1) yields

p
d4W xð Þ
dx4

þ q
d2W xð Þ
dx2

� rW ¼ 0 ð3Þ

where p ¼ EI � lm2x2, q = m2x
2 ? lm0x

2, r = m0x
2

2.2 Timoshenko Beam Theory

The governing equations for the natural vibration of the

Timoshenko beam theory (TBT) are (Reddy and Pang

2008)

d

dx
GAKs Uþ dW

dx

� �� �
þ x2m0 W � l

d2W

dx2

� �
¼ 0 ð4Þ

EI
d2U
dx2

� GAKs Uþ dW

dx

� �
þ x2m2 U� l

d2U
dx2

� �
¼ 0

ð5Þ

where W and U are deflection and rotation that define the

mode shapes. By eliminating U from the two equations,

Eq. (4) can be solved for dU=dx

dU
dx

¼ �m0x2

GAKs

W � 1� lm0x2

GAKs

� �
d2W

dx2
ð6Þ

By differentiating Eq. (5) once and substituting for

dU=dx and d3U=dx3 from Eq. (6), one can obtain

EI � lm2x
2

� �
1� lm0x2

GAKs

� �
d4W

dx4

þ GAKs þ
m0x2

GAKs

EI � lm2x
2

� ��

þ m2x
2 � GAKs

� �
1� lm0x2

GAKs

� ��

� d2W

dx2
þ m0x2

GAKs

m2x
2 � GAKs

� �
W ¼ 0 ð7Þ

Equation (7) can be rewritten as same as the form given

in Eq. (3).

Except that

p ¼ EI � lm2x
2

� �
1� lm0x2

GAKs

� �
;

q ¼ m0x
2 X0 þ lð Þ þ m2x

2 1� 2
lm0x2

GAKs

� �� �
;

r ¼ m0x
2 1� m2x2

GAKs

� �
:

where G is shear modulus, Ks is shear correction coeffi-

cient, X0 is the shear deformation parameter, and A is the

cross-sectional area of the carbon nanotube. From Eq. (3),

it should be noted that the nonlocal parameter l and shear

deformation parameter X0 have the effect of reducing the

natural frequency. In the present study, clamped end type

boundary conditions are considered for both EBT and TBT

and are also given as w = 0, and dw/dx = 0.

3 Finite Element Analysis

The implementation of finite element analysis to the

problem involves some steps explained briefly in this

section. These steps are identical for both EBT and TBT.

Firstly, Eq. (3) can be rewritten as

d4y

dx4
þ A

d2y

d2x
� By ¼ 0 ð8Þ

For EBT;

A ¼ m2x2 þ lm0x2

EI � lm2x2
ð9Þ

B ¼ m0x2

EI � lm2x2
ð10Þ

For TBT;

A ¼
m0x2 X0 þ lð Þ þ m2x2 1� 2 lm0x2

GAKs

� 	� 	

EI � lm2x2ð Þ 1� lm0x2

GAKs

� 	 ð11Þ
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B ¼
m0x2 1� m2x2

GAKs

� 	

EI � lm2x2ð Þ 1� lm0x2

GAKs

� 	 ð12Þ

By use of Eq. (8), elements should be formulated. As a

result of this formulation, solution for dynamic shape

functions and dynamic stiffness terms of the proposed

element can be obtained.

The roots of the characteristic equation given in Eq. (8)

are

D1 ¼ �bi D2 ¼ bi ð13Þ
D3 ¼ �c D4 ¼ c ð14Þ

where

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Bþ A2

pp
ffiffiffi
2

p c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Bþ A2

pp
ffiffiffi
2

p ð15Þ

provided that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Bþ A2

p
[ 0. Then, the complementary

solution for Eq. (8) is

y xð Þ ¼ c1Cos bx½ � þ c2Cosh cx½ � þ c3Sin bx½ � þ c4Sinh cx½ �
ð16Þ

The constants c1 - c4 can be obtained after enforcing

the following clamped end type boundary conditions:

y 0ð Þ ¼ v1;
dy

dx
0ð Þ ¼ h1; y Lð Þ ¼ v2;

dy

dx
Lð Þ ¼ h2

ð17Þ

Then,

v1
h1
v2
h2

8>><
>>:

