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Abstract
In this paper, a new higher-order finite element model is proposed for free vibration and buckling analysis of functionally 
graded (FG) sandwich beams with porous core resting on a two-parameter Winkler-Pasternak elastic foundation based on 
quasi-3D deformation theory. The material properties of FG sandwich beams vary gradually through the thickness according 
to the power-law distribution. The governing equation of motion is derived from the Lagrange's equations. Three differ-
ent porosity patterns including uniform, symmetric, and asymmetric are considered. The accuracy and convergence of the 
proposed model are verified with several numerical examples. A comprehensive parametric study is carried out to explore 
the effects of the boundary conditions, skin-to-core thickness ratio, power-law index, slenderness, porosity coefficient, 
porous distribution of the core, and elastic foundation parameters on the natural frequencies and critical buckling loads of 
FG sandwich beams.

Keywords  FG sandwich beam · Quasi-3D theory · Elastic foundation · Porosity · Free vibration · Buckling · Finite element 
method

1  Introduction

Functionally graded porous materials (FGPMs) are a new 
emerging class of functionally graded materials (FGMs) that 
have gained considerable interest due to their distinctive com-
position and properties. In addition to gradual variation in 
the material properties of conventional FGMs, these materi-
als introduce porosity as an additional variable to the material 
gradient. Beyond sharing the common advantages of conven-
tional FGMs, their lightweight nature, high strength, enhanced 
energy absorption capabilities, and improved thermal and 
acoustic insulation properties have driven the development of 

functionally graded sandwich structures with FG porous core 
(Bang and Cho 2015; Conde et al. 2006; Betts 2012). With 
their potential for improved performance and durability, these 
structures in various forms such as beams, plates, and shells 
have found potential applications in a variety of engineering 
fields (Magnucka-Blandzi and Magnucki 2007; Patel et al. 
2018; Smith et al. 2012).

Numerous researchers have performed extensive studies to 
emphasize the mechanical behaviors of FGP sandwich beams 
using various theories and solution methods (Han et al. 2012; 
Wu et al. 2020; Lefebvre et al. 2008). A variety of theories 
available to analyze FGP sandwich beams can be classified 
mainly as classical beam theory (CBT), first-order shear defor-
mation theory (FSDT), higher-order shear deformation theories 
(HSDT), and quasi-3D deformation theory. Tang et al. (2018) 
conducted linear and nonlinear buckling analysis of porous 
beams based on Euler Bernoulli beam theory. Wattanasakul-
pong and Ungbhakorn (2014) employed CBT to assess both 
the linear and nonlinear vibrations of FGP beams. Eltaher 
et al. (2018) used CBT to investigate the bending and vibration 
behavior of porous nanobeams. Turan et al. (2023) used the 
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Ritz method, finite element method (FEM), and artificial neural 
networks (ANNs) based on FSDT to investigate the free vibra-
tion and buckling behavior of FG porous beams under various 
boundary conditions.

Using FSDT, Chen et al. (2016) investigated the nonlinear 
free vibration of sandwich beams with an FG porous core. 
Chen et al. (2015) explored the buckling and bending of FG 
porous Timoshenko beams. Bamdad et al. (2019) investi-
gated the vibration and buckling behavior of a sandwich 
Timoshenko beam with a porous core. Grygorowicz et al. 
(2015) conducted the buckling analysis of a sandwich beam 
with an FG porous core using FSDT. Alambeigi et al. (2020) 
investigated the free and forced vibration characteristics of 
a sandwich beam with an FG porous core and composite 
face layers embedded with shape memory alloy via FSDT.

Derikvand et al. (2023) studied the buckling of FG sandwich 
beams with porous ceramic core using HSDT. Ramteke and 
Panda (2021) examined the free vibrations of a multi-direc-
tional FG structure considering the influences of variable grad-
ing and porosity distribution with HSDT. Hung and Truong 
(2018) investigated the free vibration response of sandwich 
beams with an FG porous core resting on a Winkler elastic 
foundation using various shear deformation theories. Nguyen 
et al. (2022a) proposed a two-variable shear deformation theory 
to investigate the buckling, bending, and vibration character-
istics of FGP beams considering various porosity distribution 
patterns. Srikarun et al. (2021) used Reddy's third-order shear 
deformation theory to examine the linear and nonlinear bending 
analysis of sandwich beams with FG porous core under various 
types of distributed loads. Nguyen et al. (2023) developed a 
Legendre-Ritz approach to investigate the bending, buckling, 
and free vibration behavior of porous beams resting on elastic 
foundations using HSDT. Hamad et al. (2020) conducted static 
stability analysis on an FG sandwich beam with a porous core 
subjected to axial load functions to investigate and optimize 
critical buckling loads using HSDT. Chami et al. (2022) exam-
ined the influence of porosity on fundamental natural frequen-
cies of the simple supported FG sandwich beam with HSDT. 
Bargozini et al. (2024) studied buckling of a sandwich beam 
with carbon nano rod reinforced composite and porous core 
under axially variable forces based on HSDT. Sayyad et al. 
(2022) investigated the static deformation and free vibration of 
simply supported porous FG circular beams using the Navier 
method based on HSDT. Masjedi et al. (2019) investigated 
the large deflection of FGP beams using a geometrically exact 
theory with a fully intrinsic formulation and the orthogonal 
Chebyshev collocation method. Su et al. (2019) investigated the 
surface effect on the static bending of FGP nanobeams using 
Reddy's higher-order beam theory. Chinh et al. (2021) applied 
a point interpolation mesh-free method based on a polyno-
mial basic function to conduct static flexural analysis of an FG 

sandwich beam with a porous metal core using HSDT. Xin and 
Kiani (2023) studied the vibration behavior of a thick sandwich 
beam with an FG porous core resting on an elastic medium 
using quasi-3D theory and the Navier method.

Among computational methods, FEM has garnered signifi-
cant attention as one of the prominent numerical techniques for 
the analysis of FG and sandwich structures over the last few 
decades (Kahya and Turan 2017; Belarbi et al. 2022; Koutoati 
et al. 2021a, 2021b; Arslan and Gunes 2018; Van 2022; Vinh 
et al. 2023; Gupta and Chalak 2023; Vo et al. 2015). Akbaş 
et.al. (2022) studied the vibration of FG porous, thick beam 
under the dynamic sine pulse load using FEM. Patil et al. 
(2023) investigated the static bending and vibration of FG 
porous sandwich beams with viscoelastic boundary conditions 
using FSDT and FEM. Zghal et al. (Zghal et al. 2022) explored 
the effect of porosity on the static bending behavior of FG 
porous beams using a refined mixed FEM. Malhari Ramteke 
et al. (2020) introduced an FE solution based on HSDT for the 
static analysis of FG structures, considering variable grading 
patterns, including the porosity effect. Vinh et al. (2022) devel-
oped a new enhanced finite element model based on the neutral 
surface position for bending analysis of the FG porous beams 
with the FSDT. Turan and Adiyaman (2023) used parabolic 
shear deformation theory to carry out static analysis on two-
directional functionally graded (2D-FG) porous beams. Al-Itbi 
and Noori (2022) investigated the static response of sandwich 
beams with porous core under uniformly distributed loads along 
the beam span, using ANSYS finite element software. Grygoro-
wicz et al. (2015) used ANSYS software to analyse the buck-
ling characteristics of sandwich beams with metal foam core. 
Madenci and Özkılıç (2021) explored the influence of poros-
ity on free vibrational behaviour of FG beam using analytical, 
ABAQUS FEM package and ANN technique. Using Carrera’s 
Unified Formulation and finite element approximation, Forou-
tan et al. (2021) investigated post-buckling and large-deflection 
analysis of a sandwich FG plate with FG porous. Nguyen et al. 
(2022b) introduced a novel finite element formulation for static 
bending analysis of functionally graded porous sandwich plates 
using Quasi-3D theory. Li et al. (2023) conducted nonlinear 
FE simulations to study nonlinear vibration behavior of FG 
sandwich beams with auxetic porous Copper core in thermal 
environments.

Several models have been developed to express the interac-
tion between the beam and elastic foundations. Nguyen Thi 
(2022) examined the bending, buckling, and free vibration of 
FG sandwich curved beams resting on the Pasternak founda-
tion using the analytical method and FSDT. Zenkour et al. 
(2019) used third-order shear deformation theory to carry out 
the buckling analysis of a size-dependent FG nanobeam rest-
ing on a two-parameter elastic foundation. Mohammed et al. 
(2021) conducted the bending and buckling analysis of the FG 
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Euler–Bernoulli beam resting on the Winkler-Pasternak elas-
tic foundation. Matinfar et al. (2019) conducted static bending 
aanalysis of 2D FG porous sandwich beam resting on Winkler-
Pasternak Foundation in Hygrothermal environment, Based on 
the Layerwise Theory and Chebyshev Tau Method. Songsuwan 
et al. (2018) explored the free vibration and dynamic response 
of FG sandwich Timoshenko beams resting on an elastic foun-
dation and subjected to a moving harmonic load. Fahsi et al. 
(2019) proposed a novel refined quasi-3D theory for the free 
vibration, bending, and buckling analysis of FG porous beams 
resting on an elastic foundation. Ait Atmane et al. (2017) intro-
duced a novel refined quasi-3D theory for the analysis of free 
vibration, bending, and buckling of FG porous beams resting 
on an elastic foundation. Fazzolari (2018) conducted the free 
vibration and elastic stability analysis of 3D porous FG sand-
wich beams resting on Winkler-Pasternak elastic foundations 
using the method of series expansion of displacement compo-
nents. Ghazwani et al. (2024) performed the high frequency 
analysis of the FG sandwich nanobeams resting on elastic foun-
dations using nonlocal quasi-3D theory and Navier method.

