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Abstract
In this study, an approach is proposed for the analysis of structures that can be represented by the Timoshenko beam model. 
In this study, the Transfer matrix method, which has been previously developed in the literature for static, dynamic and 
stability analysis of all types of multi-story buildings, is formulated in this study specifically for the analysis of symmetric 
buildings consisting of only shear walls or only frames, which can be represented behaviorally as Timoshenko beams. The 
size of the Transfer matrix, which is 6*6 in the literature by considering all effects in the symmetric state, is obtained as 4*4 
due to the characteristics of the systems considered in this study. In the study, firstly, the differential equation system and 
boundary conditions representing the Timoshenko beam model were obtained in accordance with Hamilton’s principle. Then, 
the element Transfer matrix was obtained by solving the obtained differential equation system. With the presented approach, 
both static, dynamic and stability analysis can be performed. The most important advantage of the presented method is that 
the sizes of the matrices used in the analyses are small. With the Transfer matrix method, the size of both the element and 
the system Transfer matrix is 4*4. At the end of the study, to show the suitability of the presented method with the finite 
element method, two examples, one consisting of pure walls and the other consisting of pure frames, were solved with the 
presented approach and the results were evaluated.

Keywords Continuous method · Static · Dynamic and stability structural analysis · Tall building · Timoshenko beam · 
Transfer matrix method

1 Introduction

Many studies have been carried out from past to present 
regarding the static, dynamic and stability analysis of 
buildings, and different numerical analysis methods have 
been developed. Although the finite element method has 
become widespread in practice, another practical method 
has been developed to be used, especially in the pre-sizing 
phase. One of these is the continuous system calculation 
model. In this model, a multi-story building is idealized as 
an equivalent continuous media.

The first study on the continuous system calculation 
model was made by Chity (1947). In the study conducted by 

Chity, the shear beam and the flexural beam were combined 
with bars with joints at both ends and their static analyses 
were carried out. In a later work, Chitty and Wan (1948) 
applied the continuous method to buildings but neglected 
axial strain in vertical elements. Skattum (1971) proposed 
an approach for the dynamic analysis of coupled shear 
walls. Reinhorn (1978) used the continuous method and the 
Tansfer matrix method to present an approximate analytical 
model for the static and dynamic analysis of tall buildings 
where it included the axial deformations. Miranda (1999) 
used the flexural-shear beam model to calculate the displace-
ments of buildings under different static loading situations. 
Potzta and Kollár (2003) used the sandwich beam model for 
the dynamic analysis of buildings and proposed an approach 
to calculate the equivalent stiffness of load-bearing systems 
located in different planes. Bozdoğan (2010) developed 
Transfer matrices to be used in static, dynamic and stability 
analyses of multi-story symmetrical and asymmetrical build-
ings. In the study, the contributions of shear displacements 
in the walls and axial loads in the vertical elements to the 

 * Kanat Burak Bozdogan 
 kbbozdogan@comu.edu.tr

1 Department of Civil Engineering, National University 
of Engineering, Lima, Peru

2 Department of Civil Engineering, Çanakkale Onsekiz Mart 
University, Çanakkale, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s40996-024-01351-7&domain=pdf


2920 Iranian Journal of Science and Technology, Transactions of Civil Engineering (2024) 48:2919–2930

horizontal displacement were also considered. Zalka (2001, 
2002, 2003, 2009, 2013) developed closed form solutions for 
the calculation of displacements of symmetrical and asym-
metrical buildings under static loads, calculation of periods 
and critical buckling loads. Bozdogan (2012) proposed the 
Transfer matrix method for free vibration analysis of shear-
frame systems placed asymmetrically in plan.

Aydın and Bozdogan (2016) proposed a method for 
stability analysis in shear-frame systems according to the 
sandwich beam model. In the method, the critical buckling 
load was obtained by solving the differential equation 
system written in accordance with the continuous system 
calculation model with the differential transformation 
method. Faridani and Capsoni (2016) proposed a modified 
flexural-shear beam model for the analysis of damping 
systems. Mohammadnejad and Kazemi (2018) used the 
bending beam model for the analysis of buildings whose 
structural system is a tube system. Sgambi (2020) examined 
multi-beam models used in modeling buildings. Kara et al. 
(2021) proposed a practical approach using the continuous 
system calculation model to find the soil-structure 
interaction periods of the buildings. Laier (2021) used the 
improved continuous system calculation model developed 
for the analysis of three-dimensional buildings.

