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Abstract
The amount of cement used has increased phenomenally due to the development and massive expansion of the infrastructure 
sector. The manufacture of cement requires more incredible embodied energy and produces greenhouse gases. Geopolymer 
concrete (GPC) was developed to alleviate the environmental adverse effects caused by carbon dioxide emissions  (CO2) and 
the extensive use of fossil fuels in cement manufacturing. GPC concrete is more durable and has better mechanical proper-
ties than traditional concrete; for all types of concrete composites, including GPC, compressive strength (Cst) is the most 
essential engineering property. The result is impacted by a multitude of factors, encompassing the number of binder materials 
utilized, the proportion of alkaline activators to binder (AL/Bi), the quantity of additional water incorporated, the dosage 
of superplasticizers, the ratio of alkaline activators (AAR), the concentration molarity of hydroxide of sodium (SHy), the 
temperature of curing, and the duration of cure. This review article aims to illustrate how these various parameters affect the 
compressive strength of fly ash-based geopolymer concrete (FAGPC). To accomplish this, an extensive dataset was gathered 
and analyzed. The results indicate that the compressive strength of FAGPC is mainly influenced by the temperature for cur-
ing, the amount of sodium hydroxide, and the amount of alkaline in the binder.
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1 Introduction

Concrete is the second most often used material worldwide 
(Abdalla et al. 2022a, b; Amiri et al. 2021; Bezabih et al. 
2023; Chu et al. 2021; Danish et al. 2022; Kanagaraj et al. 
2022). Ordinary Portland cement (OPC) is the primary con-
stituent of concrete (Abdalla et al. 2022a, b; Rashad 2014). 
OPC is responsible for around 5–7% of worldwide carbon 
dioxide  (CO2) emissions (Alahmari et al. 2023; Assi et al. 
2016; Garg et al. 2023; Khalil et al. 2020; Kotop et al. 2021; 
Samuvel Raj et al. 2023; Shumuye et al. 2021; Sukontas-
ukkul et al. 2018; Visintin et al. 2017; Zhao et al. 2021). 
Cement production requires significant raw materials and 
energy, which harms the environment. For a future building 

that is environmentally friendly, an alternative to OPC 
concrete is geopolymer concrete (GPC) (Gill et al. 2023a, 
b; Robayo-Salazar et al. 2018), which has a substantially 
lower environmental impact than Portland cement concrete 
(Gill et al. 2023a, b; Panesar 2019). In 1978, Davidovits 
initially presented Geopolymers as a novel family of inor-
ganic polymer binders (Abdel-Gawwad and Abo-El-Enein 
2019; Ekinci et al. 2019; Jindal et al. 2017; Kanagaraj et al. 
2023; Moradikhou et al. 2023). The two primary compo-
nents of geopolymers, inorganic aluminosilicate materials, 
are an alkaline activator solution and a raw material rich in 
 SiO2 and  Al2O3 (Adak and Mandal 2019; Aslani and Asif 
2019; Hardjito et al. 2015; Salas et al. 2018). GPC possesses 
exceptional chemical and mechanical properties to Portland 
cement-based concrete (PCC) for civil engineering applica-
tions. These properties include greater mechanical strength 
and rapid hardening (Karakoç et al. 2014; Karthik et al. 
2017; Yaseri et al. 2017), higher resistance to fire or elevated 
temperatures (Cheng and Chiu 2003; Sakkas et al. 2014; 
Sarker et al. 2014), low permeability and resistance to salts, 
acids, and chloride penetration depth (Ganesan et al. 2015; 
Lee and van Deventer 2002), and lower creep effects (Zhang 
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et al. 2013). Polymerization is the chemical reaction between 
an alkaline solution and a binder material containing alumi-
nosilicate, as shown in Fig. 1 (Ahmed et al. 2021a, b).

The GPC polymerization process is influenced by several 
factors, like the amount of oxide in the source material, the 
concentration of SHy, the alkaline activator ratio (the ratio 
of SHy to SSi), the method of curing used, as well as the 
duration of time it is left to cure (Podolsky et al. 2021; Van 
Deventer et al. 2012). Materials rich in alumino-silicates 
are utilized as binders in geopolymer concrete like fly ash 
(FA) (Abdulrahman et al. 2022; Amin et al. 2022; Amran 
et al. 2021), ground granulated blast furnace slag (GGBFS) 
(Bouaissi et al. 2019; Nagajothi and Elavenil 2021; Shah-
mansouri et al. 2020), rice husk ash (RHA) (Beigh and Haq 
2024; Nuaklong et al. 2020; Thumrongvut et al. 2022), 
metakaolin (MK) (Jindal et al. 2023; Moradikhou et al. 
2020), silica fume (SF) (Mashri et al. 2023; Singh et al. 
2023), red mud (RM) (Bellum et al. 2021; Liang and Ji 
2021), and palm oil fuel ash (POFA) (Mahamat Ahmat et al. 
2023; Mashri et al. 2023), or any blend among these ashes 
containing or without containing cement, and performance 
activity are primarily influenced by their fineness, glassy 
phase content, and chemical composition (Feng et al. 2019). 
FA is the most prevalent utilized source binder material as 
a cheap ingredient in geopolymer concrete, with general 
availability, more excellent ore, and tremendous potential for 
geopolymer preparation (Pavithra et al. 2016). FA is a finely 
chopped byproduct of the burning of pulverized coal. Before 
reaching the flue gages of chimneys, particles are filtered 
from the engine using electrostatic precipitators or some 
other technique (Ahmaruzzaman 2010; Gorai et al. 2003). 