Based on the above-given literature review, despite many 
works available on the analysis of single-layer FG porous 
beams, studies on the analysis of FG sandwich beams with 
porous core are rare. Shear deformation theories neglecting 
transverse normal deformations are found to be the most 
widely used theories for the analysis of FG sandwich beams. 
Additionally, there is a noticeable absence of studies in the 
literature addressing the free vibration and buckling analy-
sis of FG sandwich beams with softcore (metal core) using 
higher order shear and normal deformation theory. Moreo-
ver, the application of a quasi-3D theory-based FEM to FG 
sandwich beams with the porous core is notably restricted 
due to difficulties in addressing complex problems, such as 
satisfying the C1-continuity requirement of the quasi-3D 
beam theory. The literature on the free vibration and buck-
ling behavior of FG sandwich beams resting on an elastic 
foundation is limited and fragmented as well. It appears that 
no study has yet investigated the combined effects of core 
porosity and elastic foundation on the free vibration and 
buckling characteristics of FG sandwich beams, consider-
ing both shear and normal deformations. In this regard, the 
present work aims to explore for the first time an investiga-
tion into the free vibration and buckling characteristics of 
FG sandwich beams with porous metal core and sandwich 
beams with FG porous core resting on a two-parameter 
Winkler-Pasternak elastic foundation using a new higher-
order finite element model based on quasi-3D deformation 
theory, that account both the effects of transverse shear and 
normal deformations. The FG material property distribution 
obeys the power-law rule through the thickness. Three dif-
ferent porosity patterns including uniform, symmetric, and 
asymmetric are considered. A three-node 15-degrees-of-
freedom (DOFs) FE is proposed for the numerical solution. 

The accuracy and convergence of the proposed model are 
verified with several numerical examples. A comprehensive 
parametric investigation is conducted to explore the effects 
of the skin-to-core thickness ratio, power-law index, bound-
ary conditions, slenderness, porosity coefficient, and porous 
distribution of the core and elastic foundation parameters 
on the natural frequencies and critical buckling loads of FG 
sandwich beams. It is expected that the results of this work 
evaluate the effect of core porosity and Winkler-Pasternak 
elastic foundation on the free vibration and buckling behav-
ior of FG sandwich beams with porous core. Additionally, 
it aims present some benchmark results for the fundamen-
tal natural frequencies and buckling loads of FG sandwich 
beams with porous core.

2 � Problem

2.1 � Geometrical Configuration

As shown in Fig. 1, a three-layered FG sandwich beam with 
uniform thickness h , width b , and length L is considered. The 
top and bottom faces are at z = ±h∕2 . The beam is supported 
by a two-parameter elastic foundation with spring constants 
kw and kp , where the former represents the Winkler founda-
tion while the latter is for the Pasternak shear layer. A sand-
wich beam with FG face layers and an isotropic porous metal 
core (Type A) and a sandwich beam with isotropic homog-
enous face layers and an FG porous core (Type B) are exam-
ined. The face layers of Type A are graduated from ceramic 
to metal, whereas the core is porous and entirely metal. The 
face layers of Type B are made of metal and ceramic lay-
ers, respectively, while the core layer is porous and FG from 
ceramic to metal.

2.2 � FG Material Properties

The effective material properties of the FG sandwich beam 
vary gradually and continuously through the thickness direc-
tion according to the power law distribution as

for Type A and

for Type B. Here, E(z) is Young’s modulus, and �(z) is the 
density of the material. Subscripts m and c denote metal and 
ceramic constituents of material, respectively.

(1)
E(z) = Ec +

(
Em − Ec

)
Vc(z)

�(z) = �c +
(
�m − �c

)
Vc(z)

(2)
E(z) = Em +

(
Ec − Em

)
Vc(z)

�(z) = �m +
(
�c − �m

)
Vc(z)
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The volume fraction of FG sandwich beams is assumed 
to obey a power-law function in the direction of thickness 
which can be stated as follows:

for Type A and

for Type B, where Vc(z) is the volume fraction p is the 
power-law index.

2.3 � Mechanical Properties of Porous Core

Uniform, symmetrical, and asymmetrical distribution of poros-
ity are considered as indicated in Fig. 2. The Young’s modulus 
and the mass density of porous core vary through the thickness 
according to the following (Chen et al. 2016; Srikarun et al. 
2021):

(3)

Vc(z) =

(
z − h0

h1 − h0

)p

for z ∈
[
h0, h1

]

Vc(z) = 1 for z ∈
[
h1, h2

]

Vc(z) =

(
z − h3

h2 − h3

)p

for z ∈
[
h2, h3

]

(4)

Vc(z) = 0 for z ∈
[
h0, h1

]

Vc(z) =

(
z − h1

h2 − h1

)p

for z ∈
[
h1, h2

]

Vc(z) = 1 for z ∈
[
h2, h3

]

(i) Uniform porosity distribution (UD)

(ii) Symmetric porosity distribution (SD)

(iii) Asymmetric porosity distribution (ASD)

where Emax(z) and �max(z) are the maximum values of 
Young’s modulus and mass density, e0 and em represent the 
coefficients of porosity and mass density. Coefficient of � 
and em are obtained as follows:

(5)
E(z) = Emax

�
1 − e0�

�
, �(z) = �max

√
1 − e0� for z ∈

�
h1, h2

�

(6)
E(z) = Emax

[
1 − e0cos

(
�z

h2 − h1

)]
,

�(z) = �max

[
1 − emcos

(
�z

h2 − h1

)]
forz ∈

[
h1, h2

]

(7)

E(z) = Emax

[
1 − e0cos

(
�z

2(h2 − h1)
+

�

4

)]
,

�(z) = �max

[
1 − emcos

(
�z

2(h2 − h1)
+

�

4

)]
for z ∈

[
h1, h2

]

(8)� =
1

e0
−

1

e0

�
2

�

√
1 − e0 −

2

�
+ 1

�2

em = 1 −
√
1 − e0

Fig. 1   Configuration of FG 
sandwich beam resting on elas-
tic foundation
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3 � Theoretical Formulation

3.1 � Equation of Motion

The displacement field of the present quasi-3D theory is 
given as follows:

where u and w are the displacements of an arbitrary point of 
FG sandwich beam in x - and z-directions. u0 and w0 are dis-
placements at the mid-plane of the beam, �y and �z are the 
shear slope associated with the transverse shear and normal 
deformations g(z) = f �(z) , where the shear shape function 
f (z) is chosen as follows (Reddy 1984):

The strain field of the present theory is obtained by 
using the strain–displacement relationship from the elas-
ticity theory, and can be expressed as follows:

(9)
u(x, z, t) = u0(x) − z

dwo

dx
+ f (z)�y(x)

w(x, z, t) = w0(x) + g(z)�z(x)

(10)f = z −
4z3

3h2

where

The stress–strain relationship of the FG sandwich beam 
is given as the following:

where

where � is Poisson’s ratio.
The strain energy of the beam can be expressed as 

follows:

(11)�x = �0
x
− zkx + f �1

x
, �z = g�(z)�z(x), �xz = g(z)�0

xz

(12)�0
x
=

�u0

�x
, kx =

�2w0

�x2
, �1

x
=

��y

�x
, �0

xz
= �y +

��z

�x

(13)

⎧⎪⎨⎪⎩

�x
�z
�xz

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

Q11(z) Q13(z) 0

Q13(z) Q33(z) 0

0 0 Q55(z)

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

�x
�z
�xz

⎫⎪⎬⎪⎭

(14)

Q11(z) = Q33(z) =
E(z)

1 − �2
,Q13(z) =

�E(z)

1 − �2
,Q55(z) =

E(z)

2(1 + �)

(15)

U =
1

2

L

∫
0

h

2

∫
−

h

2

(
�x�x + �z�z + �xz�xz

)
dzdx

=
1

2

L

∫
0

[
A11

(
�u0

�x

)2

+ E11

(
�2w0

�x2

)2

+ F11

(
��y

�x

)2

− 2B11

�u0

�x

�2w0

�x2

+ 2C11

�u0

�x

��y

�x
− 2D11

�2w0

�x2

��y

�x
+ 2BS13

�u0

�x
�z − 2CS13

�2w0

�x2
�z

+ 2ES13

��y

�x
�z + DS33

(
�z

)2
+ AS55

(
�y

)2
+ AS55

(
��z

�x

)2

+2AS55

��z

�x
�y

]
dx

Fig. 2   Porosity distributions in porous core
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where

The kinetic energy can be defined as

where

The potential energy due to external axial force can be 
written as

(16)

[
A11,B11,C11,D11,E11,F11,DS33

]
=

h∕2

∫
−h∕2

Q11(z)
[
1, z, f (z), zf (z), z2, f 2(z),

[
g�(z)

]2]
dz

[
BS13,CS13,ES13

]
=

h

2

∫
−

h

2

Q13(z)g
�(z)

[
1, z, f (z)

]
dz

AS55 =

h∕2

∫
−h∕2

Q55(z)
[
g(z)

]2
dz

(17)

K =
1

2

L

∫
0

h

2

∫
−

h

2

𝜌(z)
(
U̇2 + Ẇ2

)
dzdx

=
1

2

L

∫
0

[
I1

(
𝜕u0

𝜕t

)2

+ I3

(
𝜕2w0

𝜕t𝜕x

)2

+ I6

(
𝜕𝜙y

𝜕t

)2

− 2I2
𝜕u0

𝜕t

𝜕2w0

𝜕t𝜕x
+ 2I4

𝜕u0

𝜕t

𝜕𝜙y

𝜕t

− 2I5
𝜕2w0

𝜕t𝜕x

𝜕𝜙y

𝜕t
+ I1

(
𝜕w0

𝜕t

)2

+ I8

(
𝜕𝜙z

𝜕t

)2

+ 2I7
𝜕w0

𝜕t

𝜕𝜙z

𝜕t

]
dx

(18)[
I1, I2, I3, I4, I5, I6, I7, I8

]
= ∫

h∕2

−h∕2

�(z)
[
1, z, z2, f (z), zf (z), f 2(z), g(z),

[
g(z)

]2]
dz

where N0 is the axial force.
The strain energy induced by the elastic foundation can 

be expressed as

where kw and kp are the constants of Winkler and shear layer 
springs.

Total potential energy can then be obtained as follows:

(19)V = −
1

2∫
L

0

[
N0

(
�w0

�x

)2
]
dx

(20)UF =
1

2∫
L

0

[(
kww

2 + kp

(
dw

�x

)2
)]

dx

Fig. 3   Three-node higher-order beam element with corresponding 
DOFs
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Lagrange’s equation which gives the equation of motion 
can be written as follows:

where qj represents the generalized coordinates, and over dot 
represents the time derivative.