One of the models used in the analysis of buildings with 
a continuous system is to represent the buildings as an 
equivalent Timoshenko beam. The studies in the literature 
related to the modeling of Timoshenko beams used for 
analysis and identification of structures are summarized 
below.

Köpecsiri and Kollar (1998), for the determination 
of displacement and internal forces by means of modal 
response analysis of tall building, used the Timoshenko 
beam model. In their study, for the first two modes, the base 
shear force, bending moment, maximum displacements and 
maximum drift ratio between floors are practically available 
with the help of graphs. Design forces and displacements are 
determined using the mode superposition method.

Lord and Ventura (2002) compared the results by 
finding periods of an experimental and analytical method 
of a 48-story and core wall bearing system with tuned mass 
damper. As an analytical method, they modeled the structure 
as an equivalent Timoshenko beam.

Rahgozar et al. (2004) investigated the analytical solution 
of the variable section Timoshenko beam for free vibration 
analysis of tall building. They obtained an analytical solution 
for the polynomial and exponential exchange of inertia 
moment, sectional area and mass. In this study, change 
functions were selected specifically to allow an analytical 
solution.

Boutin et  al. (2005) showed that regular structures 
with on-site period measurements could be successfully 
represented by the Timoshenko beam model. Michel 

et al. (2006) proposed a method in which the ambient 
vibration and Timoshenko beam model were used together 
to determine modal parameters of reinforced concrete 
structures.

Xie and Wen (2008) used model buildings as an 
equivalent Timoshenko beam for determining the 
interstory drift ratio of multi-story buildings and presented 
a measurement of the seismic demands of ground motion 
considering the non-uniform distribution of drift demands.

Koehler et al. (2013) benefited from the Timoshenko 
beam model in the approach they developed for the 
identification of buildings. Rahgozar et al. (2004) used the 
Timoshenko vogue model to determine the natural periods 
of multi-story buildings.

Ebrahimian and Todorovska (2014) analyzed the wave 
propagation of a tall building excited by seismic ground 
motion. In a later work, Ebrahimian and Todorovska 
(2015) have used a non-uniform Timoshenko beam 
model for system identification of tall buildings. Damage 
assessment of the buildings can be carried out with the 
presented model. Su et al. (2015) used the Timoshenko 
beam model to assess seismic behaviors of existing 
buildings in Malaysia quickly.

Cheng and Heaton (2015) utilized from the Timoshenko 
beam model to determine the linear elastic behavior of 
buildings, by considering the soil effect. The building 
behavior can be considerably determined by measuring the 
first two horizontal modes. The suitability of the method 
presented at the end of the study is shown on the Caltech 
Millikan library building.

Su et al. (2016a), in the low moderate seismic region, for 
determination of earthquake behaviors of buildings, used 
the two-zone Timoshenko beam model to clarify the seismic 
behavior of the structures. In a subsequent investigation, Su 
et al. (2016b), for the reinforced concrete, benefited from 
the Timoshenko beam model to quickly and practically 
determine the mode shapes of tall buildings. In the method 
presented, graphs were used to determine mode shapes.