FA is classified by oxide composition as class F or class C. 
FA mainly consists of  SiO2,  Al2O3,  Fe2O3, and CaO, with 
lesser amounts of various ores, as presented in Table 1. Class 
F fly ash has a total percent  SiO2,  Al2O3, and  Fe2O3 content 
of over 70% and a CaO content of < 10%, considered low 
calcium FA. In contrast, class C fly ash should have a total 
percent  SiO2,  Al2O3, and  Fe2O3 content of between 50 and 
70% and a CaO content of more than 20%, considered high 
calcium FA (Antiohos and Tsimas 2007; Bankowski et al. 
2004), is fewer compared to FA with high calcium content, 
fewer compared to FA with a high calcium content; FA with 
low calcium is acceptable in the formation of GPC because it 
is readily available, has an abundance of oxide compounds, 
and requires less water (Hardjito et al. 2004, 2015).

In conclusion, much research has been offered to review 
the effect of different factors on the physical, mechanical, 
durability, and microstructure characteristics of FAGPC. 
However, Cst is a crucial mechanical characteristic of con-
crete, serving as a reliable indicator of the overall qual-
ity of the concrete. Despite the vast research in this area, 
studies on factors influencing compressive strength in fly 
ash-based geopolymer concrete are very scanty. Therefore, 
a comprehensive and systematic review is needed to assess 
the impact of different percentages variables and curing 
circumstances on the Cst of FAGPC at differing ages for 
curing and temperatures. In this study, the effect of several 
parameters regarding the Cst of FAGPC was investigated, 
including binder content, AL/Bi, SHy molarity, SSi/SHy 
ratio, curing temperature and duration, superplasticizers, 
and extra water content.

Fig. 1  Chemical reactions that 
occur during geopolymerization 
(Ahmed et al. 2021a, b)
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2  Methodology

Various databases, including Google Scholar, Scopus, Web 
of Science, MDPI, Taylor & Francis, and ScienceDirect, 
were utilized to do thorough literature searches during the 
database establishment. The literature provides information 
on geopolymer concrete, which incorporates various source 
binder components, including FA, RHA,  GGBFS, SF, and 
MK. Nevertheless, the review focused on experiments that 
utilized FA as a binding material to produce geopolymer 
concrete composites. Figure 2 depicts the flow chart that 
provides a more detailed overview of collecting and evalu-
ating data.

3  Results and Discussions

3.1  Factors Influencing the Compressive Strength 
of GPC

To manufacture large quantities of GPC with engineering 
properties that are reasonably consistent and predictable, 

one of the most important steps is to gain knowledge about 
the mechanical characteristics of the material. The follow-
ing are important parameters that influence the performance 
of FAGPC, which include: (a) binder content; (b) activator 
solution-to-binder ratio; (c) concentration of SHy solution 
(molarity); (d) SSi to SHy solution ratio; (e) curing tempera-
ture; and (f) curing period.

3.1.1  Binder Content

Besides its cost-effectiveness, availability, and enhanced 
capacity for geopolymer preparation, FA is frequently uti-
lized to create geopolymer concrete as a source binder mate-
rial (Feng et al. 2019; Pavithra et al. 2016). For instance, 
according to a report by Al-Azzawi et al. (2018) an experi-
mental investigation was conducted to investigate the 
impact of varying fly ash amounts on FAGPC’s bond and 
Cst. They discovered the geopolymer concrete’s bond and 
Cst rose with the percentage of fly ash added. Cst improved 
most noticeably when the fly ash concentration was raised 
from 300 to 500 kg/m3. According to Jindal et al. (2017), 
the specimens’ Cst increased with an increase in the fly ash 