3.2 � Finite Element Formulation

To investigate the free vibration and buckling of FG sand-
wich beams with porous core resting on an elastic founda-
tion, a three-node higher-order beam finite element hav-
ing a total of 15 DOFs shown in Fig. 3 is proposed. This 
new element is formulated based on the present quasi-3D 
deformation theory. The displacement unknows u0 , �y and 
�z are approximated using a linear polynomial interpola-
tion function �i(x) , and w0 is approximated by a Hermite-
cubic polynomial interpolation function �i(x) . The gener-
alized displacements within the element are expressed as:

(21)

� = U + UF + V − K

=
1

2

L

∫
0

�
A11

�
�u0

�x

�2

+ E11

�
�2w0

�x2

�2

+ F11

�
��y

�x

�2

− 2B11

�u0

�x

�2w0

�x2

+ 2C11

�u0

�x

��y

�x
− 2D11

�2w0

�x2

��y

�x
+ 2BS13

�u0

�x
�z − 2CS13

�2w0

�x2
�z

+ 2ES13

��y

�x
�z + DS33

�
�z

�2
+ AS55

�
�y

�2
+AS55

�
��z

�x

�2

+ 2AS55

��z

�x
�y

�
dx

−
1

2

L

∫
0

�
I1

�
�u0

�t

�2

+ I3

�
�2w0

�t�x

�2

+ I6

�
��y

�t

�2

− 2I2
�u0

�t

�2w0

�t�x
+ 2I4

�u0

�t

��y

�t

− 2I5
�2w0

�t�x

��y

�t
+ I1

�
�w0

�t

�2

+I8

�
��z

�t

�2

+ 2I7
�w0

�t

��z

�t

�
dx

−
1

2

L

∫
0

�
N0

�
�w0

�x

�2
�
dx +

1

2

L

∫
0

⎡⎢⎢⎣

⎛⎜⎜⎝
kw
�
w0 + g�z

�2
+ kp

�
d
�
w0 + g�z

�
�x

�2⎞⎟⎟⎠

⎤⎥⎥⎦
dx

(22)
d

dt

(
𝜕Π

𝜕q̇j

)
−

𝜕Π

𝜕qj
= 0

where ui , wi , �yi , and �zi are generalized nodal displacement 
variables and the suffix i donates the corresponding nodal 
coordinates, �i(x) and �i(x) are the shape functions which 
are given in the Appendix.

3.3 � Analytical Solution: Ritz Method

Analytical solutions for free vibration and buckling analysis 
of FG sandwich beams can be obtained using the Ritz method 
with the present theory. For the Ritz method, the displacement 
functions u0(x), w0(x),�y(x) and �z(x) are presented by the 
following polynomial series which are satisfy the kinematic 
boundary conditions,

(23)

u0(x, t) =

3∑
i=1

�i(x)ui,w0(x, t) =

6∑
i=1

�i(x)wi

�y(x, t) =

3∑
i=1

�i(x)�yi,�z(x, t) =

3∑
i=1

�i(x)�zi

Table 1   The admissible shape 
function and kinematics BCs of 
the beams

BCs �j(x) x = 0 x = L

SS x

l

(
1 −

x

l

)
e−jx∕l w0 = 0, �z = 0 w0 = 0, �z = 0

CC (
x

l

)2(
1 −

x

l

)2

e−jx∕l
u0 = 0 , w0 = 0 , w,x = 0 , �y = 0, �z = 0 u0 = 0 , w0 = 0 , 

w,x = 0,�y = 0

,�z = 0

CF (
x

l

)2

e−jx∕l
u0 = 0 , w0 = 0 , w,x = 0 , �y = 0, �z = 0 –
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where ω is the natural frequency of free vibration of the 
beam, 

√
i = 1 the imaginary unit, ( aj,bj , cj and dj ) denotes 

the values to be determine and �j(x) is the admissible shape 
function. To derive analytical solutions, polynomial and 
exponential form (Nguyen et al. 2022a) admissible shape 
functions for various boundary conditions (SS: Simple Sup-
ported, CC: Clamped – Clamped, and CF: Clamped – Free 
beams) are given in the Table 1.

Substituting Eqs. (23) and (24) into Eq. (21), and using the 
result in Eq. (22) yields the following matrix equations for free 
vibration and buckling, respectively:

where � represents the stiffness matrix, � is the mass 
matrix, � is the geometric stiffness matrix, and � is the 
vector of unknown coefficients. ω and N0 are the natural 
frequency and buckling load, respectively. The components 
of these matrices are given in the Appendix.

(24)

u0(x, t) =

m∑
j=1

aj�j,x(x)e
i�t, w0(x, t) =

m∑
j=1

bj�j(x)e
i�t

�y(x, t) =

m∑
j=1

cj�j,x(x)e
i�t, �z(x, t) =

m∑
j=1

dj�j(x)e
i�t

(25)[� − �2
�]� = 0

(26)
[
� − N0�

]
� = 0

4 � Numerical Results and Discussion

This section presents various numerical examples to vali-
date the accuracy of the proposed FE model. FG layers of 
sandwich beams are assumed to be made from a mixture 
of Alumina (Al2O3) and Aluminum (Al). A parametric 
study is performed to evaluate the effects of the power-law 
index, span-to-height ratio, skin–core-skin thickness ratio, 
boundary conditions, elastic foundation parameters, and 
porosity on the free vibration and buckling behavior of FG 
sandwich beams. The material properties adopted here are: 
Ec = 380GPa , �c = 3960kg∕m3 , �c = 0.3 for ceramic mate-
rial (Alumina) and Em = 70GPa , �m = 2702kg∕m3 , �m = 0.3 
for metal material (Aluminum). Table 1 shows the kinematic 
relations for various boundary conditions. As seen, three 
different boundary conditions namely simple-simple (SS), 
clamped–clamped (CC), and clamped-free (CF) are consid-
ered. For simplicity, the natural frequency, critical buckling 
load, and elastic foundation parameters are, respectively, 
defined in the following nondimensional forms:

(27)

� =
�L2

h

√
�m

Em

,Ncr =
12NcrL

2

Emh
3

,Kw =
12kwL

4

Emh
3
,Kp =

12kpL
2

Emh
3

Table 2   Convergence study of 
nondimensional fundamental 
natural frequencies of the 
beams with various boundary 
conditions and length-to-
thickness ratios

Beam Number of elements L∕h = 5 L∕h = 20

SS CC CF SS CC CF

Type A 4 2.6819 5.3848 0.9942 2.8375 6.4359 2.4778
8 2.6819 5.3232 0.9915 2.8375 6.3986 2.4716
12 2.6819 5.3038 0.9907 2.8375 6.3870 2.4697
16 2.6819 5.2954 0.9903 2.8375 6.3814 2.4688
20 2.6819 5.2914 0.9901 2.8375 6.3781 2.4683
24 2.6819 5.2894 0.9900 2.8375 6.3759 2.4680
28 2.6819 5.2883 0.9900 2.8375 6.3744 2.4677
32 2.6819 5.2877 0.9899 2.8375 6.3733 2.4676
Ritz solution 2.6819 5.2929 0.9901 2.8375 6.3901 1.0147
HSDT (Vo et al. 2014) 2.6773 5.2311 0.9847 2.8371 6.3509 1.0130

Type B 4 4.0997 8.5814 1.5059 4.2714 9.7152 1.5316
8 4.0996 8.5015 1.5025 4.2713 9.6665 1.5283
12 4.0996 8.4749 1.5013 4.2713 9.6519 1.5272
16 4.0996 8.4626 1.5007 4.2713 9.6447 1.5267
20 4.0996 8.4566 1.5004 4.2713 9.6404 1.5265
24 4.0996 8.4535 1.5002 4.2713 9.6376 1.5263
28 4.0996 8.4519 1.5002 4.2713 9.6356 1.5262
32 4.0996 8.4510 1.5001 4.2713 9.6341 1.5261
Ritz solution 4.0996 8.4521 1.4967 4.2713 9.6537 1.5247
HSDT (Nguyen et al. 2015) 4.0691 8.3282 1.4840 4.2445 9.5451 1.5145
Quasi-3D (Nguyen et al. 2016) 4.0996 8.4529 1.5001 4.2711 9.6404 1.5264
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Table 3   Convergence study 
of nondimensional critical 
buckling loads of the beams 
with various boundary 
conditions and length-to-
thickness ratios

Beam Number of elements L∕h = 5 L∕h = 20

SS CC CF SS CC CF

Type A 4 9.1351 29.5573 2.4298 9.8211 39.1240 2.4778
8 9.1351 29.5358 2.4211 9.8211 38.9236 2.4716
12 9.1351 29.5296 2.4177 9.8211 38.8679 2.4697
16 9.1351 29.5264 2.4164 9.8211 38.8422 2.4688
20 9.1351 29.5246 2.4158 9.8211 38.8277 2.4683
24 9.1351 29.5237 2.4156 9.8211 38.8186 2.4680
28 9.1351 29.5233 2.4154 9.8211 38.8124 2.4677
32 9.1351 29.5230 2.4153 9.8211 38.8081 2.4676
Ritz solution 9.1351 29.5271 2.4157 9.8211 38.9343 2.4681
HSDT (Vo et al. 2014) 8.9519 28.0272 2.4057 9.8067 38.4910 2.4635

Type B 4 28.7899 100.7534 7.4741 30.0196 120.3349 7.5569
8 28.7882 100.6137 7.4503 30.0195 119.6885 7.5406
12 28.7881 100.5869 7.4410 30.0195 119.5359 7.5356
16 28.7881 100.5730 7.4375 30.0195 119.4671 7.5333
20 28.7881 100.5653 7.4359 30.0195 119.4281 7.5319
24 28.7881 100.5614 7.4351 30.0195 119.4032 7.5311
28 28.7881 100.5594 7.4346 30.0195 119.3860 7.5304
32 28.7881 100.5583 7.4343 30.0195 119.3736 7.5300
Ritz solution 28.7881 100.5588 7.4236 30.0195 119.6879 7.5279
HSDT (Nguyen et al. 2015) 27.9314 94.6117 7.3149 29.6120 117.0384 7.4254
Quasi-3D (Nguyen et al. 2016) 28.7884 100.5883 7.4344 30.0168 119.4172 7.5312

Table 4   Comparison of 
nondimensional fundamental 
natural frequencies of FG 
sandwich beams (Type A)

L∕h BC Theory p

0 0.5 1 2 5 10

5 SS FEM 2.6819 3.9979 4.3730 4.6536 4.8650 4.9416
Ritz method 2.6819 3.9979 4.3730 4.6536 4.8650 4.9416
HSDT (Vo et al. 2014) 2.6773 4.0504 4.4270 4.7047 4.9038 4.9700