9>>=
>>;

¼ H

c1
c2
c3
c4

8>><
>>:

9>>=
>>;

ð18Þ

The matrix H can be constructed by substituting the

boundary conditions into Eq. (16). Finally, Eq. (18) is

solved for c1 - c4, and then, this result is substituted back

into Eq. (16) to obtain the following:

y xð Þ ¼ N1 N2 N3 N4b c

v1
h1
v2
h2

8>><
>>:

9>>=
>>;

ð19Þ

The functions N1 - N4 are the shape functions because

they are directly derived from the solution of Eq. (8). In

other words, Eq. (19) satisfies the governing equilibrium

equation in Eq. (8). It is also verified that N1 - N4 con-

verges to Hermitian (cubic) polynomials at the limit (i.e., l
and m0 ! 0). Explicit form of the shape functions is

If these processes are continued by allowing c and b also

to approach zero in Eqs. (20), (21), (22), (23), one can

obtain the cubic Hermitian polynomials as follows:

N1 ¼
L� xð Þ2 Lþ 2xð Þ

L3
ð24Þ

N2 ¼
L� xð Þ2x

L2
ð25Þ

N1 ¼

bCos cx½ � �cþ bSin Lb½ �Sin Lc½ �ð Þþ
bCosh Lc½ � cCos L� xð Þb½ � þ cCos Lb½ �Cosh cx½ � � bSin Lb½ �Sinh cx½ �ð Þ�

c bCos bx½ � þ Sinh Lc½ � cSin L� xð Þb½ � þ bCos Lb½ �Sinh cx½ �ð Þð Þ

0
@

1
A

2bc �1þ Cos Lb½ �Cosh Lc½ �Þ þ b� cð Þ bþ cð ÞSin Lb½ �Sinh Lc½ �ð Þ ð20Þ

N2 ¼

�cSin bx½ � þ b Cos L� xð Þb½ � � Cos Lb½ �Cosh cx½ �ð ÞSinh Lc½ ��
bþ cSin Lb½ �Sinh Lc½ �ð ÞSinh cx½ �þ

Cosh Lc½ � cCosh cx½ �Sin Lb½ � � cSin L� xð Þb½ � þ bCos Lb½ �Sinh cx½ �ð Þ

0
@

1
A

2bc �1þ Cos Lb½ �Cosh Lc½ �Þ þ b� cð Þ bþ cð ÞSin Lb½ �Sinh Lc½ �ð Þ ð21Þ

N3 ¼

�cðb Cos L� xð Þb½ � � Cos Lb½ �Cosh cx½ � þ Cosh Lc½ � �Cos bx½ � þ Cosh cx½ �ð Þð Þþ
cSin bx½ �Sinh Lc½ �Þ þ b bSin Lb½ � þ cSinh Lc½ �ð ÞSinh cx½ �

� �

2bc �1þ Cos Lb½ �Cosh Lc½ �Þ þ b� cð Þ bþ cð ÞSin Lb½ �Sinh Lc½ �ð Þ ð22Þ

N4 ¼

cSin L� xð Þb½ � þ cCosh Lc½ �Sin bx½ � � bCos bx½ �Sinh Lc½ �þ
Cos cx½ � �cSin Lb½ � þ bSinh Lc½ �ð Þ þ b Cos Lb½ � � Cosh Lc½ �ð ÞSinh cx½ �

� �

2bc �1þ Cos Lb½ �Cosh Lc½ �Þ þ b� cð Þ bþ cð ÞSin Lb½ �Sinh Lc½ �ð Þ ð23Þ
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N3 ¼
3L� 2xð Þx2

L3
ð26Þ

N4 ¼
x2 �Lþ xð Þ

L2
ð27Þ

These expressions provide checks on the accuracy of the

computations in that one can successively reduce

Eqs. (20), (21), (22) and (23) to Eqs. (24), (25), (26), (27)

by letting both A and B approach zero. This is a common

theme for most derivations in this paper. Use of Hermitian

polynomials leads to conventional stiffness terms in finite

element. Herein the exact dynamic shape functions are

compared with Hermitian polynomials in order to make

clear the effect of nonlocal parameters in response. This is

one of the advantages of Hermitian shape functions. One of

the aims of this study is to show the relations such that at

limiting cases of the parameters (such as

m2;m0;X0;G;A;Ks and x) when they approach to zero, the

derived shape functions and dynamic stiffness terms con-

verge to Hermitian shape functions and conventional

stiffness terms, respectively.