Table 1  The chemical 
constitutes fly ash

References SiO2 AL2O3 CaO Fe2O3 MgO Na2O K2O SO3 LOI

Sherwani et al. (2022a, b) 56.00 24.00 4.00 7.00 2.00 – – – 3.00
Nagajothi et al. (2022) 63.32 26.76 2.49 5.55 0.29 0.0004 0.0002 0.36 0.97
Dinh et al. (2023) 54.62 24.27 6.14 8.389 1.134 0.258 0.801 0.279 2.704
Gupta et al. (2021) 61.74 25.23 2.15 5.98 0.32 – – 0.27 2.15
Parveen et al. (2018) 62.5 29.02 1.1 4.22 – 0.2 – 0.22 0.52
Wardhono et al. (2017) 57.9 31.1 1.29 5.07 0.97 0.09 1 0.05 0.8
Xie and Ozbakkaloglu (2015) 62.3 28.1 0.5 2.1 1 0.5 1 0.4 2.5
Chindaprasirt and Chalee (2014) 49 31 5 3 3 4 1 0 0
Alex et al. (2022) 52.57 2669 1.26 11.32 0.89 0.46 0.79 1.64 1.28
Sarker et al. (2013) 42.4 21.3 13.2 15.7 2.2 0.9 2 1 0.4
Çevik et al. (2018) 51.5 23.63 1.74 15.3 1.2 0.38 0.84 0.28 1.78
Shaikh and Vimonsatit (2014) 48 29 1.76 12.7 0.89 0.39 0.55 0.5 1.61
Talha Junaid et al. (2016) 50.7 28.8 2.38 8.8 1.39 0.84 2.4 0.3 3.79
Padakanti et al. (2022) 63.47 24.33 4.84 4.54 1.19 0.13 0.93 0.23 –
Tayeh et al. (2021) 55.57 28.78 2.46 3.95 1.18 0.72 1.33 0.37 0.97
Tran et al. (2019) 51.1 25.6 4.3 12.5 1.5 0.8 0.7 0.24 0.6
Abiodun et al. (2023) 55.865 22.657 6.501 6.118 5.194 – – 0.358 1.75
Waqas et al. (2021) 54.55 31.93 4.65 3.12 1.42 0.25 0.7 0.3 0.95
Maglad et al. (2022) 53.4 27.6 2.6 4.2 3.4 0.3 0.7 – –
Xiao et al. (2021) 50.8 28.1 3.7 6.2 1.2 1.2 0.6 0.8
Yang et al. (2022) 44.8 39.2 5.2 3.6 0.6 – – 1.5 3.4
Eisa et al. (2022) 57.9 31.11 1.29 5.07 0.97 0.09 1 0.05 0.8
Harirchi and Yang (2022) 51.1 16.2 13.7 6.1 4.2 2.85 2.64 – –
Horan et al. (2022) 44.7 23.2 3.2 24.2 0.8 – – 0.6 0.4
Ionescu et al. (2022) 46.9 23.8 10.7 10.1 2.7 0.6 1.7 0.5 2.1
Chuewangkam et al. (2022) 28.54 14.94 26.37 18.14 2.01 1.05 2.8 4.56
Sherwani et al. (2022a, b) 55 23 4 7 2 1 2 – 3
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amount under ambient and heat-cured conditions. After 
28 days, the Cst grew between 21 and 42 Mpa when the FA 
amount was raised within 350 and 400 kg/m3. Similarly, 
Ramujee and PothaRaju (2017) provided evidence that when 
the mass of fly ash in geopolymer concrete was raised, this 
also increased the material’s Cst. According to most studies, 
increasing fly ash increased the Cst of FAGPC. This suggests 
that fly ash with a more excellent glassy phase and finer 
particle size exhibits more reactivity, leading to a quicker 
polymerization rate and stronger concrete (Diaz et al. 2010; 
Komljenović et  al. 2010; Kumar and Kumar 2011). In 
addition, the geopolymer concrete matrix’s microstructure 
becomes denser and more compact as the fly ash volume 
grows in a given mixture. Furthermore, because of their 
smooth exterior and round form, fly ash particles facilitate 
motion within the aggregate particles (Rickard et al. 2011). 
Consequently, minimizing the fly ash quantity compromises 
the FAGPC’s ability to consolidate and compact appro-
priately, diminishing bonding and compressive strength. 
However, when the fly ash amount went up, particles in the 
fine fraction grew in volume within the GPC matrix, filling 
gaps and voids created by an aggregate particle and thereby 

improving compressive strength (Ahmed et al. 2021a, b; Al-
Azzawi et al. 2018).

3.1.2  Ratio of Alkaline to Binder (Al/Bi)

The “alkaline solution” in geopolymer concrete comprises 
SHy and SSi. The “binder content” comprises all the fly ash 
or other source binders (Ahmed et al. 2021a, b; Moham-
med et al. 2021). The activators significantly influence the 
polymerization process. When the Si and Al are dissolved in 
the activator, polymerization forms the binding material rap-
idly (Shilar et al. 2022). The reactivity of FA was enhanced 
by utilizing an activator made from NaOH and  Na2SiO3 
(de Azevedo et al. 2021; Mendes et al. 2021). According 
to Aliabdo et al. (2016), the chemical admixture amount, 
additional water content, SHy/SSi ratio, and SHy molarity 
were held constant at 10.5 kg/m3, 35 kg/m3, 0.4, and 16, 
respectively. The Cst of FAGPC was raised by increasing the 
alkaline-to-binder ratio up to 0.4; subsequently, the outcome 
was the opposite, as shown in Fig. 3.