CC FEM 5.2894 7.1181 7.5838 7.9629 8.3204 8.4894
Ritz method 5.2929 7.1243 7.5909 7.9706 8.3285 8.4976
HSDT (Vo et al. 2014) 5.2311 7.2456 7.8056 8.2835 8.7255 8.9195

CF FEM 0.9900 1.5095 1.6620 1.7747 1.8556 1.8825
Ritz method 0.9901 1.5095 1.6620 1.7748 1.8556 1.8826
HSDT (Vo et al. 2014) 0.9847 1.5211 1.6691 1.7745 1.8444 1.8652

20 SS FEM 2.8375 4.4165 4.8944 5.2452 5.4851 5.5583
Ritz method 2.8375 4.4165 4.8944 5.2452 5.4851 5.5583
HSDT (Vo et al. 2014) 2.8371 4.4160 4.8938 5.2445 5.4843 5.5575

CC FEM 6.3759 9.7936 10.8088 11.5576 12.0853 12.2560
Ritz method 6.3901 9.8189 10.8371 11.5881 12.1170 12.2880
HSDT (Vo et al. 2014) 6.3509 9.7587 10.7706 11.5168 12.0423 12.2122

CF Present 1.0146 1.5818 1.7540 1.8803 1.9663 1.9924
FEM 1.0147 1.5819 1.7541 1.8804 1.9664 1.9925
Ritz method 1.0130 1.5796 1.7516 1.8778 1.9636 1.9896
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Table 5   Comparison of 
nondimensional fundamental 
natural frequencies of FG 
sandwich beams (Type B)

L∕h BC Theory p

0 0.5 1 2 5 10

5 SS FEM 4.0996 3.8439 3.7165 3.6112 3.5512 3.5417
Ritz method 4.0996 3.8439 3.7165 3.6112 3.5512 3.5417
HSDT (Nguyen et al. 2015) 4.0691 3.7976 3.6636 3.553 3.4914 3.483
Quasi-3D (Nguyen et al. 2016) 4.0996 3.8438 3.7172 3.6119 3.5513 3.5413

CC FEM 8.4535 7.8938 7.5898 7.2904 7.0069 6.8815
Ritz method 8.4525 7.8932 7.5894 7.2903 7.0071 6.8818
HSDT (Nguyen et al. 2015) 8.3282 7.7553 7.4487 7.1485 6.8702 6.7543
Quasi-3D (Nguyen et al. 2016) 8.4529 7.8924 7.5904 7.2898 7.0032 6.8757

CF FEM 1.5002 1.4078 1.3626 1.3271 1.3112 1.3119
Ritz method 1.5003 1.4078 1.3626 1.3271 1.3112 1.3119
HSDT (Nguyen et al. 2015) 1.4840 1.3865 1.3393 1.3022 1.2857 1.2867
Quasi-3D (Nguyen et al. 2016) 1.5001 1.4076 1.3627 1.3273 1.3113 1.3118

20 SS FEM 4.2713 4.0146 3.8916 3.7995 3.7702 3.7826
Ritz method 4.2713 4.0146 3.8916 3.7995 3.7702 3.7826
HSDT (Nguyen et al. 2015) 4.2445 3.9695 3.8387 3.7402 3.7081 3.7214
Quasi-3D (Nguyen et al. 2016) 4.2711 4.0143 3.8923 3.8003 3.7708 3.7831

CC FEM 9.6376 9.0508 8.7668 8.5477 8.4604 8.4738
Ritz method 9.6546 9.0658 8.7809 8.5613 8.4741 8.488
HSDT (Nguyen et al. 2015) 9.5451 8.9243 8.6264 8.3959 8.3047 8.3205
Quasi-3D (Nguyen et al. 2016) 9.6404 9.0524 8.7701 8.5509 8.4627 8.4755

CF FEM 1.5263 1.4344 1.3904 1.3576 1.3475 1.3523
Ritz method 1.5264 1.4344 1.3905 1.3577 1.3476 1.3523
HSDT (Nguyen et al. 2015) 1.5145 1.4165 1.37 1.335 1.3241 1.3292
Quasi-3D (Nguyen et al. 2016) 1.5264 1.4344 1.3907 1.358 1.3478 1.3525

Table 6   Comparison of 
nondimensional critical 
buckling loads of FG sandwich 
beams (Type A)

L∕h BC Theory p

0 0.5 1 2 5 10

5 SS FEM 9.1351 21.7614 26.9366 31.5445 35.6386 37.3250
Ritz method 9.1351 21.7614 26.9366 31.5445 35.6386 37.3250
HSDT (Vo et al. 2014) 9.8067 25.6086 32.5803 38.7192 43.7637 45.6040

CC FEM 29.5237 58.3337 68.8601 78.7220 88.8611 93.8148
Ritz method 29.5271 58.3461 68.8748 78.7385 88.8791 93.8336
HSDT (Vo et al. 2014) 28.0272 56.1398 66.4523 76.0626 85.8462 90.5815

CF FEM 2.4156 6.1749 7.8042 9.2408 10.4430 10.8956
Ritz method 2.4157 6.1752 7.8047 9.2413 10.4436 10.8962
HSDT (Vo et al. 2014) 2.4057 6.1578 7.7858 9.2209 10.4208 10.8716

20 SS FEM 9.8211 25.6411 32.6255 38.7731 43.8252 45.6685
Ritz method 9.8211 25.6411 32.6255 38.7731 43.8252 45.6685
HSDT (Vo et al. 2014) 9.8067 25.6086 32.5803 38.7192 43.7637 45.6040

CC FEM 38.8186 99.2672 125.4954 148.6238 167.9729 175.2486
Ritz method 38.9343 99.6031 125.9248 149.1336 168.5475 175.8463
HSDT (Vo et al. 2014) 38.4910 98.5240 24.5720 47.5350 66.7330 73.9460

CF FEM 2.4680 6.4753 8.2526 9.8164 11.0958 11.5589
Ritz method 2.4681 6.4757 8.2531 9.8170 11.0965 11.5596
HSDT (Vo et al. 2014) 2.4635 6.4654 8.2402 9.8018 11.0792 6.4654



Iranian Journal of Science and Technology, Transactions of Civil Engineering	

4.1 � Convergency and Validation

To demonstrate the accuracy of the present quasi-3D theory 
and the proposed FE model, free vibration and buckling 
analyses of FG sandwich beams without the elastic founda-
tion and porosity are performed. To the best of the authors’ 
knowledge, natural frequencies, and critical buckling loads 
of FG sandwich beams with porous metal core and sandwich 
beams with FG porous core resting on a Winkler-Pasternak 
foundation, have not been documented in available literature.

Tables 2 and 3 show the convergency of the proposed 
FE for simple-simple (SS), clamped–clamped (CC), and 
clamped-free (CF) beams with length-to-thickness ratios of 
L∕h = 5 and 20 . As seen, the proposed FE yields highly 
accurate results, showing excellent agreement with those 
of previous studies as well as that of Ritz method. It is 
noticed that the nondimensional fundamental natural fre-
quencies and critical buckling loads of simply supported 
(SS) beams converge rapidly with four elements for both 
beam types. Conversely, in the case of clamped–clamped 
(CC) and clamped-free (CF) boundary conditions, consist-
ent outcomes are achieved after twenty elements. To ensure 
accuracy, 24 beam elements are, therefore, used for further 
analyses.

Tables 4, 5, 6, 7 show a comparison of the nondimen-
sional fundamental natural frequencies and critical buck-
ling loads of FG sandwich beams. Length-to-thickness 
ratios of L∕h = 5 and 20 , skin–core-skin thickness ratios of 
1–2–1, and three boundary conditions are considered. The 
results are compared to those of the references, which are 
based on HSDT (Vo et al. 2014; Nguyen et al. 2015) and 
Quasi-3D theory (Nguyen et al. 2016) as well as the Ritz 
solution obtained with the present theory by the authors. 
The study, based on quasi-3D theory (Nguyen et al. 2016) 
investigated only the free vibration and buckling charac-
teristics of sandwich beams with FG core (Type B). Fun-
damental natural frequencies and critical buckling loads 
of FG sandwich beams with metal core (Type A) obtained 
with a quasi-3D theory are not available in the literature. 
Therefore, the results of Type A are only compared to 
HSDT (Vo et  al. 2014) and the Ritz solution in order 
to validate the accuracy of the results and present some 
benchmark results for the fundamental natural frequencies 
and buckling loads of FG sandwich beams with softcore. 
It is observed that the solutions derived from the proposed 
FE model are in excellent agreement with the studies that 
consider transverse normal deformations. The slight dif-
ference with the current reference studies using HSDT is 

Table 7   Comparison of 
nondimensional critical 
buckling loads of FG sandwich 
beams (Type B)

L∕h BC Theory p

0 0.5 1 2 5 10

5 SS FEM 28.7881 23.8572 21.6294 19.7893 18.5216 18.1383
Ritz method 28.7881 23.8572 21.6294 19.7893 18.5216 18.1383
HSDT (Nguyen et al. 2015) 27.9314 22.9869 20.7762 18.9588 17.732 17.3775
Quasi-3D (Nguyen et al. 2016) 28.7884 23.8554 21.6374 19.7957 18.5212 18.1329

CC FEM 100.5614 82.4740 73.9071 66.1303 59.3190 56.4930
Ritz method 100.5629 82.477 73.9112 66.1354 59.3243 56.4987
HSDT (Nguyen et al. 2015) 94.6117 77.5129 69.4877 62.2249 55.9446 53.3734
Quasi-3D (Nguyen et al. 2016) 100.5883 82.4783 73.9348 66.1308 59.2628 56.4049

CF FEM 7.4351 6.1847 5.6286 5.1864 4.9216 4.8653
Ritz method 7.4354 6.1849 5.6288 5.1866 4.9218 4.8655
HSDT (Nguyen et al. 2015) 7.3149 6.0286 5.4629 5.0154 4.7534 4.7024
Quasi-3D (Nguyen et al. 2016) 7.4344 6.1836 5.6304 5.1884 4.9228 4.8658

20 SS FEM 30.0195 24.9952 22.772 21.0254 20.0317 19.8573
Ritz method 30.0195 24.9952 22.772 21.0254 20.0317 19.8573
HSDT (Nguyen et al. 2015) 29.612 24.414 22.1386 20.3581 19.3639 19.2058
Quasi-3D (Nguyen et al. 2016) 30.0168 24.9914 22.7796 21.0343 20.0386 19.8622