For this reason, it is a guiding light to exemplify the

variation of the shape function as a function of

m2;m0;X0;G;A;Ks and x or nonlocal parameter l and to

compare them with the corresponding Hermitian

polynomials. This can be achieved by defining their

interaction in the form of a three-dimensional surface

graph. To serve this purpose, two new nondimensional

variables, p and z, are introduced in such a way that

z = AL2 and p = BL4. In Figs. 2 and 3, the surface plots of

shape functions N1 and N2 are presented. These plots show

the variation through a range of values for z at the values of

p = 1 9 10-27, 10 9 10-27, 50 9 10-27 and 100 9

10-27. The horizontal axis denoted by n is the nondimen-

sional axial coordinate which is x/L. The shapes for N3 and

N4 are simply the antisymmetric mirror images of N1 and

N2, respectively. It is observed from the figures that for

small values of A (approximately characterized by

0 B p B 1 9 10-27), and the resulting shape is almost the

same as Hermitian shape functions. Whereas, for large

values of z (i.e., higher nonlocal effect), the shape functions

deviate considerably from the Hermitian shape functions.

The convergence case can be also demonstrated in detail

for N1 by Table 1 and Fig. 4. For Table 1 and Fig. 4, as

convergence parameters p and z (the appropriate combi-

nation of physical parameters given in Eqs. (9), (10) and

(11), (12) for EBT and TBT, respectively) increase, the

shape function diverges from Hermitian polynomials

(Hermitian shape functions). In other words, if nonlocal

effect increases (which is the case of larger z), N1 diverges

Fig. 2 Surface plots of N1
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from Hermitian shape function (given in Eq. (24)). This is

why error increases as p and z increase. The same results

are also valid for other shape functions.

Subsequently, dynamic stiffness matrix terms are

obtained from the following equation:

Kij ¼
ZL

0

d2Ni

dx2
d2Nj

dx2
dx� A

ZL

0

dNi

dx

dNj

dx
dx� B

ZL

o

NiNjdx:

ð28Þ

in which the first integral yields material stiffness terms,

the second integrals are related to element attributed to

nonlocal effect and dynamic effects. The term Ni represents

ith shape function, and all of the above integrals are carried

out over the element length L. It is interesting to note that

Fig. 3 Surface plots of N2

Table 1 Comparison of N1 in

terms of Hermitian polynomials

and the convergence parameters

n (z 9 10-27) Hermitian polynomial p = 1 p = 10 p = 50 p = 100

0 1 1 1 1 1

0.25 0.84375 0.84689 0.85497 0.89456 0.95476

0.5 0.5 0.50149 0.51524 0.58409 0.69324

0.75 0.15625 0.14981 0.15702 0.1939 0.25472
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Fig. 4 Error of the Convergence of parameters for N1
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the second and the third integrals have a destabilizing

effect on the stiffness terms. This is also consistent with the

fact that nonlocal effect reduces the stiffness (Wang et al.

2007; Wang 2009; Ansari and Gholami 2015; Demir et al.

2010; Yang et al. 2010; Murmu and Adhikari 2010; Ansari

et al. 2011; Rafiei et al. 2012; Eltaher et al. 2012, 2013a, b;

Nami and Janghorban 2015; Yan et al. 2013; Ansari et al.

2014; Chakraverty and Behera 2014; Ansari et al. 2013).

In the previous sections, the shape functions are derived

separately. Now it is time to substitute them into the above

equation to obtain dynamic stiffness terms. The dynamic

stiffness terms are explicitly derived and obtained as

follows:

k33 ¼ k11 ð36Þ
k34 ¼ �k12 ð37Þ
k44 ¼ k22 ð38Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4B

pp
ffiffiffi
2

p c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4B

pp
ffiffiffi
2

p ð39Þ

Moreover, the derived stiffness terms are normalized

with respect to their conventional stiffness terms and por-

trayed graphically in Fig. 5. It is noted from the figure that

the diagonal terms decrease as p increases, and for some

ranges of p and z, they can become negative.