A study by Fang et al. (2018) looked at the impact of the 
ratio of AL/Bi on fly ash-slag-based geopolymer concrete 

Fig. 2  The methodology flow-
chart for the study
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cured in an ambient environment. According to their find-
ings, increasing the AL/Bi ratio has a remarkable impact on 
the Cst of geopolymer concrete containing composite fly 
ash and slag at lower ages. However, it has no such effect 
at later ages. This discovery argues that reducing the AL/
Bi ratio will speed up the process of fly ash-slag geopoly-
mer concrete being activated by alkaline. This acceleration 
occurs because a reduction in consistency is observed in the 
mixture of geopolymer concrete (Rafeet et al. 2017). Gels, 
specifically calcium aluminate silicate hydrate (C–A–S–H) 
and sodium aluminate silicate hydrate (N–A–S–H), rapidly 
form in a geopolymer concrete blend containing a low AL/Bi 
ratio. This procedure helps fly ash-slag geopolymer concrete 
gain its early-age strength (Lloyd et al. 2009). In another 
investigation by Ghafoor et al. (2021), it was observed that 
increasing the AL/Bi ratio from 0.4 to 0.5 reduced the Cst 
of GPC cured at ambient temperature by around 19.0% and 
3.4% for NaOH molarities of 8M and 10M, respectively. 
Nevertheless, the Cst of GPC exhibited an approximate 
increase of 8.4%, 9.7%, and 14.9% for NaOH molarities 
of 12M, 14M, and 16M, respectively. Similarly, Nath and 
Sarker (2015) found an increase in the Cst of GPC with 
increasing NaOH molarity. This results from water con-
sumption increasing as the molarity of NaOH increases. 
Water acts as a solvent for the movement of particles and 
various ions, significantly influencing the geopolymerization 
process (Hu et al. 2018). Furthermore, raising the Al/Bi ratio 
from 0.5 to 0.6 reduced Cst by approximately 6.1%, 8.8%, 
13.8%, 22.2%, and 14.0% for NaOH molarities of 8M, 10M, 
12M, 14M, and 16M, respectively. It was noticed that higher 
concentrations of NaOH led to the GPC mixes becoming 
sticky, resulting in a decrease in the workability of GPC. 

The water content was critical to the dissolution of ions 
throughout the polymerization process (Karakoç et al. 2014). 
In addition, Verma and Dev (2022) studied the impact of 
the ratio of AL/Bi on the Cst of GGBFS fly ash-based GPC. 
The range of the AL/Bi ratio was 0.40–0.70. The authors 
concluded that strength grows as the AL/Bi ratio increases, 
although it decreases randomly beyond 0.60 ratios. The GPC 
mix design optimized the Cst at 0.60 AL/Bi ratios, as shown 
in Fig. 4.

In conclusion, it was demonstrated that when the AL/
Bi ratio was raised, the strength of low SHy concentrations 
cured in a room environment reduced, as shown in Fig. 5, 
which was taken from Ghafoor. This finding demonstrated 
that raising the alkaline liquid’s molarity produced a more 
prominent solid component in relation to the amount of 
water, which considerably impacted the polymerization 
process and raised compressive strength (Hu et al. 2018).

3.1.3  Sodium Hydroxide Molarity

One of the crucial parameters influencing FAGPC per-
formance is the concentration of sodium hydroxide. As a 
result, several studies have been undertaken to highlight the 
impacts of this issue. According to Aliabdo et al. (2016), 
the Cst of the FAGPC mixture exhibited an initial increase 
as the molarity of sodium hydroxide rose, reaching its peak 
at 16 M, after which it subsequently declined, as shown in 
Fig. 6. Furthermore, they noticed that the optimal NaOH 
concentration for 48 h of curing at 50 °C was 16 M. Also, 
Chindaprasirt et al. (2011) achieved similar outcomes by 
employing different concentrations of SHy, varying between 
8 and 20M. They observed a maximum Cst of 32.2 MPa at 

Fig. 3  The impact of SHy and 
SSi on fly ash on fly ash-based 
GPC’s Cs (Aliabdo et al. 2016)
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a concentration of 16 M after ambient curing for 28 days. 
Chithambaram et al. (2018) carried out an experiment inves-
tigation to show how varying molarities of SHy affect the 
mechanical properties of FAGPC. The researchers con-
ducted experiments using four distinct molarities and four 
varying temperatures for curing. They observed that raising 
the molarity led to an enhancement in compressive strength, 
reaching its peak at 12 M. However, further increases in 
molarity resulted in a fall in Cst. Consistent findings have 
been documented in other attempts, regardless of the utiliza-
tion of different concentrations (Topark-Ngarm et al. 2015). 