CC FEM 119.4032 99.2755 90.3305 83.2242 78.9796 78.0853
Ritz method 119.7827 99.5671 90.5848 83.4516 79.1967 78.3045
HSDT (Nguyen et al. 2015) 117.0384 96.4573 87.4069 80.2465 76.0539 75.2379
Quasi-3D (Nguyen et al. 2016) 119.4172 99.2742 90.3696 83.2627 79.0045 78.0989

CF FEM 7.5311 6.2708 5.7138 5.2775 5.0325 4.9920
Ritz method 7.5315 6.2711 5.7140 5.2778 5.0327 4.9922
HSDT (Nguyen et al. 2015) 7.4254 6.1225 5.5529 5.1084 4.8634 4.8269
Quasi-3D (Nguyen et al. 2016) 7.5312 6.2702 5.716 5.28 5.0345 4.9934
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since they neglected the effect of the transverse normal 
strain. Furthermore, the tables illustrate that as the power-
law index increases, the fundamental natural frequencies 
and critical buckling loads increase in FG sandwich beams 
with porous metal core, whereas they decrease for sand-
wich beams with FG porous core. This is explained by the 
fact that a higher value of p indicates a higher proportion 
of the ceramic phase, leading to an increase in Young’s 
modulus and consequently in the bending stiffness. The 
observed correlation between the power-law index and the 
beam’s responses underlines the significance of material 
composition in determining the overall free vibration and 
buckling responses of FG sandwich beams. Consequently, 
the choice of the power-law index is crucial for predict-
ing and adopting the mechanical performance of the FG 
sandwich beams for specific applications.

For the sake of completeness, the first three natural fre-
quencies of 1–2–1 FG sandwich beams are presented for 
L∕h = 5 in Tables 8 and 9. Noticeably, accounting for nor-
mal strain effects yields higher outcomes, emphasizing the 
significance of considering such an effect.

4.2 � Effect of Porosity

In Tables 10 and 11, the nondimensional fundamental nat-
ural frequencies are computed for the FG sandwich beam 
with configuration 1–2–1 considering three core poros-
ity patterns with different values of porosity coefficient 
( e0 = 0.4, 0.6, 0.8 ) under three different foundation condi-
tions: no elastic foundation, a Winkler foundation, and a 
Pasternak foundation. The power-law index is set to p = 2 , 
and length-to-thickness ratios L∕h = 5 and 20 are consid-
ered. The results indicate a consistent trend across all bound-
ary conditions in both types. For all three types of porosity 
patterns and length-to-thickness ratios, the nondimensional 
fundamental natural frequencies increase with the porosity 
coefficient. This is because increasing the porosity reduces 
both the bending stiffness and the mass density of the beam. 
The combination of these two effects increases the natural 
frequency of the beam overall. However, a notable excep-
tion is observed for CC beams when L∕h = 5 , where the 
nondimensional fundamental natural frequencies decrease as 
the porosity coefficient increases. This phenomenon can be 

Table 8   The first three 
nondimensional natural 
frequencies of FG sandwich 
beams (Type A)

Mode BC Theory p

0 0.5 1 2 5 10

1 SS FEM 2.6819 3.9979 4.3730 4.6536 4.8650 4.9416
Ritz method 2.6819 3.9979 4.3730 4.6536 4.8650 4.9416
HSDT (Vo et al. 2014) 2.6773 4.0504 4.4270 4.7047 4.9038 4.9700

CC FEM 5.2894 7.1181 7.5838 7.9629 8.3204 8.4894
Ritz method 5.2929 7.1243 7.5909 7.9706 8.3285 8.4976
HSDT (Vo et al. 2014) 5.2311 7.2456 7.8056 8.2835 8.7255 8.9195

CF FEM 0.9900 1.5095 1.6620 1.7747 1.8556 1.8825
Ritz method 0.9901 1.5095 1.6620 1.7748 1.8556 1.8826
HSDT (Vo et al. 2014) 0.9847 1.5211 1.6691 1.7745 1.8444 1.8652

2 SS FEM 9.3379 12.8786 13.7986 14.5280 15.1801 15.4727
Ritz method 9.3379 12.8786 13.7986 14.5280 15.1801 15.4727
HSDT (Vo et al. 2014) 9.2909 12.8310 13.7464 14.4701 15.1156 15.4047

CC FEM 12.1812 15.4688 16.2925 17.0136 17.7724 18.1649
Ritz method 12.5970 16.5814 17.6667 18.6710 19.0927 19.5200
HSDT (Vo et al. 2014) 12.5225 16.0881 16.9638 17.7202 18.5077 18.9119

CF FEM 5.3586 7.4934 8.0584 8.5002 8.8818 9.0470
Ritz method 5.3591 7.4940 8.0590 8.5009 8.8826 9.0477
HSDT (Vo et al. 2014) 5.3234 7.4544 8.0182 8.4585 8.8373 9.0006

3 SS FEM 17.9179 23.2515 24.5620 25.6794 26.8221 27.4001
Ritz method 17.9178 23.2514 24.5619 25.6792 26.8219 27.3999
HSDT (Vo et al. 2014) 17.7751 23.1294 24.4327 25.5391 26.6663 27.2351

CC FEM 16.4664 20.9126 22.6223 24.1082 25.4190 25.9665
Ritz method 16.4673 20.9137 22.6235 24.1094 25.4203 25.9678
HSDT (Vo et al. 2014) 15.7120 19.9545 21.5859 23.0036 24.2544 24.7768

CF FEM 8.2332 10.4563 11.3112 12.0541 12.7095 12.9832
Ritz method 8.2332 10.4563 11.3112 12.0541 12.7095 12.9832
HSDT (Vo et al. 2014) 7.8545 9.9753 10.7909 11.4996 12.1248 12.3860
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explained by the fact that when the length-to-thickness ratio 
is relatively small L∕h = 5 , the reduction in bending stiffness 
becomes more significant than the reduction in mass density 
for CC beams. As a result, the natural frequency of the beam 
decreases overall. The nondimensional fundamental natural 
frequencies of sandwich beams are arranged in descending 
order of porosity as follows: symmetrical, asymmetrical, and 
uniform patterns. It is evident that the nondimensional fun-
damental natural frequencies of FG sandwich porous beams 
of Type A (with FG face layers and an isotropic porous metal 
core) are significantly higher than those of Type B (with iso-
tropic homogeneous face layers and an FG porous core) for 
all boundary conditions, porosity distributions, and elastic 
foundation cases considered. This can be attributed to the 
presence of FG face layers, which provide superior bending 
stiffness compared to the isotropic homogeneous face layers 
in Type B beams, outweighing the effect of porosity on the 
mass density of the beam.

Similarly, Tables 12 and 13 show the variation of the non-
dimensional critical buckling load of the beams for the core 
porosity coefficient of three different porosity patterns and 

the L∕h ratio for various BCs. Regardless of the porosity pat-
terns or and L∕h ratio, the nondimensional critical buckling 
loads decrease as the parameter e0 increases. This behavior 
is attributed to an increase in core porosity that reduces the 
beam's bending stiffness, resulting in a reduction in critical 
buckling loads. It is noticed that for all conditions, the pres-
ence of elastic foundation yields an increment in nondimen-
sional fundamental natural frequencies and critical buckling 
loads of FG sandwich beams. The inclusion of a shear layer 
further enhances this effect by increasing the shear stiffness 
of the beams.

Figures 4 and 5 visualize the variation of nondimensional 
fundamental natural frequencies and critical buckling loads 
of the SS beams with respect to porosity coefficients for 
three different cases: Case 1 with Kw = 0 and Kp = 0 , Case 
2 with Kw = 10 and Kp = 0 , and Case 3 with Kw = 10 and 
Kp = 10 . The skin–core-skin thickness ratio of 1–2–1, 
L∕h = 10 , p = 5, and symmetric porosity distribution are 
considered. It is revealed that for all cases, nondimensional 
fundamental natural frequencies increase as the porosity 
coefficient increases. In terms of critical buckling loads, 

Table 9   The first three 
nondimensional natural 
frequencies of FG sandwich 
beams (Type B)

Mode BC Theory p

0 0.5 1 2 5 10

1 SS FEM 4.0996 3.8439 3.7165 3.6112 3.5512 3.5417
Ritz method 4.0996 3.8439 3.7165 3.6112 3.5512 3.5417
HSDT (Nguyen et al. 2015) 4.0691 3.7976 3.6636 3.5530 3.4914 3.4830

CC FEM 8.4535 7.8938 7.5898 7.2904 7.0069 6.8815
Ritz method 8.4525 7.8932 7.5894 7.2903 7.0071 6.8818
HSDT (Nguyen et al. 2015) 8.3282 7.7553 7.4487 7.1485 6.8702 6.7543

CF FEM 1.5002 1.4078 1.3626 1.3271 1.3112 1.3119
Ritz method 1.5003 1.4078 1.3626 1.3271 1.3112 1.3119
HSDT (Nguyen et al. 2015) 1.4840 1.3865 1.3393 1.3022 1.2857 1.2867

2 SS FEM 14.7402 13.7534 13.2273 12.7289 12.2980 12.1255
Ritz method 14.7403 13.7536 13.2275 12.7291 12.2982 12.1257
HSDT (Nguyen et al. 2015) 14.5921 13.5629 13.0215 12.5117 12.0822 11.9168

CC FEM 20.1544 18.7387 17.9222 17.0450 16.0975 15.6427
Ritz method 20.7864 19.3438 18.5249 17.6623 16.7505 16.3147
HSDT (Nguyen et al. 2015) 19.8886 18.4463 17.6290 16.7552 15.8266 15.3878

CF FEM 8.4115 7.8472 7.5479 7.2682 7.0355 6.9473
Ritz method 8.4122 7.8478 7.5484 7.2686 7.0359 6.9477
HSDT (Nguyen et al. 2015) 8.3149 7.7255 7.4173 7.1308 6.8984 6.8139

3 SS FEM 29.1374 27.0784 25.9265 24.7440 23.4231 22.7558
Ritz method 29.1329 27.0748 25.9235 24.7414 23.4232 22.7559
HSDT (Nguyen et al. 2015) 28.7653 26.6542 25.4901 24.3022 23.1254 22.5934