Taciroglu et al. (2017) used the Timoshenko beam model 
to determine the dynamic stiffness of the soil foundations 
system. Ozmutlu et al. (2018) studied wave propagation in 
rigid slab periodical structures using the Timoshenko beam 
model. Feretti (2018) benefited from the three-dimensional 
Timoshenko beam model to find a critical buckling load for 
structures consisting of columns and rigid slabs. Davari et al. 
(2019) developed closed equations for the static analysis of 
tall buildings using the Timoshenko beam model. Gungor 
and Bozdogan (2021) proposed the Timoshenko beam model 
for the spectral analysis of steel plate shear wall systems. In 
the study, they used the differential transformation method 
to determine the dynamic characteristics of the Timoshenko 
beam model.
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The size of the Transfer matrix method, which was pre-
viously developed in the literature (Bozdogan 2010) for 
static, dynamic and stability solution of all types of systems, 
was 6*6 for the symmetric buildings case and 12*12 for 
the asymmetric building. In this study, symmetric systems 
consisting of pure frames and pure shear walls are repre-
sented by the equivalent Timoshenko beam model, which 
is a special case of the general case, and the Transfer matri-
ces are obtained. In this case, the dimension of the Transfer 
matrices is 4*4, and unlike the literature, the contribution of 
local bending of columns and shear walls to the horizontal 
displacement is neglected. In this study, Transfer matrices 
were created for the static, dynamic and stability analysis of 
buildings that can be modeled as Timoshenko beams, and 
the Transfer matrix method was proposed for the analysis 
of these systems. The following assumptions were made in 
the study.

1. The material shows linear elastic behavior.
2. P-Δ and P-δ effects are negligible.
3. The buildings are placed symmetrically in the plan, 

and the torsional and translational movements are 
uncoupled.

4. The effect of axial displacements in the beams on 
the horizontal translational displacements has been 
neglected.

5. Slabs show rigid diaphragm behavior.

2  Timoshenko Replacement Beam

Buildings consisting of only shear walls and only frame sys-
tems can be modeled as an equivalent Timoshenko beam 
under static and dynamic loads. The Timoshenko replace-
ment beam (Fig. 1) consists of the series coupling of a 
bending beam and a shear beam. The representation of the 

Timoshenko beam model with springs is shown in Fig. 1. 
In the Figure, Kb shows the bending stiffness and Ks shows 
the shear stiffness.

3  Static Analysis

In the continuous system calculation model, the loads are 
considered as distributed along the system as it is known. In 
this study, in order to comply with the finite element method, 
the loads are applied at the floor levels. In Fig. 2, the distrib-
uted loads are shown acting on the floor levels in a discrete 
manner.

Fig. 1  Timoshenko beam. a-c 
Equivalent replacement beam 
and d Schematic representation 
of the mechanism

Fig. 2  Discretization process of the continuous model. a General dis-
tributed lateral load and b Point loads acting on floor levels
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The differential equation system of the Timoshenko beam 
under static loads is written as in Eq. (1), using Hamilton’s 
principle.

where H is the total height of the continuous model, f(x) is 
the distributed lateral load, u(x) is the lateral displacement 
and �(x) is the rotation due to bending.

Assuming that the external loads are not distributed 
throughout the element but only effect the nodes at the floor 
levels, the differential equation system is written as follows.

If the differential equation system (2) is solved by any 
method known from the theory of differential equations, the 
u(x) and �(x)  functions are found with Eqs. (3).

Using the displacement functions (3), the bending 
moment and shear force functions are found with Eq. (4) 
as follows.

Equations (3) and (4) can be written in matrix form as 
Eq. (5):

At the base of the i-th floor, Eq. (5) is written as follows.

At the top point of the i-th floor, Eq. (5) is written as 
follows.
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Matrix Eq. (8) is obtained from matrix Eqs. (6) and (7).

where  Ti is the Transfer matrix of the i-th floor and is 
calculated with the following equation:

For static analysis under horizontal loads acting on 
floors, floor Transfer matrices and external load vectors (f) 
created by external loads acting on floor levels can be used. 
The following relation is written as a result of successive 
operations between the top point of the building and its base.

where

As seen here, the size of the system Transfer matrix is the 
same as the size of the element Transfer matrices and is 4*4.

Boundary conditions must be defined for the solution of 
matrix Eq. (10). These are briefly summarized below.

• Translation and rotation at the base of the building are 
zero.

• At the top of the building, the bending moment and shear 
force are zero.

These four conditions are mathematically shown by 
Eqs. (12), (13), (14) and (15).
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If these four conditions are substituted in matrix Eq. (10), 
matrix Eq. (16) is obtained.

By solving the matrix Eq. (16), the bending moment and 
shear force at the base can be found with Eq. (17), and the 
translation and rotation values at the top can be found with 
Eq. (18).