The consequence of SHy molarity on fly ash metakaolin-
based self-compacting geopolymer concrete was investigated 
by Arun et al. (2019). They observe that when the molarity 
rises, the strength rises as well. This is because an eleva-
tion in the concentration of SHy facilitates better alumina 
and silica leaching, which improves geopolymerization and 
raises strength. Verma and Dev (2020) examined the influ-
ence of SHy on the mechanical properties of fly ash-slag-
based geopolymer concrete. According to their research, the 
Cst of the mix design rises as the molarity of SHy increases. 
However, after reaching a specific threshold, the Cst dimin-
ishes in the oven-cured specimens. The oven-cured 14 M 
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Fig. 4  Cast of a ambient-cured GPC and b oven-cured GPC (Verma 
and Dev 2022)
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mix achieves a maximum Cst of 34.2 N/mm2 after 56 days, 
whereas the ambient-cured 16 M mix reaches a Cst of 25 N/
mm2 after the same duration as shown in Fig. 7. Ghafoor 
et al. (2021) examined the impact of activators on the Cst 
of FAGPC throughout the process of curing at normal tem-
perature. Their findings indicate that the Cst of FAGPC ini-
tially rose as the molarity of SHy increased up to 14 M, but 
subsequently declined. Alghannam et al. (2021) examined 
the effect of SHy molarity on geopolymer concrete Cst, and 

Initially, two molarity values of 14 M and 20 M were cho-
sen. The findings indicated that the Cst decreased as the 
molarity was elevated from 14 to 20 M. This relationship 
between molarity and Cst is consistent with previous find-
ings (Aliabdo et al. 2016; Kantarcı et al. 2019). However, 
the inverse trend has also been noted (Hardjito et al. 2004; 
Parveen et al. 2018; Wang et al. 2005). Pratap et al. (2023) 
examined the effect of SHy molarity on the Cst of geopoly-
mer concrete prepared with fly ash and phosphogypsum. 
The findings indicated that the strength characteristics raised 
with increasing molar concentration, peaked at 12 M, and 
then fell as the concentration of SHy increased further as 
shown in Fig. 8. The observed variation in Cst clearly dem-
onstrates the influence of SHy molarity on geopolymer con-
crete. The reason behind this is SHy creates the alkaline 
climate that geopolymer gels need to bind together (Alam 
et al. 2019; Pavithra et al. 2016; Reddy et al. 2018). Rais-
ing the concentration of SHy can speed up the breakdown 
of aluminosilicates, encouraging the quick creation of geo-
polymer gels and the attainment of superior compressive, 
flexural, or split tensile strength (Liang and Ji 2021; Muth-
ukrishnan et al. 2021; Verma and Dev 2020; Zakira et al. 
2023). However, after the SHy molarity reached 12, all Cst 
dropped. The reduction in strength can be ascribed to the 
delay of geopolymerization induced by an overabundance of 
soluble silicates, specifically when the molar concentration 
surpasses 12 (Verma and Dev 2020), resulting in the extrac-
tion of the  Al3+ and  Si4+ ions by leaching (Bheem et al. 
2023). This may have potentially compromised the synthesis 
of C–A–S–H and N–A–S–H gel structures, consequently 
resulting in a fall in the material’s Cst (Ranjbar et al. 2020).

Typically, the Cst of FAGPC composites is enhanced as 
the molarity of SHy grows. This effect is due to the fullest 
breakdown of aluminum and particles of silicon throughout 
the polymerization procedure (Nath and Sarker 2017). An 
increase in SHy molarity leads to a more significant dis-
solution of Al and Si particles, consequently resulting in an 
enhancement of the Cst of geopolymer concrete mixtures 
(Görhan and Kürklü, 2014).

3.1.4  Sodium Silicate to Sodium Hydroxide Ratio (SSi/SHy)

SSi and SHy work together as binders in GPC mix designs. 
Changes in the ratio of SSi to SHy directly affect the behav-
ior of the GPC mix design. Several research investigating 
the impact of the alkaline solution ratio on the engineering 
characteristics of GPC mixes have been documented in the 
literature.

In research by Aliabdo et al. (2016) the impact of FAGPC 
was assessed under three distinct SHy/SSi ratios: 0.3, 0.4, 
and 0.5. Based on this research, an increase in the SSi/
SHy ratio resulted in a corresponding increase in Cst, as 
depicted in Fig. 9. Despite the use of various SSi/SHy ratios, 
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similar outcomes have been found in other studies (Das and 
Shrivastava 2020; Nath and Sarker 2017; Topark-Ngarm 
et al. 2015). Also, Hadi et al. (2017) employed the Taguchi 
approach to develop Optimal blend ratios for geopolymer 
concrete; The highest Cst was observed for a specific ratio of 
SSi/SHy equal to 2.5. Research conducted by other research-
ers came to the same conclusion (Abdullah et al. 2011; Ali-
abdo et al. 2016; Aziz et al. 2020; Joseph and Mathew 2012). 
(Vora and Dave 2013), Conversely, it was demonstrated that 
a ratio of 2 led to a greater Cst. According to Al-Azzawi 
et al. (2018) the Cst of FAGPC increased as the ratio of 
SSi/SHy rose in all geopolymer concrete compositions, even 
when fly ash levels ranged from 300 to 500 kg/m3. Based on 
the findings of Verma and Dev (2020) the Cst increases as 

the ratio in the mix design increases, but beyond a certain 
point, it drops in both curing condition samples. The greatest 
Cst is at SSi/SHy of 2.5, as shown in Fig. 10.