CC FEM 34.4183 31.9232 30.4419 28.7950 26.9517 26.0580
Ritz method 34.5185 32.0116 30.5248 28.8733 27.0258 26.1303
HSDT (Nguyen et al. 2015) 34.0624 31.5260 30.0458 28.4068 26.5927 25.7241

CF FEM 14.6578 13.6956 13.1485 12.5521 11.8995 11.5818
Ritz method 14.6579 13.6956 13.1486 12.5521 11.8995 11.5818
HSDT (Nguyen et al. 2015) 14.0712 13.2130 12.7196 12.1683 11.5477 11.2377
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Table 10   Variation of nondimensional fundamental natural frequencies of Type A beam under different BCs, porosity distribution, and elastic 
foundation (1–2–1, p = 2)

L∕h Kw Kp BCs e0

UD SD ASD

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

5 0 0 SS 4.7059 4.7404 4.7894 4.7090 4.7507 4.8199 4.7102 4.7541 4.8272
CC 7.8424 7.7661 7.6740 7.8350 7.7761 7.7466 7.8554 7.8114 7.8015
CF 1.8082 1.8310 1.8632 1.8105 1.8358 1.8736 1.8095 1.8347 1.8727

100 0 SS 5.4475 5.5077 5.5929 5.4503 5.5165 5.6188 5.4512 5.5193 5.6249
CC 8.3153 8.2639 8.2071 8.3083 8.2733 8.2750 8.3275 8.3064 8.3263
CF 3.2941 3.3561 3.4434 3.2953 3.3586 3.4487 3.2948 3.3580 3.4482

100 10 SS 6.0915 6.1720 6.2860 6.0940 6.1799 6.3088 6.0948 6.1823 6.3141
CC 8.7913 8.7618 8.7362 8.7847 8.7709 8.8006 8.8029 8.8021 8.8488
CF 3.7149 3.7825 3.8776 3.7156 3.7846 3.8833 3.7157 3.7849 3.8843

20 0 0 SS 5.3859 5.4838 5.6234 5.3957 5.5004 5.6503 5.3888 5.4897 5.6358
CC 11.8095 11.9823 12.2269 11.8267 12.0153 12.2924 11.8174 12.0025 12.2775
CF 1.9321 1.9682 2.0198 1.9357 1.9742 2.0292 1.9331 1.9701 2.0236

100 0 SS 6.0566 6.1709 6.3335 6.0653 6.1856 6.3573 6.0591 6.1762 6.3444
CC 12.1301 12.3119 12.5693 12.1468 12.3441 12.6329 12.1377 12.3315 12.6185
CF 3.3787 3.4483 3.5467 3.3808 3.4517 3.5521 3.3793 3.4494 3.5489

100 10 SS 6.6526 6.7812 6.9636 6.6605 6.7946 6.9853 6.6549 6.7860 6.9736
CC 12.5032 12.6945 12.9651 12.5194 12.7257 13.0270 12.5107 12.7138 13.0134
CF 3.8409 3.9203 4.0323 3.8428 3.9234 4.0374 3.8415 3.9214 4.0346

Table 11   Variation of 
nondimensional fundamental 
natural frequencies of Type 
B beam under different BCs, 
porosity distribution, and elastic 
foundation (1–2–1, p = 2)

L∕h Kw Kp BCs e0

UD SD ASD

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

5 0 0 SS 3.6131 3.6166 3.6252 3.6202 3.6343 3.6699 3.5868 3.5827 3.5982
CC 7.1820 7.1076 7.0061 7.1953 7.1516 7.1346 7.1899 7.1531 7.1535
CF 1.3321 1.3366 1.3447 1.3348 1.3429 1.3598 1.3201 1.3197 1.3267

100 0 SS 4.5056 4.5472 4.6100 4.5102 4.5594 4.6422 4.4810 4.5140 4.5784
CC 7.6746 7.6291 7.5701 7.6865 7.6690 7.6872 7.6795 7.6670 7.6990
CF 3.0227 3.0831 3.1700 3.0224 3.0833 3.1722 3.0123 3.0669 3.1477

100 10 SS 5.2393 5.3077 5.4086 5.2423 5.3167 5.4334 5.2151 5.2740 5.3729
CC 8.1946 8.1745 8.1523 8.2052 8.2111 8.2608 8.1987 8.2090 8.2710
CF 3.4809 3.5507 3.6504 3.4803 3.5507 3.6531 3.4709 3.5355 3.6303

20 0 0 SS 3.8259 3.8479 3.8853 3.8341 3.8659 3.9254 3.7865 3.7894 3.8139
CC 8.5922 8.6305 8.6968 8.6102 8.6716 8.7920 8.5107 8.5127 8.5630
CF 1.3673 1.3754 1.3891 1.3702 1.3818 1.4033 1.3530 1.3541 1.3629

100 0 SS 4.7030 4.7598 4.8460 4.7088 4.7729 4.8756 4.6676 4.7065 4.7787
CC 9.0168 9.0736 9.1661 9.0335 9.1119 9.2551 8.9374 8.9585 9.0339
CF 3.0594 3.1228 3.2139 3.0594 3.1233 3.2162 3.0478 3.1042 3.1873

100 10 SS 5.4315 5.5139 5.6357 5.4358 5.5238 5.6591 5.3980 5.4628 5.5694
CC 9.5085 9.5852 9.7057 9.5238 9.6206 9.7885 9.4314 9.4733 9.5759
CF 3.5342 3.6090 3.7164 3.5339 3.6090 3.7180 3.5217 3.5889 3.6872
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Table 12   Variation of nondimensional critical buckling loads of Type A beam under different BCs, porosity distribution, and elastic foundation 
(1–2–1, p = 2)

L∕h Kw Kp BCs e0

UD SD ASD

0.4 0.6 0.8 0.4 0.6 0.4 0.4 0.6 0.8

5 0 0 SS 30.2135 29.3521 28.2242 30.2522 29.4800 28.5960 30.2713 29.5285 28.6935
CC 71.8155 67.5924 62.3648 71.6677 67.7367 63.4885 72.0437 68.3602 64.4079
CF 9.0669 8.9569 8.8143 9.0947 9.0077 8.9074 9.0784 8.9851 8.8807

100 0 SS 40.4787 39.6141 38.4818 40.5171 39.7417 38.8541 40.5367 39.7910 38.9527
CC 79.2025 74.9231 69.6113 79.0513 75.0673 70.7524 79.4333 75.7014 71.6890
CF 21.5344 21.1865 20.7169 21.5585 21.2521 20.8918 21.5590 21.2607 20.9172

100 10 SS 50.6047 49.7369 48.6002 50.6428 49.8643 48.9730 50.6628 49.9143 49.0728
CC 89.3498 85.0605 79.7355 89.1976 85.2041 80.8784 89.5810 85.8405 81.8182
CF 30.9754 30.6127 30.1244 31.0047 30.6879 30.3162 31.0018 30.6912 30.3341

20 0 0 SS 38.3449 38.0925 37.7847 38.4845 38.3238 38.1473 38.3856 38.1756 37.9511
CC 145.8516 144.0979 141.8237 146.2983 144.9112 143.3127 146.0365 144.5486 142.8840
CF 9.7274 9.6773 9.6189 9.7643 9.7371 9.7090 9.7372 9.6960 9.6534

100 0 SS 48.4892 48.2367 47.9289 48.6288 48.4680 48.2915 48.5299 48.3199 48.0953
CC 153.4313 151.6762 149.4000 153.8780 152.4896 150.8894 153.6163 152.1272 150.4611
CF 24.8321 24.7517 24.6538 24.8787 24.8289 24.7744 24.8454 24.7788 24.7076

100 10 SS 58.5012 58.2487 57.9408 58.6408 58.4800 58.3035 58.5418 58.3319 58.1073
CC 163.4751 161.7197 159.4431 163.9218 162.5330 160.9325 163.6601 162.1707 160.5044
CF 34.8323 34.7519 34.6540 34.8789 34.8291 34.7745 34.8456 34.7790 34.7077

Table 13   Variation of nondimensional critical buckling loads of type B beam under different BCs, porosity distribution, and elastic foundation 
(1–2–1, p = 2)

L∕h Kw Kp BCs e0

UD SD ASD

0.4 0.6 0.8 0.4 0.6 0.4 0.4 0.6 0.8

5 0 0 SS 18.4506 17.6257 16.5807 18.5452 17.8365 17.0511 18.2592 17.4208 16.5241
CC 59.8978 56.0151 51.0623 60.1714 56.7830 53.0390 60.1542 56.9359 53.5406
CF 4.8809 4.6959 4.4660 4.9071 4.7497 4.5771 4.8081 4.5997 4.3758

100 0 SS 28.6858 27.8578 26.8086 28.7794 28.0674 27.2782 28.4918 27.6494 26.7483
CC 67.4569 63.5434 58.5418 67.7295 64.3137 60.5347 67.7211 64.4838 61.0665
CF 16.3614 15.9043 15.2968 16.4155 16.0277 15.5820 16.2999 15.8621 15.3788

100 10 SS 38.7805 37.9494 36.8958 38.8732 38.1579 37.3650 38.5841 37.7376 36.8321
CC 77.6037 73.6822 68.6692 77.8747 74.4511 70.6629 77.8667 74.6224 71.1974
CF 25.8352 25.3610 24.7316 25.9020 25.5068 25.0532 25.7920 25.3501 24.8626

20 0 0 SS 19.8405 19.1280 18.2492 19.9477 19.3434 18.6835 19.5178 18.6859 17.7913
CC 78.3233 75.3566 71.6690 78.7403 76.2150 73.4450 77.1440 73.7950 70.1984
CF 4.9830 4.8062 4.5887 5.0099 4.8601 4.6968 4.9003 4.6921 4.4681

100 0 SS 29.9807 29.2681 28.3890 30.0878 29.4834 28.8233 29.6577 28.8256 27.9307
CC 85.8880 82.9190 79.2280 86.3051 83.7778 81.0054 84.7082 81.3570 77.7577
CF 17.7433 17.4009 16.9655 17.7937 17.5048 17.1817 17.5925 17.1898 16.7433

100 10 SS 39.9887 39.2759 38.3966 40.0957 39.4911 38.8308 39.6655 38.8331 37.9378
CC 95.9180 92.9484 89.2566 96.3349 93.8069 91.0336 94.7374 91.3851 87.7847
CF 27.7428 27.4003 26.9649 27.7932 27.5042 27.1811 27.5919 27.1893 26.7428
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there is a decrease observed for all cases as the porosity 
coefficient increases. In Case 2 introduction of the Winkler 
parameter ( Kw ) results in a slight increase in the fundamental 
natural frequencies and critical buckling loads of the beams. 
This phenomenon can be attributed to the stiffness of the 
Winkler foundation, which provides additional support and 
stability to the beams. Conversely, in case 3 the inclusion of 
the Pasternak parameter ( Kp) leads to a significant enhance-
ment in the fundamental natural frequencies and critical 
buckling loads effect by increasing the shear stiffness of 
the beams, resulting in a significant improvement in its free 
vibration and buckling behaviors. This observation suggests 
that the effect of the Pasternak parameter on both the natural 

frequency and critical buckling load is considerably more 
significant than the Winkler parameter.