3.1 Mass Matrix

Mass matrix is obtained by calculation of the third integral

in Eq. (28). The 4 9 4 mass matrix m in terms of shape

functions for a uniform segment with mass per unit length

is found by computation of the following integral (Franklin

2001; Alemdar and Gülkan 1997).

m ¼ B

Z
NTNdx ð40Þ

When calculating the integral b, c are being set to zero

which is the case of use of Hermitian interpolation func-

tions, the 4 9 4 matrix takes the following matrix form:

m ¼ B

420

156 22L 54 �13L

22L 4L2 13L �3L2

54 13L 156 �22L

�13L �3L2 �22L 4L2

2
664

3
775 ð41Þ

3.2 Geometric Stiffness Matrix

Geometric stiffness matrix is obtained by calculation of the

second integral in Eq. (28). Components of the geometric

stiffness matrix can be obtained by computation of the

following integral (Franklin 2001; Alemdar and Gülkan

1997).

k11 ¼ �
bc b2 þ c2
� �

bCosh Lc½ �Sin Lb½ � þ cCos Lb½ �Sinh Lc½ �ð Þ
�2bcþ 2bcCos Lb½ �Cosh Lc½ � þ b2 � c2

� �
Sin Lb½ �Sinh Lc½ �

ð29Þ

k12 ¼
bc �b2 þ c2 þ b2 � c2

� �
Cos Lb½ �Cosh Lc½ � � 2bcSin Lb½ �Sinh Lc½ �

� �
�2bcþ 2bcCos Lb½ �Cosh Lc½ � þ b2 � c2

� �
Sin Lb½ �Sinh Lc½ �

ð30Þ

k13 ¼
bc b2 þ c2
� �

bSin Lb½ � þ cSinh Lc½ �ð Þ
�2bcþ 2bcCos Lb½ �Cosh Lc½ � þ b2 � c2

� �
Sin Lb½ �Sinh Lc½ �

ð31Þ

k14 ¼
bc b2 þ c2
� �

Cos Lb½ � � Cosh Lc½ �ð Þ
�2bcþ 2bcCos Lb½ �Cosh Lc½ � þ b2 � c2

� �
Sin Lb½ �Sinh Lc½ �

ð32Þ

k22 ¼
b2 þ c2
� �

�cCosh Lc½ �Sin Lb½ � þ bCos Lb½ �Sinh Lc½ �ð Þ
�2bcþ 2bcCos Lb½ �Cosh Lc½ � þ b2 � c2

� �
Sin Lb½ �Sinh Lc½ �

ð33Þ

k23 ¼ �
bc b2 þ c2
� �

Cos Lb½ � � Cosh Lc½ �ð Þ
�2bcþ 2bcCos Lb½ �Cosh Lc½ � þ b2 � c2

� �
Sin Lb½ �Sinh Lc½ �

ð34Þ

k24 ¼ �
b2 þ c2
� �

�Sin Lb½ � þ bSinh Lc½ �ð Þ
�2bcþ 2bcCos Lb½ �Cosh Lc½ � þ b2 � c2

� �
Sin Lb½ �Sinh Lc½ �

ð35Þ
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KG ¼ A

Z
dNT

dx

dN

dx
dx ð42Þ

The terms contained in Eq. (43) have also been obtained

in closed form when b, c are being set to zero which is the

case of use of Hermitian interpolation functions.

The 4 9 4 matrix becomes

KG ¼ A

30L

36 3L �36 3L

3L 4L2 �3L �L2

�36 �3L 36 �3L

3L �L2 �3L 4L2

2
664

3
775 ð43Þ

Equations (43) and (41) are simply the outcomes of

Eqs. (42) and (40), respectively, for p = z = 0. When only

Fig. 5 Normalized stiffness terms
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z = 0 is considered, the solution is for local Euler–Ber-

noulli beam theory.