The examination of the impact of the alkaline solution 
ratio indicates that changes in this ratio affect both the initial 
properties and the long-term properties of GPC (Pradhan 
et al. 2022). As alkaline activators, SHy and SSi are often 
utilized. The SSi to SHy ratio is set at 2.5 in order to attain 
the appropriate fresh and hardened properties (Bakri et al. 
2012; MEMON et al. 2013; Nuruddin et al. 2011). Fur-
thermore, according to numerous researchers, compressive 
strength reduced above SSi/SHy of 2.5. The findings con-
firmed the hypothesis that the microstructure of geopolymer 
concrete undergoes modifications with increasing amounts 

Fig. 8  Variation in compressive 
strength concerning PG con-
centration and NaOH molarity 
(Pratap et al. 2023)

P1 P2 P3 P4 P5

0

10

20

30

40

50

60

C
o
m
p
re
ss
iv
e
st
re
n
g
th

(M
P
a)

Phosphogypsum content (%)

8M

10M

12M

14M

Fig. 9  The impact of varying 
SHy to SSi ratios on the Cst of 
FAGPC at different stages of 
curing (Aliabdo et al. 2016)

0.25 0.30 0.35 0.40 0.45 0.50 0.55

16

18

20

22

24

26

28

30

32

34

36

38

40

Co
mp

res
siv

es
tre

ng
th

(M
Pa

)

(Sodium hydroxide/ sodium silicate ) ratio

7 days
28 days



Iranian Journal of Science and Technology, Transactions of Civil Engineering 

of SSi. However, the decrease in Cst was attributed to an 
insufficient quantity of SHy in the mixture, which hindered 
the completion of the procedure for dissolution during geo-
polymer developing (Sagoe-Crentsil and Weng 2007; Weng 
and Sagoe-Crentsil 2007), or due to an excessive concentra-
tion of OH– ions in the GPC blend (Feng et al. 2019).

Contrary to prior findings, a smaller number of Studies 
pointed out the Cst of FAGPC decreased as the ratio of SSi 

to SHy rose. Ghafoor et al. (2021) did a study to evaluate 
how activators impact the mechanical characteristics of 
FAGPC during curing under room environmental condi-
tions. Their research demonstrates that an increase in the 
SSi/SHy ratio from 1.5 to 2 decreased Cst. When the ratio 
of SSi to SHy was raised from 2 to 2.5, comparable patterns 
were seen (Ghafoor et al. 2021). The observed outcome can 
be attributed to the inverse relationship between the SSi/SHy 
ratio and the quantity of SHy solution and hydroxide ions 
(OH-). This decrease in concentration leads to a reduction 
in the development of N–A–S–H gels, which are responsi-
ble for the primary 3D network that directly influences the 
microstructure of geopolymer concrete. Consequently, the 
Cst diminishes (Phoo-ngernkham et al. 2015; Ridtirud et al. 
2011). As a result, it is recommended that the SSi to SHy 
ratio be within the scope of 1.5–2.5 in order to gain FAGPC 
with superior compressive strength.

3.1.5  Curing Temperature and Age

The temperature for curing substantially affects the geopoly-
merization reaction, which is responsible for the increase in 
strength. Typically, there are three curing methods for GPC: 
ambient curing, oven curing, and steam curing.

Hardjito et al. (2004) carried out research to look at the 
impact of varying temperatures needed for curing in the 
oven on the Cst of FAGPC. Their findings demonstrated 
that as the oven curing temperature rose, the Cst increased, 
as shown in Fig. 11. Nevertheless, the increase in Cst was 
not substantial over the 60°C curing temperature. Another 
study was conducted by Adak et al. (2017) for evaluating 
how different curing conditions affect FAGPC’s mechani-
cal characteristics. According to Fig. 12, the Cst of the 
specimens treated under elevated curing circumstances was 
greater than that of specimens cured under ambient curing 
settings at the ages of 3, 7, and 28 days. Chithambaram et al. 
(2018) observed that the compressive strength of FAGPC 
raised initially as the temperatures in the oven rose up to 
 90O C, but then declined. Hassan et al. (2019) assessed the 
impact of different curing situations on mechanical charac-
teristics of FAGPC. The researchers reported that the Cst of 
FAGPC after 7 and 28 days varied from 10.50 to 31.11 MPa 
when subjected to heat curing at 75 °C. However, when sub-
jected to ambient curing, the Cst decreased to a range of 
4.5–10 MPa. Moreover, it was discovered that the Cst of 
FAGPC exhibited a 67% increase in comparison to ambient 
curing conditions for a duration of 28 days when subjected 
to a temperature of 75 °C. Based on Sajan et al. (2021) the 
Cst of the geopolymer exhibits an upward trend as the curing 
temperature rises from 20 to 60 °C. They discovered that the 
strength development of geopolymer cured at 60 °C is much 
more than at lower temperatures. Verma and Dev (2022) 
reported that the strength of the GPC mix design decreases 
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above the curing temperature of  100O C, but it increases with 
further curing temperature increases.