4.3 � Effect of Skin–Core‑Skin Thickness Ratio

Tables 14 and 15 illustrate the effect of the skin–core-skin 
thickness ratio on the nondimensional fundamental natural 
frequencies and critical buckling loads for L∕h = 5 and p = 5 
with respect to the variation of the porosity coefficient of the 
three porosity patterns. It is, generally, noticeable that the 
nondimensional fundamental natural frequencies experience 
a decrease as the skin–core-skin thickness ratio decreases for 
Type A whereas an increase for Type B. This behavior can 

Fig. 4   The effect of porosity coefficient on fundamental natural frequencies of simple supported FG sandwich beams for symmetric porosity dis-
tribution and different elastic foundation constants (1–2–1, L∕h = 10 , p = 5)

Fig. 5   The effect of porosity coefficient critical buckling loads of simply supported FG sandwich beams for symmetric porosity distribution and 
different elastic foundation constants (1–2–1, L∕h = 10 , p = 5)
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be attributed to the decrease in the beam's bending stiffness 
for Type A and the enhancement of the bending stiffness of 
the beam for Type B as the porous core thickness increases. 
The results indicate that the skin–core-skin thickness ratios 
2–1–2 and 1–2–1 exhibit the lowest and highest values of the 

fundamental natural frequencies for Type A and reversely 
for Type B. However, for clamped Type B beams, the fun-
damental natural frequencies decrease as the skin–core-skin 
thickness ratio decreases for all types of porosity. Due to 
a relatively small length-to-thickness ratio L∕h = 5 and an 

Table 14   Variation of 
nondimensional fundamental 
natural frequencies of FG 
sandwich beams with different 
skin–core-skin thickness ratio, 
BCs, and porosity distribution 
( L∕h = 5 , p = 5 , Kw = 25 , 
Kp = 10)

Type Scheme BCs UD SD ASD

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

Type A 2–1–2 SS 5.9176 5.9522 5.9994 5.9183 5.9540 6.0032 5.9182 5.9538 6.0030
CC 9.9416 9.9719 10.0185 9.9443 9.9798 10.0376 9.9447 9.9804 10.0384
CF 2.8424 2.8607 2.8853 2.8426 2.8611 2.8863 2.8425 2.8610 2.8862

1–1–1 SS 5.8948 5.9497 6.0265 5.8966 5.9542 6.0369 5.8963 5.9538 6.0365
CC 9.5034 9.5298 9.5780 9.5068 9.5438 9.6180 9.5098 9.5488 9.6251
CF 2.8696 2.9006 2.9434 2.8702 2.9019 2.9463 2.8700 2.9017 2.9461

1–2–1 SS 5.7687 5.8389 5.9394 5.7714 5.8470 5.9621 5.7721 5.8489 5.9663
CC 8.8098 8.7901 8.7808 8.8039 8.7989 8.8397 8.8207 8.8273 8.8830
CF 2.8759 2.9215 2.9859 2.8769 2.9242 2.9929 2.8769 2.9244 2.9936

Type B 2–1–2 SS 4.6028 4.6256 4.6583 4.6047 4.6299 4.6670 4.6015 4.6250 4.6602
CC 7.8460 7.8566 7.8781 7.8586 7.8811 7.9233 7.8588 7.8816 7.9239
CF 2.5083 2.5247 2.5473 2.5085 2.5253 2.5489 2.5073 2.5235 2.5463

1–1–1 SS 4.6360 4.6732 4.7275 4.6395 4.6813 4.7452 4.6278 4.6634 4.7202
CC 7.7560 7.7604 7.7776 7.7783 7.8063 7.8674 7.7716 7.7971 7.8559
CF 2.5381 2.5660 2.6052 2.5385 2.5674 2.6089 2.5348 2.5616 2.6007

1–2–1 SS 4.6783 4.7297 4.8074 4.6876 4.7491 4.8472 4.6573 4.7017 4.7806
CC 7.6233 7.5999 7.5789 7.6582 7.6761 7.7404 7.8588 7.8816 7.9239
CF 2.5765 2.6189 2.6798 2.5782 2.6228 2.6892 2.5692 2.6087 2.6692

Table 15   Variation of nondimensional critical buckling loads of FG sandwich beams with different skin–core skin thickness ratio, BCs, and 
porosity distribution ( L∕h = 5 , p = 5 , Kw = 25 , Kp = 10)

Type Scheme BCs UD SD USD

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

Type A 2–1–2 SS 56.8269 56.6839 56.5161 56.8413 56.7191 56.5936 56.8388 56.7155 56.5889
CC 135.4088 134.3620 133.1466 135.4787 134.5662 133.6370 135.4890 134.5824 133.6594
CF 26.4163 26.4006 26.3821 26.4193 26.4066 26.3935 26.4179 26.4045 26.3906

1–1–1 SS 53.1604 52.7988 52.3617 53.1942 52.8839 52.5559 53.1893 52.8782 52.5506
CC 117.4725 115.2651 112.6524 117.5501 115.5901 113.5595 117.6260 115.7107 113.7298
CF 25.6836 25.6370 25.5808 25.6945 25.6578 25.6189 25.6886 25.6491 25.6074

1–2–1 SS 47.0380 46.2146 45.1619 47.0797 46.3450 45.5223 47.0949 46.3838 45.5997
CC 94.1891 90.1149 85.1373 94.0521 90.2651 86.2193 94.4120 90.8544 87.0772
CF 24.2278 24.1003 23.9372 24.2568 24.1546 24.0390 24.2407 24.1324 24.0126

Type B 2–1–2 SS 31.5345 31.3267 31.0817 31.5833 31.4221 31.2567 31.5547 31.3798 31.2013
CC 75.3644 74.3543 73.1665 75.6465 74.8854 74.1067 75.6709 74.9286 74.1734
CF 18.8196 18.7665 18.7036 18.8317 18.7903 18.7476 18.8215 18.7751 18.7276

1–1–1 SS 30.8751 30.4833 30.0093 30.9621 30.6571 30.3379 30.8311 30.4614 30.0787
CC 71.2980 69.4067 67.1228 71.7706 70.3307 68.8293 71.6620 70.1924 68.6814
CF 18.6597 18.5574 18.4330 18.6831 18.6037 18.5203 18.6400 18.5387 18.4331

1–2–1 SS 30.0065 29.2949 28.4110 30.1896 29.6437 29.0563 29.8378 29.1160 28.3559
CC 66.0736 62.8283 58.7845 66.7802 64.2465 61.5288 75.6709 74.9286 74.1734
CF 18.4343 18.2392 17.9945 18.4915 18.3462 18.1887 18.3751 18.1682 17.9472
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FG core, the reduction rate in bending stiffness is more sig-
nificant than the mass density for a CC beam. As a result, 
there is a decrease in the natural frequency as the thickness 
of the FG porous core increases. Similarly, the nondimen-
sional critical buckling loads show a consistent decrease as 
the skin–core-skin thickness ratio decreases for both types. 
The results showcased in the tables emphasize the critical 
importance of carefully considering the geometric configu-
rations, when designing FG sandwich beams with porous 
core to align with the desired performance criteria.

4.4 � Effect of Power Index and Length‑to‑Thickness 
Ratio

Figures 6 and 7 illustrate the effect of the power index on 
the fundamental natural frequencies and critical buckling 
loads of FG sandwich beams with the three different poros-
ity distribution patterns. A CC beam (1–2–1, L∕h = 15 , 
e0 = 0.8 , Kw = 50 , Kp = 10 ) is considered. As expected, 
the nondimensional fundamental natural frequencies and 
critical buckling loads of FG sandwich beams increase 
with the power index for Type A, while for Type B, they 

Fig. 6   Variation of nondimensional fundamental natural frequencies of clamped FG sandwich beams with the power index for different porosity 
distribution types (1–2–1, L∕h = 15 , e0 = 0.8 , Kw = 50 , Kp = 10)

Fig. 7   Variation of nondimensional critical buckling loads of clamped FG sandwich beams with the power index for different porosity distribu-
tion types (1–2–1, L∕h = 15 , e0 = 0.8 , Kw = 50 , Kp = 10)
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decrease inversely for all porosity distributions. It is seen 
that the effect of porosity distributions on nondimensional 
fundamental natural frequencies and critical buckling loads 
of Type A is relatively small compared to that observed for 
Type B beams. This smaller variation in natural frequencies 
and buckling loads for Type A beam with different porosity 
distributions can be attributed to the presence of FG face 
layers, which contribute significantly to the overall stiff-
ness and dynamic properties of the beam, thereby reducing 
the relative impact of porosity distribution in the isotropic 

metal core. Conversely, in Type B the porosity distribution 
in the FG porous core has a more pronounced influence on 
the overall stiffness and natural frequencies than isotropic 
homogeneous face layers. However, the symmetric poros-
ity distribution generally yields higher natural frequen-
cies in both types. This is because a symmetric porosity 
distribution leads to a more uniform stiffness distribution 
along the beam's length, resulting in higher overall stiffness 
and natural frequencies. This highlights the importance of 
carefully considering the porosity distribution during the 

Fig. 8   Variation of nondimensional fundamental natural frequencies of clamped FG sandwich beams with the length-to-thickness ratio for differ-
ent porosity distribution types (1–2–1, e0 = 0.8 , Kw = Kp = 10 , p = 1)