4  Dynamic Analysis

Assuming that the masses are lumped at floor level, the 
inertia force at i. floor level is written as follows:

where mi is the mass of the floor.
For equilibrium:

The relationship between forces and displacements 
between two consecutive floors is obtained by taking into 
account the Transfer matrix and the vector of external point 
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Rewriting:
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If the matrix relation (21) is applied sequentially for all 
building floors, the matrix Eq. (24) is obtained.

where

If the boundary conditions given in Eqs. (12), (13), (14) 
and (15) are applied to the matrix Eq.  (24), Eq.  (26) is 
obtained.

From matrix Eq. (26), matrix Eq. (27) can be obtained:
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are assumed to act at floor levels (Fig. 3). In this section, in 
obtaining the stability Transfer matrix, the stability Transfer 
matrix obtained for columns in the literature (Li 2001) is used.

Using the total potential energy, the differential equation 
system in stability for the Timoshenko beam is written as 
follows.

where N is the axial load of the i-th story. From the solution 
of the differential equation system given above, the lateral 
translation u(z) and rotation �(z) functions are found as follows 
(Li 2001).
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Writing the equations in matrix form:

where

At the top of the I-th floor, Eq. (33) is written as follows.

(31)a =

√
N

bKb

(32)
M(x) =EI�� = c2N cos(ax) + c3N sin(ax)

V(x) =EI��� + Nu(x)� = c1N

(33)

⎧⎪⎨⎪⎩

ui
�
xi
�

�i

�
xi
�

Mi

�
xi
�

Vi

�
xi
�

⎫⎪⎬⎪⎭
= �

�

�
xi
�⎧⎪⎨⎪⎩

C0

C1

C2

C3

⎫⎪⎬⎪⎭

(34)

Bi

�
xi
�
=

⎡
⎢⎢⎢⎢⎣

1 xi cos
�
aixi

�
sin

�
aixi

�
0 1 ai

�
1 +

Ni

Ksi

�
sin

�
aixi

�
ai

�
1 −

Ni

Ksi

�
cos

�
aixi

�
0 0 −Ni cos

�
aixi

�
−Ni sin

�
aixi

�
0 Ni 0 0

⎤⎥⎥⎥⎥⎦

Fig. 3  Structural plan of the 
building of shear walls and core
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where

At the base of the i-th floor, Eq.  (33) is written as 
follows.

where

From matrix Eqs.  (35) and (37), matrix Eq.  (39) is 
obtained.

It is seen that the Transfer matrix obtained is compatible 
with the literature (Li 2001).

If relation (39) is applied successively from the base to 
the top of the building, Eq. (40) is obtained:

where

If the boundary conditions defined in Eqs. (12), (13), 
(14) and (15) are applied to matrix Eq.  (40), matrix 
Eq. (42) is obtained.
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From Eq. (42), matrix Eq. (43) is obtained.

For Eq.  (43) to have a non-zero solution, the 
determinant of the coefficient’s matrix must be zero. 
Hence, relation Eq. (44) is obtained.

Axial load N, which makes the given equation zero, 
gives the critical load factor.

6  Application

In this section, we present the results of typical tall 
buildings in the practice of structural engineering. In 
this section, three different examples are solved, and the 
results are compared to demonstrate the suitability of the 
Transfer matrix method presented in this paper to the finite 
element method. SAP2000 is used for the finite element 
method. The software required for the implementation of 
the Transfer matrix method presented in this study was 
created in MATLAB.

6.1  Building of Shear Walls and a Central Core 
with Uniform Properties Throughout Height

In the first application, a building with shear walls and a 
central core is considered (Fig. 3).

The geometric and material characteristics are detailed 
below. The modulus of elasticity is E = 25000 MN/m2, the 
shear modulus is G = 10416.67 MN/m2, the height of the 
story is 3 m, the width of the shear walls and cores is 0.4 
m, the uniform lateral load in height is 1.00 kN/m2 and the 
uniform vertical load is 12.00 kN/m2.