Most of the research used elevated curing temperature to 
cure GPC as opposed to other types of curing conditions, and 
it was discovered that the most often used curing tempera-
ture varied from 60 to 80. The Cst of specimens subjected to 
oven treatment is higher than that of specimens cured under 
ambient conditions. The increase in temperature of the geo-
polymer concrete specimens leads to an acceleration of the 
geopolymerization process, resulting in an enhancement of 
the compressive strength. (Albitar et al. 2015).

On the other hand, Increasing the heat curing period to 
90 h (Hardjito et al. 2004; Vora and Dave 2013), and 110 h 

increased Cst (Patankar et al. 2014). Kumar et al. (2017) 
used a closed steam chamber and a hot air oven to cure 
geopolymer concrete. Regardless of the curing method 
used, around 80–90% of the Cst achieved after 28 days 
was reached within 7 days. This was achieved by initially 
curing the samples at a temperature of 60 °C for 24 h, 
followed by maintaining them at room temperature until 
testing. Additional experiment conducted by Nguyen et al. 
(2020) revealed that within 7 days, over 93% of the 28-day 
Cst can be achieved. In addition to that some researchers 
investigated the effect of microwave curing on the strength 
of geopolymer. Microwave heating uses internal energy 
dissipation to excite molecular dipoles in electro-magnetic 

Fig. 11  Effect of different oven 
curing temperatures on the 
compressive strength (Hardjito 
et al. 2004)
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regions, resulting in faster and more consistent heat trans-
fer (Kim et al. 2015). In a study conducted by Graytee 
et al. (2018), it was shown that geopolymer pastes treated 
in a microwave oven had significantly higher compressive 
strength compared to the control group that underwent 
traditional oven curing at 90 and 120 °C for the identical 
duration. Because microwave radiation promoted a higher 
hydration degree of precursors in geopolymer, Kastiukas 
et al. (2020) said that it took less time to make precast 
geopolymer concrete with the desired strengths using 
microwave radiation than oven curing. Under enhanced 
temperature curing, the ideal strengths can be achieved by 
precisely adjusting the temperatures, powers, and curing 
time to eradicate micro-cracking from the samples.

3.1.6  Aggregate Content

Geopolymer concrete compositions use the same aggre-
gates as ordinary concrete, including both fine and coarse 
particles. Chithambaram et al. (2018) examined the effect 
of total aggregate content on the Cst of FAGPC at different 
molarities and curing temperatures. They utilized five dif-
ferent volume fractions of total aggregate contents, rang-
ing from 74 to 82%. As illustrated in Fig. 13, it was found 
that the Cst of FAGPC grew as the total aggregate content 
increased up to 78% and then decreased because of insuf-
ficient binding material to keep the aggregates together. 
Mermerdaş et  al. (2017) used three different kinds of 
aggregates: crushed sand, river sand, and a combination of 
crushed and river sand. The geopolymer mortar mixtures’ 
Cst varied from 28.2 to 47.8 MPa on 1 day, when the spec-
imens were cured for 24 h at 90 °C. Furthermore, it was 
shown that the geopolymer mixture containing crushed 
sand had a higher Cst in comparison to other aggregates. 
This was ascribed to the angular form and rough surface 
texture of the crushed sand, which raise the surface-to-vol-
ume ratio and enhance the binding properties between the 
aggregates and paste matrixes. Furthermore, they stated 
that, in comparison to the other classes, the crushed sand 
with a coarser grade (2–4 mm) had the highest Cst, as 
seen in Fig. 14. The Cst of geopolymer concrete based 
on fly ash and GGBFS was studied by Nuaklong et al. 
(2016), with different grades and quantities of fine aggre-
gate. By using recycled concrete aggregates, they claimed 
to be able to create FAGPC with a Cst of 30–38 MPa after 
7 days. However, this value is marginally lower than the 
Cst of 38–41 MPa after 7 days achieved by FAGPC made 
with crushed limestone aggregate.73 74 75 76 77 78 79 80 81 82 83
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3.1.7  Extra Water and Superplasticizer Dosage

Two important aspects strongly influence the hardened prop-
erties and workability of FAGPC: the superplasticizer and 
water content. Due to its higher viscosity compared to water, 
the alkaline solution used in geopolymer concrete, consisting 
of SHy and SSi, creates a mixture that is more adhesive and 
cohesive than ordinary concrete (Deb et al. 2014). To further 
improve the workability of the geopolymer concrete mixture, 
additional water and superplasticizer are used.