3.3 Conventional Stiffness Matrix

When b, c are being set to zero which is the case of use of

Hermitian interpolation functions, the integral in Eq. (28)

has been computed for each stiffness term. As a result, the

following 4 9 4 consistent and conventional stiffness

matrix is obtained.

K ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
664

3
775 ð44Þ

Table 2 Material and

geometric properties of CNT

(Reddy and Pang 2008)

Parameters Values

q 2300 kg/m3

E 1000 GPa

I 4.91 9 10-38 m4

G 420 GPa

m 0.19

d 1 9 10-9 m

A 7.85 9 10-19 m2

Ks 0.877

X0 1.7 9 10-3 m2

L 1.5 9 10-9 m

Table 3 Nondimensional natural frequencies clamped CNTs based

on EBT when L = 1.5 9 10-9 m

Mode

number

EBT

(Reddy)

Present Deviation

(%)

eo = 0 1 0.8992 0.8931 0.6780

2 0.8949 0.8906 0.4782

3 0.9000 0.9001 0.0142

4 0.9003 0.9001 0.0268

5 0.9007 0.9009 0.0190

6 0.9011 0.9010 0.0089

eo = 0.33 1 0.8898 0.8853 0.5103

2 0.8761 0.8750 0.1248

3 0.8623 0.8621 0.0262

4 0.8533 0.8451 0.9590

5 0.8348 0.8377 0.3416

6 0.8117 0.8121 0.0485

eo = 0.67 1 0.8663 0.8789 1.4553

2 0.8337 0.8383 0.5514

3 0.7964 0.8016 0.6497

4 0.7404 0.7464 0.8155

5 0.6843 0.6692 2.2038

6 0.6235 0.6212 0.3617

eo = 1 1 0.8522 0.8466 0.6522

2 0.7914 0.8002 1.1182

3 0.7070 0.6997 1.0373

4 0.6039 0.5964 1.2378

5 0.5195 0.5215 0.3773

6 0.4352 0.4300 1.2042

Table 4 Nondimensional natural frequencies clamped CNTs based

on TBT when L = 1.5 9 10-9 m

Mode

number

TBT

(Reddy)

Present Deviation

(%)

eo = 0 1 0.8992 0.9047 0.6120

2 0.8902 0.8959 0.6454

3 0.8858 0.8834 0.2730

4 0.8768 0.8777 0.1013

5 0.8678 0.8678 0.0035

6 0.8587 0.8500 1.0185

eo = 0.33 1 0.8945 0.8834 1.2461

2 0.8714 0.8773 0.6828

3 0.8529 0.8520 0.1051

4 0.8298 0.8291 0.0788

5 0.8019 0.7938 1.0086

6 0.7694 0.7866 2.2416

eo = 0.67 1 0.8710 0.8773 0.7277

2 0.8290 0.8289 0.0095

3 0.7823 0.7808 0.1952

4 0.7262 0.7222 0.5519

5 0.6607 0.6600 0.1081

6 0.5952 0.5941 0.1914

eo = 1 1 0.8387 0.8291 1.1473

2 0.7621 0.7222 5.2342

3 0.6712 0.6711 0.0133

4 0.5803 0.5900 1.6801

5 0.4895 0.4932 0.7635

6 0.3938 0.3945 0.1821
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Fig. 6 Variation of frequencies of clamped end CNT based on TBT
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4 Numerical Results

Numerical analysis related to free vibration of CNTs is

presented in this section. Free vibration frequencies are

calculated with the derived element. It should be noted that

these frequencies are the values of x which makes the

determinant of stiffness matrix zero. These results are then

compared to solutions obtained by analytical (Reddy and

Pang 2008) and finite element method in which an eigen-

value analysis is carried out in such a way that

K þ KGð Þ � x2Mð ÞU ¼ 0 where K, KG and M are the

assembled stiffness, geometric stiffness and mass matrices,

respectively, and U express the corresponding shapes of the

vibrating system known as the eigenvectors (also called

mode shapes). The resulting eigenvalue matrix dimension

is 4 9 4 for clamped end type boundary conditions. This

dimension is also the same for other types of boundary

conditions. It should be noted that different boundary

conditions yield different shape functions. In fact, this

study has focused on clamped end type boundary condi-

tion. Here, the proposed solution requires more than one

element per member so consistent mass matrices are used.