The building will be analyzed in its main directions X and 
Y. The building has a flexural stiffness Kbx = 975792500 
kN  m2 and Kby = 692717500  kNm2 and a shear stiffness 
Ksx = 179585416.7 kN and Ksy = 171252083.3 kN.

Tables 1, 2, 3, 4, 5 and 6 show the results of static, 
dynamic (free vibration) and stability analysis of the 
building. From the tables, it can be seen that the results 
obtained with the proposed method are consistent with the 
results obtained with finite elements.
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6.2  Building of Shear Walls and a Central Core With 
Non‑Uniform Properties Throughout Height

To verify the results of the proposed method (Transfer 
matrix method) with the finite element analysis, 15- and 
30-story buildings with shear walls and central core pre-
sented in Fig.  3, whose geometry characteristics vary 
along the building height, are analyzed.

Table 7 shows the equivalent stiffnesses of the 15-story 
building, and Table 8 shows the equivalent stiffnesses of the 
30-story building.

Tables 9, 10, 11, 12, 13 and 14 show the results of static, 
dynamic and stability analysis of the building. It shows that 

Table 1  Maximum lateral displacement (mm)—X direction

Story Finite element Transfer matrix Error (%)

15 9.748 10.5 7.714
30 153.098 159.2 − 3.986

Table 2  Maximum lateral displacement (mm)—Y direction

Story Finite element Transfer matrix Error (%)

15 16.167 17.4 7.627
30 254.713 265.2 4.118

Table 3  First period of vibration (s)—X direction

Story Finite element Transfer matrix Error (%)

15 1.573 1.562 − 0.699
30 6.039 6.026 − 0.215

Table 4  First period of vibration (s)—Y direction

Story Finite element Transfer matrix Error (%)

15 1.863 1.851 − 0.644
30 7.163 7.150 − 0.181

Table 5  Ratio of global buckling critical load—X direction

Story Finite element Transfer matrix Error (%)

15 48.112 52.772 9.686
30 6.410 6.560 2.340

Table 6  Ratio of global buckling critical load—Y direction

Story Finite element Transfer matrix Error (%)

15 34.278 37.035 8.043
30 4.554 4.644 1.976

Table 7  Equivalent stiffness of the 15-story building

Direction t (m) Story Kb (kN  m2) Ks (kN)

X 0.40 1–8 975,792,500 179,585,416.7
X 0.20 9–15 530,022,450 89,789,583.33
Y 0.40 1–8 692,717,500 171,252,083.3
Y 0.20 9–15 379,832,500 85,622,916.67

Table 8  Equivalent stiffness of the 30-story building

Direction t (m) Story Kb (kN  m2) Ks (kN)

X 0.40 1–10 975,792,500 179,585,416.7
X 0.30 11–20 762,378,750 134,687,500
X 0.20 21–30 530,022,450 89,789,583.33
Y 0.40 1–10 692,717,500 171,252,083.3
Y 0.30 11–20 543,707,500 128,437,500
Y 0.20 21–30 379,832,500 85,622,916.67

Table 9  Maximum Lateral displacement (mm)—X direction

Story Finite element Transfer matrix Error (%)

15 10.179 11.000 8.066
30 162.777 169.700 4.253

Table 10  Maximum Lateral displacement (mm)—Y direction

Story Finite element Transfer matrix Error (%)

15 16.858 17.400 3.215
30 270.444 281.9 4.236

Table 11  First period of vibration (s)—X direction

Story Finite element Transfer matrix Error (%)

15 1.606 1.593 0.816
30 6.216 6.202 − 0.225

Table 12  First period of vibration (s)—Y direction

Story Finite element Transfer matrix Error (%)

15 1.900 1.886 − 0.737
30 7.368 7.353 − 0.201
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the proposed method (Transfer Matrix Method) gives results 
that are compatible with the finite element method when 
the building geometry characteristics are variable along the 
height of the building.

6.3  Frame Building with Uniform and Variable 
Properties

In order to demonstrate the suitability of the proposed 
method, a 10-story building consisting of frames (Fig. 4) is 
considered as the third application. The modulus of elastic-
ity is 25,000 MN/m2, the shear modulus is 10,416.67 MN/
m2 and the story height is 3 m. The vertical distributed load 
is 12.00 kN/m2.