Hardjito et al. (2004) performed a test experiment to eval-
uate the impact of dose of superplasticizer on the compres-
sive strength of FAGPC. They employed a range of water 
reduction admixtures. The results they obtained reveal that 
adding superplasticizer to the geopolymer concrete mixture 
enhances workability of the FAGPC in one sense and has no 
effect on Cst up to approximately 2% fly ash by mass on the 
other. When the dosage of the superplasticizer was increased 
after 2%, the compressive strength decreased. Incorporat-
ing additional water into the geopolymer concrete mixture 
under different curing temperatures resulted in a consider-
able decrease in Cst. Similarly, a research investigation has 
been conducted by Aliabdo et al. (2016) to investigate the 
impact of higher water and superplasticizer concentrations 
on the Cst of FAGPC. They came to the conclusion that Cst 
dropped with increasing amounts of water added to the geo-
polymer concrete mixture. This reduction in Cst was below 
10% but not exceeding 30 kg/m3of further water, however, 
the percentage rose to 24% when an additional 35 kg/m3 
of water was utilized. Furthermore, evidence demonstrated 
that the Cst of FAGPC exhibited a slight decrease with an 
increase in the dosage of the superplasticizer. Another exper-
iment was done by Albitar et al. (2015) to assess the effect 
of superplasticizer and water to binder ratio on the Cst of 
FAGPC. With an increase in the dose of superplasticizer and 
the water to binder ratio, there was a significant decrease in 
Cst. Gupta et al. (2021) assessed the impact of superplas-
ticizers on compressive strength. With increasing amounts 
of superplasticizer (1%, 2%, and 3%), two types of samples 
are created. They found that a 3% superplasticizer dosage 
provides the greatest increase in mechanical properties.

In general, the Cst of the geopolymer concrete compos-
ite is reduced as the amount of water and superplasticizer 
in the mixture is increased. This is because the increased 
quantity of these components leads to a decrease in contact 
with the source of the activating solution and the material 
that reacts. Additionally, increased excess water content in 
geopolymer concrete reduces its compressive strength. This 
is because water evaporates from the material during high 
temperature curing inside ovens, creating empty spaces and 
hollows inside the structure. Moreover, the introduction of 
excess water can impact the alkalinity of the GPC matrix, 
resulting in a deceleration of the polymerization process.

4  Conclusions and Recommendations

4.1  Conclusions

Geopolymer concrete is seen to be highly appropriate 
when considering sustainable development. Many of the 
requirements are met by this unique concrete, including 
high strength, the use of secondary materials, a low carbon 
trace, minimal levels of greenhouse gas emissions, strong 
resistance to frost, and so on. This study included a revised 
data analysis of the compressive strength of geopolymer 
concrete. The following conclusions can be drawn.

1- The ratio of alkaline solution to binder (Al/Bi) sig-
nificantly affects the compressive strength of FAGPC. 
Some scholars assume that as the Al/Bi grew, the 
Cst improved. Simultaneously, numerous research-
ers observed a decline in compressive strength with 
increased Al/Bi ratio.

2- Raising the molarity of SHy can enhance the compres-
sive strength of FAGPC composites. Maintaining the 
molarity of SHy within the range of 10 –16 M was 
recommended to achieve the desired Cst behavior in 
FAGPC blends.

3- The compressive strength value for FAGPC increases as 
the ratio of SSi to SHy increases, but only until about 2.5 
before it starts to go down again.

4- The Cst of the geopolymer concrete is diminished by 
raising the water content or introducing additional water 
to the FAGPC.

5- Including superplasticizer increases the Cst of FAGPC 
composites, reaching a peak at approximately 2.5% fly 
ash amount.

6- The heat-curing protocol is the most effective curing 
procedure for achieving early and high compressive 
strength in FAGPC.

7- For successful polymerization and sufficient Cst in 
FAGPC, it is recommended to utilize oven curing tem-
peratures ranging from 50 to 80 °C and a curing time of 
24 h.

4.2  Recommendations

Existing literature comprehensively analyses the 
compressive strength of geopolymer concrete pro-
duced from fly ash. However, the amount of research 
conducted that concentrates on the composite’s other 
mechanical properties is still somewhat restricted. 
To enable this composite to meet the standards of 
the construction sector, it is necessary to thoroughly 
assess specific mechanical parameters, such as 
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modulus of elasticity, splitting tensile strength, and 
flexural strength. To better understand GPC mechani-
cal behavior, the microstructure/nanostructure and 
chemistry of geopolymers must be thoroughly 
explored.
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