The proposed element is added to a finite element library

implemented in Mathematica (Wolfram 1988). The mate-

rial and geometric values of CNT are given in Table 2. The

analytical results of Reddy and Pang (2008) are compared

with the present study results and given in Tables 3 and 4

for both EBT and TBT.

In Tables 3 and 4, deviation (%) in terms of error is

considerably lower and is achieved by only one element.

This situation proves that this study attains its aim.
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Fig. 7 Variation of frequencies of clamped end CNT based on EBT
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for different L/h and nonlocal

parameter based on TBT
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Fig. 11 Variation of frequencies for various mode numbers and

nonlocal parameter based on TBT
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Frequencies of 12 modes with various nonlocal param-

eters are plotted for clamped end CNT based on TBT and

EBT in Figs. 6 and 7, respectively.

Figures 8 and 9 illustrate the effect of nonlocal param-

eter and L/h on the vibration characteristics for clamped

CNTs.

As shown in both Figs. 8 and 9, as the nonlocal

parameter increased, the frequencies decreased. No sig-

nificant effect of slenderness ratio (L/h) on frequencies

except for the third frequency based on TBT was

observed. But this is not the case for the frequencies

based on EBT. The effect of slenderness ratio is reduced

by increasing the nonlocal parameter. This trend is com-

patible with experimental results. In Rudd and Broughton

(1999), it was found that the fundamental frequency

obtained by molecular simulation is always less than that

obtained by the classical continuum elasticity theory. This

tendency is also consistent with the findings in this study

for the clamped CNTs.

Figures 10 and 11 are presented to show the frequency

response for different mode numbers and nonlocal

parameters for both EBT and TBT separately.

As shown in both Figs. 10 and 11, as the nonlocal

parameter and mode number increased, the frequencies

decreased for both EBT and TBT. It should be noted that

this decrease of frequency for the case of TBT is much

more and quicker than that for the case of EBT. For

instance, for the case eo = 10, at modes 21 and 22, the

frequencies based on TBT approach zero quicker than

those on EBT.

5 Discussion and Conclusions

Nonlocal theories of the Euler–Bernoulli and Timoshenko

beam theories are furthered, and analytical solutions for

clamped end boundary condition are derived for free

vibration of CNTs.

By use of the derived finite element, this paper pro-

pounds a new approach for obtaining accurate frequencies

of CNTs using both nonlocal theories: EBT and TBT.

Dynamic shape functions and dynamic stiffness terms are

explicitly derived and presented. The following observa-

tions and results are obtained from the figures and tables:

• In general, the effect of nonlocal parameter, shear

deformation parameter and mass inertia is to reduce the

fundamental frequencies.

At the limiting cases of the physical parameters (i.e.,

l ! 0, X0 ! 0 m2 ? 0, GAKs ? 0 and x ! 0), the

derived shape functions and dynamic stiffness terms con-

verge to the Hermitian shape functions and conventional

stiffness terms, respectively.

• If m0x2

EI�lm2x2 for EBT and
m0x2 1�m2x

2

GAKs

� �
EI�lm2x2ð Þ 1�lm0x

2

GAKs

� � for TBT are

described approximately by the interval

0� p� 1� 10�27, the resulting shape of shape func-

tions is almost the same as the Hermitian shape.

Conversely, the shape functions diverge remarkably

from the Hermitian shape functions in case of higher

nonlocal effect (for large values of z).

• The effect of mode number is to decrease the funda-

mental frequencies in case of both EBT and TBT.

• Numerical results prove that the nonlocal parameter

yields an important contribution and has an effect on

the vibration of CNTs.

• Vibration analysis results are also in good agreement

with CNTs nonlocal modeling based on both EBT and

TBT.

• The method may also be applicable for obtaining the

bending and buckling solutions of CNTs using the

nonlocal beam theory based on EBT and TBT.

• This method leads to minimal computational effort with

the advantage of using only one element which

converges best to exact solution.

The present model is expected to be very efficient in the

analysis and design of nanostructures under different

boundary conditions with complex geometries and various

load conditions. Further, the present work can be extended

to higher order beam theories for accurate analysis of thick

nanostructures.
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