Fig. 9   Variation of nondimensional critical buckling loads of clamped–clamped FG sandwich beams with the length-to-thickness ratio for differ-
ent porosity distribution types (1–2–1, e0 = 0.8 , Kw = Kp = 10 , p = 1)
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Table 16   Variation of 
nondimensional fundamental 
natural frequencies of FG 
sandwich beams with various 
foundation parameters, BCs, 
and porosity distribution types 
(1–2–1, L∕h = 5 , e0 = 0.5 , 
p = 5)

Type Kp BCs UD SD USD

Kw

0 50 100 0 50 100 0 50 100

Type A 0 SS 5.3099 5.6480 4.9543 5.3152 5.6530 4.9558 5.3165 5.6542 5.3099
CC 8.4438 8.6636 8.2168 8.4426 8.6624 8.2407 8.4657 8.6850 8.4438
CF 2.7118 3.3293 1.9067 2.7139 3.3309 1.9056 2.7132 3.3304 2.7118

10 SS 5.9589 6.2620 5.6444 5.9636 6.2665 5.6456 5.9647 6.2675 5.9589
CC 8.9056 9.1143 8.6908 8.9045 9.1132 8.7133 8.9265 9.1347 8.9056
CF 3.2036 3.7420 2.5561 3.2051 3.7432 2.5561 3.2052 3.7433 3.2036

25 SS 6.8174 7.0839 6.5443 6.8215 7.0878 6.5453 6.8224 7.0887 6.8174
CC 9.5513 9.7462 9.3513 9.5503 9.7452 9.3724 9.5709 9.7654 9.5513
CF 3.7502 4.2203 3.2133 3.7513 4.2212 3.2142 3.7520 4.2219 3.7502

Type B 0 SS 4.0608 4.5058 3.5821 4.0784 4.5205 3.5336 4.0350 4.4805 4.0608
CC 7.1598 7.4247 6.9439 7.2159 7.4780 6.9180 7.1903 7.4525 7.1598
CF 2.3701 3.0805 1.3279 2.3720 3.0803 1.3070 2.3590 3.0692 2.3701

10 SS 4.9004 5.2749 4.5095 4.9128 5.2854 4.4695 4.8754 5.2500 4.9004
CC 7.7375 7.9833 7.5372 7.7886 8.0321 7.5140 7.7655 8.0090 7.7375
CF 2.9471 3.5461 2.1940 2.9485 3.5458 2.1811 2.9378 3.5360 2.9471

25 SS 5.9408 6.2531 5.6201 5.9484 6.2595 5.5862 5.9158 6.2279 5.9408
CC 8.5195 8.7435 8.3368 8.5649 8.7870 8.3166 8.5446 8.7666 8.5195
CF 3.5359 4.0500 2.9367 3.5375 4.0500 2.9259 3.5276 4.0406 3.5359

Table 17   Variation of nondimensional critical buckling loads of FG sandwich beams with various foundation parameters, BCs, and porosity dis-
tribution types (1–2–1, L∕h = 5 , e0 = 0.5 , p = 5)

Type Kp BCs UD SD USD

Kw

0 50 100 0 50 100 0 50 100

Type A 0 SS 33.9500 39.0830 44.2148 34.0264 39.1592 44.2908 34.0511 39.1842 44.3160
CC 80.1628 83.9512 87.5819 80.1216 83.9092 87.5385 80.5894 84.3789 88.0124
CF 10.2220 17.8497 23.1496 10.2603 17.8886 23.1901 10.2401 17.8744 23.1881

10 SS 44.0809 49.2115 54.3409 44.1570 49.2874 54.4166 44.1822 49.3129 54.4424
CC 90.3208 94.1052 97.7289 90.2787 94.0623 97.6847 90.7481 94.5335 98.1601
CF 20.0995 27.5432 32.6499 20.1387 27.5848 32.6952 20.1179 27.5692 32.6904

25 SS 59.2684 64.3954 69.5212 59.3441 64.4709 69.5966 59.3700 64.4971 69.6230
CC 105.5231 109.2997 112.9106 105.4798 109.2556 112.8654 105.9513 109.7290 113.3430
CF 34.6672 41.6901 46.3677 34.7106 41.7415 46.4295 34.6873 41.7206 46.4152

Type B 0 SS 17.0137 22.1291 27.2427 17.2699 22.3852 27.4987 16.8328 21.9469 27.0592
CC 52.4637 56.2649 59.9517 53.4780 57.2808 60.9735 53.0624 56.8674 60.5678
CF 4.5804 11.5471 15.5345 4.6427 11.6435 15.6848 4.4981 11.4807 15.4884

10 SS 27.1094 32.2212 37.3312 27.3653 32.4771 37.5870 26.9259 32.0365 37.1453
CC 62.6092 66.4031 70.0810 63.6235 67.4192 71.1031 63.2076 67.0054 70.6973
CF 14.4741 21.2031 24.9816 14.5391 21.3102 25.1488 14.3960 21.1506 24.9587

25 SS 42.2396 47.3460 52.4507 42.4954 47.6019 52.7065 42.0525 47.1578 52.2613
CC 77.7772 81.5581 85.2201 78.7923 82.5753 86.2439 78.3759 82.1611 85.8379
CF 28.9777 35.0850 38.3594 29.0603 35.2385 38.5931 28.9202 35.0842 38.4153
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manufacturing process. Optimization of porosity distribu-
tion can lead to achieve desired mechanical performance of 
the beams while ensuring cost-effectiveness and feasibility 
during the design and manufacturing process.

Figures 8 and 9 demonstrate the effect of length-to-thick-
ness ratio L∕h on the fundamental natural frequencies and 
critical buckling loads of FG sandwich beams with the three 
porosity distribution patterns. A CC beam (1–2–1, e0 = 0.8 , 
Kw = Kp = 10 , p = 1 ) is considered. It is seen that the non-
dimensional fundamental natural frequencies and critical 
buckling loads of FG sandwich beam increase as the increase 
of length-to-thickness ratio L∕h for all porosity distributions. 
Moreover, the difference in nondimensional fundamental 
natural frequencies and critical buckling loads for poros-
ity distribution patterns becomes significant as the length-
to-thickness ratio increases. This is because, with higher 
length-to-thickness ratios, porosity has a more significant 
impact on the overall stiffness and mechanical behavior of 
the beam. The findings illustrated that incorporating porosity 

can effectively lead to a reduction in overall material den-
sity while still maintaining adequate stiffness and buckling 
resistance, particularly evident in beams with higher L∕h 
ratios. This implies that for applications where weight reduc-
tion is a priority, the use of porous core materials in FG 
sandwich beams with higher L∕h ratios can be advantageous.

4.5 � Effect of Elastic Foundation

To study the effects of foundation parameters with different 
porosity patterns and BCs on free vibration and buckling 
behavior of 1–2–1 sandwich beam with L∕h = 5 , e0 = 0.5 , 
p = 5 are considered. The variation of nondimensional fun-
damental natural frequencies and critical buckling loads with 
different foundation parameters, porosity patterns, and BCs 
are summarized in Tables 16 and 17. It is seen that the non-
dimensional fundamental frequencies and critical buckling 
loads increase with the enhancement of foundation param-
eters for all porosity distributions and BCs. This behavior 

Fig. 10   Variation of nondimensional fundamental natural frequencies of Type B for various BCs and porosity distributions (1–2–1, L∕h = 5 , 
e0 = 0.8 , p = 5 ) under Kw and Kp
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is attributed to the fact that increasing the elastic founda-
tion parameter amplifies the bending stiffness of the beam, 
thereby improving its vibrational and buckling resistance.

Figures 10 and 11 show the variations of nondimen-
sional fundamental natural frequencies and critical buck-
ling loads as a function of elastic foundation parameters 
to evaluate separately the effects of Winkler and Pasternak 
elastic foundation parameters. It should be noted that the 
nondimensional fundamental natural frequencies and criti-
cal buckling loads increase considerably with the increase 
of the Pasternak parameter. From this, it can be inferred 
that changes in Kp have a more pronounced impact on 
fundamental frequencies and critical buckling loads com-
pared to changes in Kw . Besides, the effect of porosity 

distribution patterns is found to be negligible, especially 
for the CF beam. This is primarily attributed to the fact 
that the elastic foundation has a more significant effect on 
the bending stiffness than the porosity effect.

5 � Conclusion

This paper presented a new finite element model based on 
quasi-3D deformation theory for free vibration and buckling 
analysis of FG sandwich beams with porous core resting 
on a two-parameter Winkler-Pasternak elastic foundation. 
Three different porosity patterns including uniform, sym-
metric, and asymmetric are considered. A three-nodded 

Fig. 11   Variation of nondimensional critical buckling loads of Type B for various BCs and porosity distributions (1–2–1, L∕h = 5 , e0 = 0.8 , 
p = 5 ) under Kw and Kp
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finite element having 15-DOFs is proposed for the numeri-
cal solution. The accuracy and convergence of the proposed 
model is verified with several examples. A comprehensive 
parametric study is carried out to explore the effects of the 
boundary conditions, skin-to-core thickness ratio, power-law 
index, slenderness, porosity, and elastic foundation param-
eters on the natural frequencies and critical buckling loads 
of FG sandwich beams. The main findings from the study 
can be summarized as follows:

1.	 For FG sandwich beams with a porous metal core, the 
fundamental natural frequencies and critical buckling 
loads increase with the increase of the power-law index 
and inversely they decrease with the power-law index for 
sandwich beams with FG core.

2.	 As the porosity coefficient increases, the fundamental 
natural frequencies increase, while the critical buckling 
loads decrease due to the concurrent reduction in the 
bending stiffness and mass density.

3.	 Symmetric porosity distribution yields the most favora-
ble fundamental natural frequencies and critical buck-
ling loads.

4.	 As the skin–core-skin thickness ratio decreases, the fun-
damental natural frequencies decrease for Type A and 
increase for Type B. Critical buckling loads decrease for 
both types.

5.	 An increase in the length-to-thickness ratio results in 
higher fundamental natural frequencies and critical 
buckling loads for FG sandwich beams and the porosity 
distribution effect becomes more significant.

6.	 The fundamental natural frequencies and critical buck-
ling loads of the FG sandwich beam increase signifi-
cantly as the spring and shear constants of the elastic 
foundation increase, particularly when the shear layer 
constant increases.

Appendix

The shape functions �i(x) and �i(x) are given are given as 
follows:

The components of the stiffness matrix K and the mass 
matrix M are given as follows:
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