In case of uniform and variable cross-section, static 
loads were calculated according to the equivalent static 
load method. According to the equivalent static load 
method, the Peruvian seismic code was taken into account 

for the calculation of the base shear force and the loads 
acting on the floors. Assuming that the given building was 
built for office purposes in Lima, Peru, on a type of soil 
considered intermediate, the base shear force was calcu-
lated as 1540 kN, and the floor forces acting on the floors 
were calculated and shown in Fig. 5.

In this example discussed in the study, two situations 
were taken into account. In the first case, it is assumed that 
the columns are 0.5 m/0.5 m and are uniform throughout 
the building height. In the second case, it is assumed 
that the column cross-sections vary from 0.5 m/0.5 m 
to 0.3 m/0.3 m along the building height. Both In this 
case, beam dimensions are accepted as 0.3 m/0.5 m. In 
Tables  15 and 16, equivalent bending stiffnesses and 
equivalent shear stiffnesses with the changes in column 
sections are given for both cases.

Figure 6a and b shows the lateral displacement pro-
file of the uniform and variable building, respectively. A 
good estimate is observed using the proposed model and 
method. Tables 17, 18 and 19 show the results obtained for 
the static, dynamic (Free vibration) and stability analyses. 

Table 13  Ratio of global buckling critical load—X direction

Story Finite element Transfer matrix Error (%)

15 45.907 46.581 1.468
30 5.994 6.015 0.350

Table 14  Ratio of global buckling critical load—Y direction

Story Finite element Transfer matrix Error (%)

15 32.766 33.197 1.315
30 4.265 4.280 0.352

Fig. 4  Structural plan of the building of frames
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Fig. 5  Variation of loads acting on floors along building heights

Table 15  Equivalent stiffness of 10-story building with uniform prop-
erties

Story Col. section (m) Kb (kN  m2) Ks (kN)

1:1–10 0.50/0.50 3,125,000,000 590,551
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In both cases excellent results were obtained with good 
convergence.

7  Conclusion

In this study, the Transfer matrices previously developed in 
the literature for the static, dynamic and stability analysis of 

shear-frame systems for sandwich beams are developed for 
the Timoshenko beam model, which is a special case of the 
sandwich beam model. The presented approach is suitable 
for the behavior of buildings consisting of pure shear walls 
and pure frames.

The presented approach has the advantages of the 
Transfer matrix method. As is known, the most important 
advantage of the Transfer matrix method is that the size of 
the system Transfer matrix is independent of the number of 
elements. In the proposed approach, the size of the element 
Transfer matrix and the size of the system Transfer matrix 
are fixed and are 4*4. Thus, both size and time savings can 
be achieved compared to the classical finite element method.

From the two examples presented at the end of the study, 
it is observed that the proposed approach gives results 
compatible with the classical finite element method. As a 
result, it can be said that the presented method can be used 
safely especially in the pre-dimensioning stage. The main 
advantage of the presented method is that it saves time due 
to the small matrix size.

Table 16  Equivalent stiffness of the 10-story building with variable 
properties

Story Col. section (m) Kb (kN  m2) Ks (kN)

1–4 0.50/0.50 3,125,000,000 590,551
5–7 0.40/0.40 2,000,000,000 452,031
8–10 0.30/0.30 1,125,000,000 243,243

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90

z

u(mm)

10 levels

Finite element

Transfer matrix method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90

z

u(mm)

10 levels

Finite element

Transfer matrix method

Fig. 6  Lateral displacement profile. a Building with uniform properties and b Building with variable properties

Table 17  Maximum lateral displacement (mm)

Building Finite element Transfer matrix Error (%)

Uniform 60.190 61.670 2.458
Variable 81.814 81.261 − 0.676

Table 18  First period of vibration(s)

Building Finite element Transfer matrix Error (%)

Uniform 1.553 1.599 2.962
Variable 1.709 1.730 1.229

Table 19  Ratio of global buckling critical load

Building Finite element Transfer matrix Error (%)

Uniform 27.939 21.869 21.73
Variable 26.787 21.869 18.36
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